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0. Introduction

In the previous paper [2], we have introduced the concept of a twisted
linear action which is an analytic action of a non-compact Lie group on a sphere,
and we have shown as an example that there have been uncountably many
topologically distinct analytic actions of SL(n, R) on the (2n—1)-sphere.

In this paper, we shall show another aspect of twisted linear actions. In
particular, we shall show that there are uncountably many C'-differentiably
distinct but topologically equivalent analytic actions of SL(n, R) on a k-sphere
for each k=n=2.

1. Twisted linear actions

Throughout this paper, a matrix means only the one with real coefficients.

1.1. Let u=(%;) and v=(v;) be column vectors in R". As usual, we define
their inner product by u-v=3); %; v; and the length of u by |ju||=vu-u. Let
M=(m,;) be a square matrix of degree n. We say that M satisfies the condition
(T) if the quadratic form

x'Mx = E m,‘j X; x]
is positive definite. It is easy to see that M satisfies (7') if and only if
(T) dit llexp (tM)x||>0 for each xER:— R'—{0},tcR.
If M satisfies (T''), then
tlim llexp (¢M) x||=-+oco and lim [lexp(tM) x|| = 0

for each x& R§, and hence there exists a unique real valued analytic function
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on R} such that
llexp(r(x) M) x|]| =1 for xER;.

Therefore, we can define an analytic mapping z¥ of R onto the unit (n—1)-
sphere S*~! by

7M(x) = exp(r(x) M)x for xERj],

if M satisfies the condition (T').

1.2. Let G be a Lie group, p: G—>GL(n, R) a matricial representation, and
M a square matrix of degree n satisfying (7). We call (p, M) a TC-pair of
degree n, if p(g) M=Mp(g) for each g&G. For a TC-pair (p, M) of degree n,
we can define an analytic mapping

E:GX8"'— 8" by &g, x)=x"(p(g) %),

and we see that £ is an analytic G-action on S*~!. We call £=£¢' ) a twisted
linear action of G on S*~! determined by the T'C-pair (p, M), and we say that &
is associated to the matricial representation p.

1.3. For a given Lie group G, we introduce certain equivalence relations
on TC-pairs. Let (p, M) and (o, N) be TC-pairs of degree n. We say that
(p, M) is algebraically equivalent to (o, N) if there exist A€GL(n, R) and a
positive real number c satisfying

(*) cN=AMA™ and o(g) = Ap(g) A" foreach geGC.

We say that (p, M) is C’-equivalent to (o, N) if there exists a C’-diffeomor-
phism f of S*! onto itself such that the following diagram is commutative:

Ixf
GxS*1—> GxS*!
l E(f’.M) lE(G.N)
f

Sﬂ—l > Sﬂ—l .

We call f a G-equivariant C"-diffeomorphism.

Lemma. If (p, M) is algebraically equivalent to (o, N), then (p, M) is
C®-equivalent to (o, N).

Proof. It has been proved in the previous paper [2], but we give a proof
for completeness. Suppose that there exist A€GL(n, R) and a positive real
number ¢ satisfying (*). Define analytic mappings %, and k, of S*! into itself
by
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hu(x) = z¥(Ax) and ku(y) = 2(A'y).

Then the composites h,k, and k,h, are the identity mapping on S*~! by the
condition cN=AMA™, and hence h, is a C®-diffeomorphism. Furthermore,
the equality

ha(E®(g, x)) = EC (g, ha(x))
holds for each g&G and x&S""!, by the condition (*). g.e.d.

Theorem ([2], Theorem 3.3). Let G be a compact Lie group and p: G—
GL(n, R) a matricial representation. Then any TC-pairs (p, M) and (p, N) are
C“-equivalent.

2- First typical examples

Here we shall study twisted linear actions of G=SL(n, R) on the (nk—1)-
sphere associated to a representation p=p,®1I, that is, p(4)=AQI,.

2.1. Let A and B==(b;;) be square matrices of degrees » and k, respec-
tively. Denote by AQB the Kronecker product written in the form

by -+ by 4
A®B=< : : )
bk,_A b bkkA .

Let u,, -++, u, be column vectors in R". Then the correspondence

u,
(uh HREY uk) g ( 3 )
u;

defines a linear isomorphism ¢: M(n, k; R)—>R™. Let X and Y be nxk matri-
ces. As usual, we define their inner product by :

<X, Y) = trace ({XY),

and the length of X by ||X||=+/<X, X>. Then ¢ is an isometry. Further-
more, the equality

(A®B) (X) = |(AX'B)

holds, where 4 and B are square matrices of degrees n and &, respectively, and
X is an n Xk matrix. In the following, we shall identify R" with M(n, k; R)
via the isometry ¢.

2.2. We obtain the following lemma directly.

Lemma 2.2. Let M be a square mtarix of degree nk. Then
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M(AQIL) = (AQL)M

for each ASSL(n, R), if and only if M=1,Q M for some square matrix M of degree
k. Furthermore, I, @ M satisfies the condition (T) if and only if M satisfies (T).

Consequently, (p,®1;, I, QM) is a TC-pair for any square matrix M of de-
gree k satisfying (T'), and any TC-pair (p,®I,, M) is written in such a form.
Furthermore, TC-pairs (p,®1I;, [, QM) and (p,®I;, I,QN) are algebraically
equivalent, if and only if there exist A€ GL(k, R) and a positive real number ¢
satisfying cN=AMA™.

2.3. Let M be a square matrix of degree k satisfying (7). Denote by ¥
the twisted linear SL(»n, R) action on the (nk—1)-sphere determined by the T'C-
pair (p,®1;, I, @M). Identifying R* with M(n, k; R) via the isometry ¢, we can
describe

¢ SL(n, R)X S — S™t-1

as follows. That is, S*! can be viewed as the set of all nX k matrices X with
[|IX]|=1, and &¥ is written in the form

tM(A, X) = AX exp(0'M)
for a real number @ which is uniquely determined by the condition
[|AX exp(8'M)|| = 1.
Let I(M) and O(M) denote the isotropy group at
1,
V'k ( 0)
and the orbit through that point, respectively, with respect to the twisted linear

action . We obtain the following lemma.

Lemma 2.3. Suppose n>>k=2. Then the isotropy group I(M) is written

in the form
*
—) :0ER }
*

and the orbit O(M) is an open dense subset consisting of all n X k matrices X with
rank X=Fk and || X||=1.

2.4. Suppose that n>>k=2 and there exists an SL(n, R)-equivariant homeo-
morphism f of S™~! with a twisted linear action {¥ onto S™~! with a twisted
linear action {¥. Then we obtain f(O(M))=O(N), and hence I(M) and I(N)
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are conjugate in SL(n, R). Finally, we see that there exist AcGL(k, R) and

a positive real number ¢ satisfying cN=AMA™, by making use of the fact that
M and N satisfy the condition (7') and the group I(M) contains a subgroup writ-

ten in the form
l 0 In—-k l .

Summing up the above discussion, we obtain the following result.

Theorem 2.4. Suppose n>>k=2. Then any two of TC-pairs in the form
(Px®Ii, M) are algebraically equivalent if and only if they are C’-equivalent.

Consequently, we see that if n>>k=2 then there are uncountably many
topoloically distinct twisted linear actions of SL(n, R) on S*~ associated to the
matricial representation p,®1,. This is a generalization of a result studied in
the previous paper [2].

3. Second typical examples

Here we shall stduy twisted linear actions of G=SL(n, R) on the (n+k—1)-
sphere associated to a representation p=p,®I,, that is, p(4)=ADI,.
3.1. Let A and B be square matrices of degrees » and k, respectively.
We denote by A@B the matrix
(o )
0 B

of degree n+k. We obtain the following lemma.

Lemma 3.1. Let n=2 and k=1. Let M be a square matrix of degree n--k.
Then

MA®IL) = (A®I)M

for each A€SL(n, R), if and only if M=cI,®M for some square matrix M of
degree k and a real number c. Furthermore, M=cI, @M satisfies the condition
(T), if and only if c is positive and M satisfies (T).

3.2. Let M be a square matrix of degree k satisfying (7). Denote by
X™ the twisted linear SL(n, R) action on the (n+k—1)-sphere determined by
the TC-pair (p,DI;, I, BM). Then x¥ is written in the form

XM(A4, udv) = ® Aude™Mv

for a real number @ which is uniquely determined by the condition
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lle® Aul [+ ||l = 1,

where @ is a column vector in R" and v is a column vector in R satisfying
2l - o] P=1.

3.3. Let us define closed subgroups L(z) and N(n) of SL(n, R) by the
forms

L(n)=«l(:) . , N(n) = 0 . >0
0 0

Denote by F(M) the fixed point set of L(n) with respect to the twisted linear
action X¥. Then we obtain the following lemma.

Lemma 3.3. With respect to the twisted linear action XM,
F(M) = {ae,®v: &+l = 1},

where e,="(1,0, --+,0)ER". The isotropy group at 0Pv coincides with SL(n, R),
the one at +e, PO coincides with N(n), and if a||v||==0, then the one at ae,Pv
cotncides with L(n).

3.4. Notice that the normalizer N(L(n)) of L(n) acts on F(M) naturally
via X¥, the identity component of N(L(n)) coincides with N(n), and the factor
group N(L(n)/L(n) is naturally isomorphic to the multiplicative group R* con-
sisting of non-zero real numbers.

Let us investigate the induced N(L(n))/L(n) action on F(M) via X. Leav-
ing fixed any point ae,Pv of F(M) satisfying a||v||#=0, we have a real valued
analytic function §=0(«) on R* determined by

AR K ]
x| |0 , ae;Pv | = ea ae,DeMv

: *

0

and (®aa)’*+-||e®v]|’=1. Then 8(—a)=0(a) and

do d
A0 @ (0
da< <da ()

for a>0. Furthermore, we obtain
lim f(a) = —oo, limefa =|a|™!, lim||e®™v]|=0,
@+ a>+00 >+

and
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lim e = 0, lim v = z¥(v) .
a->0+ a>0+ .
3.5. Here we shall show the following result.
Theorem 3.5. Let M, N be any square matrices of degree k satisfying the

condition (T). Then there exists an SL(n, R)-equivariant homeomorphism f of
S*4=1 gith a twisted linear action XM onto S*™*~! with a twisted linear action X~.

Proof. By the above investigation, we can construct uniquely an N(L(n))/
L(n)-equivariant homeomorphism f, of F(M) onto F(N) satisfying the following
conditions

f(ae,®v) = ae,Pv for |a|=1 or 1/v/2,
and

f(0BzM(v)) = 0D (v) for |jv||=1/v/2 .

Next we consider the following diagram

SO(n) x F(M) V2> srti-1

i
i< |s
v
SO(n)x F(N) —2%> §n+k-1

where

(K, x) = XM(K, x) = (KBIL) %,

YK, x) = XV(K, x) = (KDIy) « .
By the construction of f;, we see that (K, x)=+n(K’, #") if and only if

(K, fo(x))=Ar(K’, fo(x")), and hence we obtain a unique bijection f of S***~! onto
itself satisfying

for = yro(1Xfy) .

Then f is a homeomorphism, because 4r, and 4, are closed continuous mappings.
Finally, we show that f is SL(n, R)-equivariant. Let ASL(n, R), K&SO(n)
and xF(M). Then, there are BES0(n) and UeN(n) such that AK=BU,
and hence

FXM(A, (K, x))) = f(XM(AK, %)) = f(X*(BU, %))
= (B, X*(U, %)) = (B, fo(x*(U, x)))
= (B, XV (U, fo(%))) = X" (BU, fu(*))
= XV(4K, fo(x)) = X" (A, ¥o(K, fo(*)))
= X"(4, f(¥(K, %)) .
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Consequently, we see that f is an SL(n, R)-equivariant homeomorphism of S*+#~!
with the action X onto S***~! with the action X¥. q.e.d.

3.6. Next we shall show the following result.

Theorem 3.6. Let M, N be square matrices of degree k satisfying the con-
dition (T). If there exists an SL(n, R)-equivariant C'-diffeomorphism f of S***~!
with a twisted linear action XM onto S*™*~! with a twisted linear action X", then

N = PMP™!
for some PEGL(k, R).

Proof. By the existence of such an equivariant C'-diffeomorphism f, we
obtain an N (L(n))/L (n)-equivariant C'-diffeomorphism fy: F(M)—F(N). Con-
sidering points whose isotropy groups coincide with N (z)/L(n), we can assume

fo(e,D0) = ;D0 .
Then we obtain an isomorphism
df;): Tel®0 F(M) —> Led0 F(N)

of tangential representation spaces of the isotropy group N(n)/L(n).
Here we consider the representation space T, g0 F'(M). Denote by F(M),
an open subset of F(M) consisting of ae,Pv with a>0, and define

y*: F(M), — R* by +*(ae,®v) = exp(—(log a) M)v.

Then ¥ is a C*-diffeomorphism satisfying *(e,0)=0. Considering the
C*-diffeomorphism ¥, we see that the tangential representation of the isotropy
group N (n)/L(n)=R on T, g F(M) is equivalent to a representation

o¥: R — GL(k, R) defined by o¥(\) = exp(—AM).

The existence of the isomorphism df, of tangential representation spaces
assures that the representations o™ and o are equivalent, and hence the equality

N=PMP™" holds for some P€GL(k, R). q.ed.

Notice that the twisted linear actions X* are new concrete examples for
analytic SL(n, R)-actions on a sphere investigated in [1].

4. Concluding remark

With respect to the first typical examples, we obtain a classification theorem
only for the case n>>k=2 in §2. It seems to be difficult to obtain a similar
result for the remaining case k=n>2 in general. Here we consider the case
n=k=3.
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The following matrices satisfy the condition (7).

100
(Type 1) My(a,b) =[{0a 0]; 1=a=<b
0065
1a0
(Type 2) Mya,b)=|—a 1 0]; a>0,5>0
005
110
(Type 3) M(a)=101 0f;a>0
00a
110
(Type4) M,=({011
001/.

Furthermore, if a matrix M of degree 3 satisfy the condition (T'), then M is
similar to only one of the above matrices up to positive scalar multiplication.
Here we say that M is similar to N up to positive scalar multiplication if there
exist a non-singular matrix 4 and a positive real number ¢ such that AMA™'=
cN.

Denote by S(M) the 8-sphere with the twisted linear SL(3, R) action ¥
(see §2.3), where M is a square matrix of degree 3 satisfying the condition (7).
We obtain the following result.

Theorem. (0) If S(M) and S(M') are equivariantly C'-diffeomorphic,
then M is similar to M’ up to positive scalar multiplication.

(1) If S(M) and S(M’) are equivariantly homeomorphic, then M and M’
have the same type in the above sense.

(2) If S(My(a,b)) and S(M,(a’,b")) are equivariantly homeomorphic, then
(@', b")=(a, b) or (a’, b')=(a"'b, b).

(3) If S(My(a,b)) and S(Mya',b")) are equivariantly homeomorphic, then
a=a'.
(4) If S(M(a)) and S(M(a’)) are equivariantly homeomorphic, then a=a’

or aa’=1.

Proof. We give only an outline of the proof. The fixed point set S(M)*®
of the restricted L(3)-action is a 2-sphere and the fixed point set S(M)¥® of
the restricted N(3)-action is a disjoint union of low dimensional spheres, where
L(3) and N(3) are closed subgroups of SL(3, R) defined in §3.3.

If we consider homeomorphism classes of S(M)¥®, we can distinguish a
matrix of (Type 7) from that of (Type j) except for the case (i, j)=(2, 4). Fur-



352 F. UcHipA

thermore, we can prove (0) by considering a tangential representation of
N(3)/L(3) on the tangent space of the 2-sphere S(M)*® at isolated fixed points
of the restricted /V(3)-action.

Denote by H(P) a closed subgroup of SL(3, R) consisting of all matrices in
the form

*

eOP
(——  0cR

0 |=*
where P is a square matrix of degree 2. We can prove the remaining part of the
theorem by considering homeomorphism classes of the fixed point sets .S(M)#"

of the restricted H(P)-action. For P= ((1) i), we see that S(M,)#® is a 1-sphere

but S(M,(a, b))#® is a 0-sphere, and hence we can distinguish M, from any

matrix of (Type 2). By P= Le for ¢>0, we can prove (3). By P= 10
yp y —c 1 0c

for ¢>0, we can prove (2) and (4). q.e.d.
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