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THE REAL K-GROUPS OF SO(n) FOR n=3, 4
AND 5 MOD 8
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In [14] we determined the algebra structure of 'KO*(SO(#n)) for n=0, 1, 7
mod 8 assuming information about the K- and KO-groups of Spin(n) and P*~%,

In this paper we compute KO*(SO(n)) for n=3, 4, 5 mod 8 in the same
way as in [14]. However in the present case some generators appear in dgree
—5.  So we first study the squares of elements in KO™5(X) following the method
of Crabb [7] for elements in KO~(X). We then provide a short exact sequence
in KQOg,-theory similar to those in Lemma 4.1 of [14] which is a main tool
for our computation.

We write 4-g for an A-module with a single generator g throughout this
paper.

1. Preliminaries

a) Let G be the multiplicative group consisting of 4-1. Denote by R?*¢
the R?*? with non trivial G-action on the first p coordinates, and denote by
B4, §#4 and 377 the unit ball and unit sphere in R?? and the quotient space
B?4[S#¢ with the collapsed S#? as base point respectively.

Let X be a compact G-space with base point. According to [12,5], if
?+9=0 mod 8 and p=0 mod 4, there is a Thom element m,,,qef{\éa(zf'v«), S0
that we have an isomorphism

bp.a: KOK(X)=KOK(Z* A X)

given by ¢, (¥)=w, ,Ax for xEI’{\éﬁ(X ) where A denotes the smash product.
We now specify the elements wg,, and w,, Let us take wg,, to be the
element o given in [14; p. 793]. Then we have

(1.1) Hage) = 20 (1—H)  in KOy =*")=RO(G)

where 7 is the inclusion of 2% into Z*° and H=R",

We may assume that r(wg,)=1 through the periodicity isomorphism, by
replacing wgyy by —H g, if necessary. Here +» denotes the forgetful homo-
morphism.
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i
Applying KOg-functor to the cofibering .S 4’°—>B“'°£> >0 where 7 and p are
obvious maps, we have an exact sequence

— KOz(=%)— KOg4B*"°) - KOG (S*°) —
| Il R
RO(G)- v,y RO(G)+n, KO™(P?)
in which %, is a generator of KO™4(+)=<Z (4 =point) and P? is the real projec-
tive 3-space. Since KO™4(P3%)=0 [8], from this we see that ¢*((1—H)y)=0
and hence p*(w, )=(1—H ), up to sign. So we suppose that w, , is chosen so
that

(12) *(wg) = (1—H)p, in KOg(3*)=RO(G)-7,

where 7 is the inclusion of 3 into =*4, and also Yr(w,,)=1.
Similar results hold for K;. Let 7,,, denote the element 7; € K;(3%) as
in [14], 7 the inclusion of 3*° into 3% and L=C®zH. Then we have

(1.3) i¥(1y0) = 227V (1—L) in K (=) = R(G).
By construction we obviously have

(1'4') C(“’sp,o) = T8p,0

where ¢ denotes the complexification.

Let u= K ~%(+) be the Bott class and denote by +J» also the forgetful homo-
morphism Kg;(X)—K(X). Similarly we may assume that 7,,, satisfies the
relation yr(7,,0)=p?. Here let K*(X, Y) be regarded as a Zs;-graded cohomology

theory, so that K*(+4)=Z[u]/p*=1.

b) Let KH denote the quaternionic K-functor and KR the Real K-functor
in the sense of [3]. We recall the following isomorphism

t: KH(X)=KR*(X) = KR(Z™AX) [6,15]

where X is a Real space with base point. By a quaternionic vector bundle
over X we mean a complex vector bundle E— X together with a conjugate
linear anti-involution Jz: E—E commuting with the Real structure on X. We
assume henceforth that the quaternionic structure on H is right multiplication
by j.

Define an isomorphism

a: S XH=<S"XH

by a(v, w)=(v,ow) for v S% (=the unit quaternions), w & H and denote by &,
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the trivial line bundle B* X H— B*. Then by & we denote the element of
KH(B™, S =KH(*) which (&4, £z, @) represents.

Let Y also be a Real space with base point. If E and F are quaternionic
vector bundle over X and Y, the external tensor product E®. F of the under-
lying complex vector bundles E and F can be viewed as a Real vector bundle
over XX Y, since J;® Jr becomes a conjugate linear involution commuting the
Real structure on XX Y. Hence the functor (E, F)—E @¢F induces a smash
product A: ﬁ{(X )®Ef[ (Y) »i{\l-é(X AY). Using this the required isomor-
phism # is given by

Hx)=aAcx  for xeKH(X).

Let s denote an obvious complexification KH(X)—K(X). By construction
we then have

(1.5) (@) = p? sothat oAcEy=r1ny, oAco=1 [15]

where &, denotes the quaternionic trivial line bundle over 3%°.

In the above let take X=Y and E=F. Then EQ¢E can be viewed as a
Real G-vector bundle [5] with G-action switching factors. Therefore a similar
functor Er— EQ ¢ E induces a natural transformation

KH(X) — KRy(X AX)

which we denote also by A.. (Here we consider that X AX is a Real G-space
with G-action interchanging factors and also G has trivial involution.)

In particular, when X =3 A 'Y, X AX is identified with S#?A(Y A Y)
as Real spaces through a canonical homeomorphism Z*?AZ*4~3%¢ This is
obtained from the homeomorphism R*?Xx R*?~R%°X R*? given by the map (u, v)
> (u—v, u+0) for u, v R, by taking one-point compactifications of both sides.

As in the non equivariant case [3], if X is a Real G-space with trivial in-
volution, the functor E—C QgE yields an isomorphism KO4;(X )= KRy(X)
where E is an ordinary real G-vector bundle over X and C has a standard real
structure by complex conjugation. In this paper we regard as

KO(X)= KR(X) and KOyX)= KRy(X)
via the isomorphisms as in [3] and above.

2. Squares of elements in KO™%X)

Let ¢: KR(X)—K(X) be the complexification. From now on we assume
that 5, is chosen so that ¢(,)=2u?.
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Lemma 2.1. o N\co = o,,
as an element of KRy(S+)=RO(G) - w,,.

Proof. View u?Apu® as an element of K (Z*¢) with G-action switching
factors. According to (2.6) when p=2 in [2] we then have

M Ap) = 1Qvi* (W Ap)+HL—-1)@Np*  in K(Z*) = R(G)QK(S*)

where ¢ is the inclusion of 3%* into 3*%. However because of Jri*(u? A p?)=0
we get
K Ap’) = (L=1)Np*  in Ky Z™).

Let 4* be the 2nd Adams operation. Then /*(u*)=—2A*u® by definition
and also Y*(u*)=2p® by Proposition 3.2.2 in [4]. Hence A*u*=—2u* Thus we
obtain

*uAp') =2(1—-L)p* in K E=).
From this formula it follows that
Mo Ao) = 21—Lyt  in Ry(S*) (a)

because ¢(o Aco)=pu?Au® by (1.5).
On the other hand by (1.2) we have

i) = 21—D) i Ry(=*Y )
Furthermore by (1.5) again and the assumption in (1.2) we have
V(o Nga) = Yre(wy,s) = 1 (c)
where +J» denotes the forgetful homomorphism.

Compare o A¢co with w,, using (a), (b) and (c), then the assertion follows

immediately.
Let £: E— X be a quaternionic vector bundle over X and & its underlying

complex vector bundle. Then the 2nd exterior power A% of &; becomes a Real
vector bundle over X with JzA Jr as a Real structure. If we write A%E for
this vector bundle, the functor E—~\%E is extended to a natural transformation
2%:: KH(X)—KR(X) in an obvious way.
Proposition 2.2. Let X be a Real space with trivial involution. If x=
t(®)KR¥X) for xe KH(X), then
& =g AE R

where 7, denotes the generator of KO™Y(+)==Z,.
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Proof. Under the identification (S*AX)A(S*AX)=3Z**AX AX of Real
G-spaces stated above we have by definition

(@ AR Ac(@AE) = (cAco)AdEACE)  in KR(SSAXAX).

By Lemma 2.1 we therefore have

EAck = 0 AEAE) in KR(SPAXAX) =KRo(SMAX AX)-0, (a).
Arguments parallel to (2.6) when p=2 in [2] yield

¥AIAD)¥RNAR) = (H—1Az® in EEG(Z""/\X) = RO(G)@IEE(S‘/\X) (b)

where d: X— X A X is the diagonal map and 7: "' A X -3 A X is the inclu-
sion.

To analyze i* we consider the exact sequence for (SMAX, ™A X).
Because of =+1/Z%'~SL° A2 [12], we have the following exact sequence:

——— 8 e —d '* —— .* S ——
KR (5% AX) > KRy(SYOAS™ A X) L> KR,(SMAX) 2> KRy(Z* A X)

R R R
RO(G)QKR(S*AX)  KR(S*’AX) RO(G)®KR(S'AX)
Here it is easily verified that 8 is induced by the map k: S}°AZ*MASHMAX—
SPIASPAX given by k(--1, t, y)=(~—1, y) for t&=*!, ye3Z"'AX. Hence we
see that § agrees with ¢r: KR;(Z"2A X)—KR(S?*AX). From this it follows that

o is surjective and so #* is injective.

Let £: BX*X R"*— B4 and &: B"*X R*'— B"® be the product bundles and
a: S¥0x R4~ S10x R™ be an equivariant isomorphism given by «(1, v)=(1, v),
a(—1, v)=(—1, —v) for veR. Denote by % the element of KR(Z"°) repre-

sented by (&, &, a). Then evidently the restriction of % to ﬁc(20'°)=RO(G) is
H—1, so that

P*HANEE) = (H—1)\2& in KRG(SAX) (©).
Because 7* is injective, we see by (b) and (c) that
(IAd)*(EAZ) = AANEE in KRy (SAX).
Consequently from this and (a) it follows that
(A (xAX) = 0 ARANEE in KR(SWSAX).
Applying +» to both sides of this equality, we obtain
¥ =g2% in KRX)

since Yr(#)=7, by definition and r(e, )=1. This completes the proof.
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Let f: X—GL(n, F), F=R, C or H, be a base point preserving map where
the unit element of GL(n, F) is taken as its base point. We denote by B(f) the
element of KO~(X), K™(X) or KH ~}(X) which f defines in a natural manner
according as F=R, C or H. If f: X—GL(m, H) and g: X—>GL(n, H) are base
point preserving maps, the isomorphism a: HX(H" A H")=XX(H" \NcH")
given by a(x, uAv)=(x, f(x)u g(x)v) for uc H", vEH" becomes an isomor-
phism of Real vector bundles. So « defines an element of KR™!(X) in a similar
way to B(f). We denote this element also by B(f Acg) and by B(A%Z f) if f=g.
Then by Proposition 2.2 we have

Corollary 2.3. Let f: X—GL(n, H) be a base point preserving map. Then
Jor H(B(f)) EKR™5(X)

B = mBOEN+nBmAcf)  in KRX)
where oy is the constant map from X to GL(1, H).

3. KO*(P'~') and KO*(Spin(l)) for I=3, 4, 5 mod 8

In this section we observe the algebra structure of the KO-groups of the
real projective /-space P’ and the spinor group Spin(/). Then for the additive
structures of them we refer to [1, 8, 16] and [15].

We consider that G acts on Spin(/) as a subgroup of Spin(/), and we regards
as S"/G=P'! and Spin(l)/G=SO(l), the rotation group of dgree I. Assume
that z: S»— Spin(J) is an equivariant embedding which induces a well-known
embedding ¢: P'~'—SO(I), and denote by = the canonical projections S**—P'"!
and Spin(/)—SO(!). Then clearly

(3.1) 7l = .

Let o/_, and g} be the real 1-dimensional vector bundles over P’~! and
SO(l) associated with the 2-fold coverings above respectively. Moreover let

Vi =7i-1—1 and §,=E]—1 as elements of I%B(P’"l) and I%B(SO(Z)). Obviou-
sly we then have

(3.2) P} =, El= 28 and vii= —2v,,
and arguing as in [14] we see
(3.3)  The order of &, agrees with that of «v,_, .

Note that in KO*(+) there hold the relations such that 2z,=»}=n2,=0

and ni=4 and that generators of E6°(P’) and Ed(P) are already specified in
[1, 8] as described below.
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For the proof of Proposition 3.4 below we use freely the following three
types of exact sequences: the ones obtained by applying KO- and KO,-functors
to the cofiberings

Pl—-l _z_) PI _£> PI/PI—I — SI and SI,O _l> BI,O !; 21,0

where 7 and p are evident maps and the Atiyah’s in [3], (3.4)

= KO- X) 25 KO-9(X) S K-9(X) e KO*4(X) —> +--

where »,+ is multiplication by %, and & is given by 8(ux)=r(x) for x& K*~4(X)
(cf. [15], (2.4)). Here r denotes the realification K(X)—KO(X). Then we also
refer to the table in [13] for the additive structure of KO*(Z*9).

Proposition 3.4. 1) Eé”(Ps”+2)=Zz4»+2'Va»+z»

KO (P*"*) = Z,+1,Yaps»
KO*(P"*) = Z,n}Ygyss,
1?6-3( Pentz) — (),

;{5 THPE) = Zyn o0y Vonta s
%—5(Psn+z) =0,

KO S(P"*) = Z, gy,
I’-{\O/ -7(P SYE) = Zy* M Banse

with relations

Vinsz = —2Vsn12>  Minsz = NuBantz = Yonszlantz = 0,
71 Bansz = 2" Vgpas -

2) KO(P™) = Zyws-Yopsa,

%_1(P8"+3) = Z 04 TanssDZy* 11 Vonta »

KO™(P"*S) = Z,+1YVopas

f{\é—s( P9 =0,

KO™(P"*) = Zyn-14Yauss

KO™(P5**) = Z- 51z

:K:é TP = Zy o mPenssD Zs* Honsa s

KO™(P¥*3) = Zy*n PgpssDZy* 11 Bnes

with relations

2 _ _2 2 _ _ = I —
Yan+3 = ““2')’3n+3 s V8n43 = M8n+3 = Nylgn+s — Ven+aVsnt+3 = Van+sMsnt+s — 0 ’
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M ﬁSﬂi = Vontslonts> 71 Mants = 27 Vgurg .
3) KOP*™*) = Zyn+s-Yonus

I?é—l(PS"H) = Zy* M Ven+a>

K~O_2(P8"H) = Zy* 01 Yonsa »

k\é—a( Porte) = (),

K~O—‘(P8"-H) =Zpn+ 127y Venta »

1’56—5( Pty =

1?6 (P ) = Zy* psnra >

I?é —7(P S"H) = Zy* M ents »

with relations

Vinss = —2%8n44 » Ilfgnu = N4 lgn+s = Vents Man+s — 0,

71 Bnra = 2" gy -

Proof. See (3.2) for the first relations.
1) Because of KO 5(P¥*)=0 we see that p*: KO~%(S®*%)— KO~%(P"+?)
=7, is surjective. So we define pg,,,EKO (P =<7, as

Hansz = D¥(8)

where g denotes a generator of KO (S¥+*)== Z. 'Then evidently KO~%(P%*+?)=
Z,* wen+s and Bins2=0. —

Since .’KVO-J(PS'H-I)%'Z and KO~Y(5%+%)=0, p*: I’<\6—7(S8n+2)g;<\0,-7 (Pon+2)
and p*=0: KO-%(S**?)—>KO-*P***). Therefore it follows that KO~/(P**+)
=2y Man+2 AN 74 f1gs4,=0.

Since 1*(Vgpis)=Yeur1 and Vg,y, has order 241 g*(24+lq, V=0, so that
p¥(nig)=2'""ey,,., which shows %? g, ,=24"+ 1y, ., immediately.

YVensof lies in KO8 P82 P8ty 7 and has finite order because so does

Ven+e Hence ¥g,,,£=0, so that ¥g,4, peg,=0.
From the following isomorphism with an obvious identification:

i* . KOE 1 (B8n+3,0) zKOEI(Ss".H"O)
I Il
RO(G)+n, ~ KO™H(P*™*)

it follows that ¢*((H—1)»,)=%,Vg.s2 is a generator of KO }(P#**=~Z, In a

similar way we get also Eé'z(Ps”+2)=Zz-nf78,+z.
2) According to [11; § 13] the half spin representations Ag,.s and Ag,.4 of
Spin(8n+4) are quaternionic and may be viewed as homomorphisms from
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Spin(8n-+4) to GL(2**, H). We define a map
8: P8 GL(2**, H)
by 87(%)=Agn+4(2(%))Agns+4(7(x))"* for x& S8 +40 and set
Paure = 1(8(8)) SKOS(P**).
Let 9y, K (P***%)=Z be a generator given in [14]. Then we have

¢(Jan+s) = B’ Vanes (a)
since s(o)=p’ by (1. 5) and s(B(8))=ws,+s by construction.
jecause of KO"’(P“"“) ZpnnyYanss and KO’3(P8"+3) 0 we see that
c: KO™5(Po+3) = K-5(P®*3). 'Therefore by (a) we obtain KO‘5(P8"+3)—Z Dantse
Since I’{\6‘5(P3”+2)=0 we see that g, lies in the image of p*: E6'5(88”+3)——>
k\é's(P3”+3), so that pZ,,3=0.

We have K-8 (P8”+3) = Z24n+l . p,’c (fys,,+3) by‘ [4] and 8(,!1‘30(')’3,,-;.3)) =N4Y8n+3
using 7(u?)=%,. Therefore, since 7,vs,.s has order 2** there is an element
MO -+

Mgyt E KO P+ = 7. (D Z, such that

(pan+s) = 2% B c(Yanss) (b).
Hence by observing Atiyah’s exact sequence we see readily that #,5g,,; and pg,.s
generate KO~ 5(Ps’”‘:’)NZ D Z, additively.
KO‘“(P3”+3)—>KO (P8"+3) is injective because c: KO(P8”+3)—>K(P8”+3)
is surjective. This leads to KO~ (P83 =2, 70y +sD Zy * 11 Mgn+s-
Since the order of c¢(Yg,s) is 2**! by [4], ¢(2*** gu+s)=0 and hence
01 Manrs= 2" Vgpiq.
By (a) we get c(uén+3)=0, because 24#*%¢(v,,,;)=0. But c: Eé“(Ps"+3)—>
K~4(P®+3) is injective since E6‘3(P8”+3)=0, therefore we have p3,,3=0.
Using r(we(y)=7(x)y, c(n)=2" and r(u?)=n, We have Se(Z"~n,Yanss)=
N4 Pgns3 DY (D), so that n, pe,.3=0 by exactness.
The relation g, ; wga+s=0 is clear because of ﬁ'3(P8"+3)=0.
Using 7(u)=2? it follows from (a) that 8(vg,+s)=2] Pgass Which is of order 2.
Also by (2) we have ¢(7, Dgpss)=2Vsnss. 1 hese lead to ﬁ“(P8”+3):ZZ-n178,+3®

AL N
Consider the following exact sequence:

KOZ5(S8++0) _) KO—4(28;1+4 0) N KO"‘ (Bor+4.0)
If i I
KO 5(P% %)  RO(G)*wgy 0/ \w4,4 RO(G)+n,

Through the obvious identifications above we then have
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O(Panss) = (14+H )wsn,0 A 04,4 (c)-

By (1.1) and (1.2) we have j¥(wgyoAwy)=2"(1—H)y, and so Kerj*=
(14+H)wsy o Awy,y). Hence we can write 8(Ugyis)=!(1+H)wgs oAy, [ EZ.
Applying ¢ to both sides of this equality and arguing as in Proof of Lemma 1.8
in [14] we get /=1 under the assumption stated in § 1, a).

Since 8(Ysn+sTan+s) = (H—1)8(vgs+s) We have 8(VapssPants) =0 by (c) and
therefore ¢g,.55s,+3=0 because § is injective.

Observe the following isomorphism with an evident identification:

S: KOEG( S8n+4,0) gk\o’ES(zan.O)
I Il
KO_G(P 8”+3) RO(G)'%‘Dan,o/\w4,4

Since 3(7; Pgp+s) =(1+H ), ws4,0 A 4,4 by () we then have 3(pgn+s)=Emawsn,0/\ @44
where £€=1 or H. Hence we have 8(Ygu+3Map+s)=0(7; Payes), from which it fol-
lows immediately that g, s tents="71 Psnss-

It is clear from 1) that KO %(P®**)=Z,-»}v;,.s because i*: IZB""(P“"“*)
gKO—Z(Psn‘fﬂ).

3) In the exact sequence

~ B S ~
KO—G(P8n+4) _c) K‘G(P8n+4) — KO—4(P8”+4)
we haVe E“G(P8ﬂ+4): Z24ﬂ+2' lbsc(78”+4)by [4], .[’(‘6_4(P8"+4) == Z24'l+1 N4 Yan+4 and
S(13c(Vensa)) =74Vanre Hence we see (2% y3¢(vg,4,))=0, which shows that
there is an element g, ,& KO (P **)=Z, such that

(psnrs) = 2 pPc(Vonsa) >

so that %—6(})8”“):22. Hgnide
Clearly ¢(Vap+s [L8”+4):C(IL§”+4)—O therefore we see that Vg, s penrs™ phnrs
=0, because c: KO“(P8”+‘)—->K "(P8”+“) is is injective for =4, 6. Since
KO‘G(PS”“) ~KO~ T(PEH) we get KO~ (PS”“) Zy 1 panss immediately.

Moreover from the fact that z,- KO"(P*””‘ 4)—>KO°(P“"+“) is injective and
c(2#" ¥y, )=0 it follows that n5}ugys=2"""*vs,,, Observe the equality
(2 7y Vensa) =2 u?c(pgy+s)- Then applying § to both sides of this and using
the above formula for pg,,, we have », pg,.,=0.

The rest is easily checked by arguments parallel to 1). This completes the
proof.

Let

pi: SO(l)c GL(l, R)

be the obvious inclusion and let us denote by the same letter p, the composite
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pim: Spin(l) > SO()cGL(l, R).

As we noted before, the half spin representations of Spin(8n-+4) are viewed as
homomorphisms

Agrsss Agnye: Spin(8n-+4) — GL(2'*, H)

According to [11; § 13], similarly we may view the spin representations Ag,y,
and Ag,,s of Spin(8z-3) and Spin(8x#+5) as homomorphisms

Agyys: Spin(8n+3) — GL(2'*, H)
and
Agnys: Spin(8n+5) — GL(2**+', H) .
Set
Finra = UB(Afns4)) s Ransa = t(B(Asns4))
and

Ronrs = H(B(Asnr3)) »  Ronss = U(B(Agass)) -

Then we have
Proposition 3.5.
KO*(Spln(8n+3)) = AKO*(+)(B(7\'1P8n+s), °%y B()’“ P8n+3)’ E8n+3) ’

KO*(Spin(8n+4)) = AKO*(+)(B(7\'1P8n+4)) R B()‘4”P8n+4)) Eg’n-i—‘h ’?8_n+4) ’
KO*(Spin(8n-+5)) = Agor) (BN psnss)s *+*s B pgnss) Ranss)

as KO*(+-)-modules where there hold the relations:

BV = m (B p)+( £ )8 p1)
for 1=i<! and 1=8n--3, 8n+4, 8n-+5,
¥ = mBO%A)
for 1=8n+3, 8n-+5 and
(Rinea)* = mBOEAdrss) s (Rdnss)’ = mBAE Agss) -

Proof. See Theorem 5.6 in [15] for the additive structures and [7] (also
(1.7) in [14]) and Corollary 2.3 for the relations.

We now show how to express the right sides of relations in Proposition 3.5
in terms of the basic generators. First we recall that for base point preserving
maps f: X—>GL(p, R) and g: X—>GL(q, R) there hold the following formulas

in KO~Y(X)
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(3.6) B(fDg) = B(f)+B(8), B(f®g) = 18(f)+1B(g)

(cf. [10; I, §4]). Here fPg and f®g are maps from X to GL(p+g, R) and
GL(pg, R) given by (f®g)(x)=/(x)Bg(x) and (f©8)(x)=/(x)®g(x) for xE X.

We consider the case of Spin(8n-+3). Because A pg,s=A3""3"*pg, s for
0<k=8n+3, N*(\ pgnss) a0d A% Ag,ys are polynomials of Afpg,ys 0SkE=<4n-+1
clearly. Using (3.6) we hence see that B(A*(\} pgass)) and B(AZ Ag,ys) are expres-
sed in the form of linear combinations of B(M*pguys), 0=k=4n+1. On the
other hand, from Theorem 10.3 in [11; § 13] it follows that

Bgnts® ¢ Agpis = N Psn+s‘|“7\'4" Pansst ot 1
as a real representation, so that
B pguis) = B(Agn+s® ¢ Asnrs) — B pants) —+— 8 (N pants) -

Hence we see that it suffices only to describe B(Ag,+3® ¢Asyss) in terms of the
basic generators.
Let ¢, denote the constant map from X to GL(l, H). Then

(A8n+3®0 A8n+s)(x) = (A8n+3® c 52‘")(x)(‘24"® c A8n+3)('x)

for x& X. Therefore it follows that

B(Agn1s® ¢ A8n+3) = B(A8n+3®0 ‘z"‘)‘|‘:8(‘z“'® 0A8n+3)
= 24”(:3 (ABn+3® ct)+B(u®¢ Agyss)) -

Because B(6;Q ¢Agnrs)=Ex A\ cB(Aguss) by construction, applying o Aco to both
sides of this we have

(O-ACO-)/\CB(LI®CA8'1+3) = (0'/\0811) /\c(o'/\cle(Asn+a)) .
By (1.5) we hence have
B (‘1@ c A8n+3) = N3 Kgy+s

since o A\ ¢3(Agn+s) =R+ bY definition.
Analogously we have B(Ag,1s®ct)=74Fsnss- 1hus we obtain

B(A8n+s®CA8n+3) = 24"+1’74"53n+3 ’

so that we get

(3 -7) g (NMH P8n+3) = 2in+l N4Rgnis— B (7\'4" P8n+s)
- 18(7\'4"—1 P8n+s) e _3(7\'1 P8n+s) .

Arguing as above we have
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ﬁ(Agn+4®cA§n+4) = 24"“774'/53;;“ ’
ﬁ(AEn+4®cA8_;t+3) = 24”+1774E;n+4 )
B(A;n+4®cA8_n+4) = 24"774(E§n+4+’?8_n+4) ’
B(Asr15R ¢ Dgurs) = 2" 1y Ropis

so that
(3.8) B pgpig) = 2 py(RinsatRinss) — B pgys)
—B (7\'4”_3P8n+4)— =B Psn+s) »
B pgprs) = 2y (Rins st Tanra) — 28N pyyrs)
—28(\* Pan+a)— - —2B(\? Pan+s) >
18(7\'4"+2P8n+4) = 24”+2774E8n+5_ﬁ(7\‘4"+1f78n+5)
— B\ pgyas)— - —B( Pan+s) -

Using these formulas we can similarly express the relations in the other
cases in terms of the basic generators.

4, KO*(S0(1)) for I1=3, 4, 5 mod 8

In this section, for a compact free G-space X we identify KO¥(X) and
K¥(X) with KO*(X/G) and K*(X/G) via natural isomorphisms.

Let G act diagonally on S**x Spin(/). Then we have a homeomorphism
4.1) S™0x% ¢ Spin(l)~P'"'x Spin(l) [9]
which is induced by the map

(%, &) P> (=(%), ¥(x)g)
for xS"° g Spin(l). According to Proposition 3.5, when /=3,4 or 5
mod 8 KO*(Spin(l/)) is a free module over KO*(4-) and therefore the above
hoemomorphism yields an isomorphism
KO¥(S"° x Spin (I)) = KO*(P'" ) Q k o+ KO*(Spin (1)) .
Viewing this as an equality and applying KOg;-functor to the cofibering
Sh0x Spin(l)—B"*x Spin(l)— ="° A Spin(I), we have an exact sequence
= 5

(42) -« KOYE"ASpin(l);) < KO*P')® gorcsyKOX(Spin(1))

z KO*(SO(1)) L KOX(=" ASpin(l),) < -

for =3, 4, 5 mod 8 provided with the formula

(4.3) 3(xI(y)) = &(x)y .
a) KO*(SO(8n+3))
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Let us define a map
&: SO(8n+-3) — GL(2*, H)
by &(z(g))=Asn+s(£)* for g&Spin(8n4-3) and set
tenss = H(B(E) EKO(SO(8n+3)) .
We consider (4.2) when /=8n--3.
Lemma 44. 1) I(Ewd—Yerss®1,
i) 80 puns) =1@B Npowsa)+ (P | JraTorss®1 (15RS804-3),
i) I(Kaprs)=(Yn+22) ®Fapss-

Proof. i) Immediate from definition.
ii) Consider the map from P%+2x Spin(8n-+-3) to GL(Z(S” n 3), R) given
by

(m(%), &) = N Poasa(7(2)) DN pansa(em(x)) ™

for xe §¥*30 o=Spin(8n+3). By observing (4.1) we then see that this map
represents I(B(M\* pgy+s)), SO that

I (/8 (7\/' P8n+3)) = 1QB (7\'k P8n+s) —B (7\'k Psn+s* l) 1.

Since KO Y (P®*%)=Z,+7,Vs,+, by Proposition 3.4, we can write

BN pgpt3tt) = EnyVayes Eez.

Let denote by j the inclusions P'C P%** and SO(2)c SO(8n+3) such that
je=¢j. Then obviously j*(G(\* pg,,+3))=(82i %) B(p,) and because p, viewed as
a map from SO(2) to U(1) in a natural way defines a generator of K~!(.SO(2))=
7+ and r(u)=ni, we have B0 ponss)=( "1 It in KOHSO@)=Z,ert.
Also ¢: P'c SO(2) becomes a homeomorphism and hence we have i*j*(B(\*pgy+s))
— (SZj %),ﬁ in KO-YPY)=Z,-7%. On the other hand, j*(n,Yasss)=n}. There-

e=(%T1).

f: ’Psn-l-z___> GL(ZM’ H)

fore we get

iii) Define maps

and
h: P82 Spin(8n+-3) — GL(2*, H)
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by f(z(%))=Aguss(d(%))* and (%), §) = Aguss(U(%))Agy+3(8)Den+3(¥(x)) ™" for
xS0 s=Spin(8n+3). Then it is verified by observing (4.1) again that
1 (Kgnt3) = UB(F)) X 1+-2B(h))+Rsgnss
in KO~} (P®**x Spin(8n--3)) under our identification.
Since KO~5(P®*%)=0 by Proposition 3.4
HB(f)) =0.
Next we consider #(B(#)). Let CX=[0, 1]x X/{1} X X for a space X and
define isomorphisms of vector bundles
a: (S0 o H)® x(C Spin(8n-+3) x HZ")==P¥*+2x C Spin (8n+3) X H?",
b: P2 {0} X Spin(8n-3)x H2" =P+ {0} X Spin(8n+3) X H?",
c: (8439 . H)Qg({0} X Spin (8n+3)x H?")
=(S¥+39 . H)@p({0} X Spin (8n+3) x H")
by
a([%, M([2 g], v)) = (z(%), [, 8], Aguss(E(x))10) ,
b(z(%), [0, &), v) = (=(%), [0, g], Asn+3(2(*))Agn+3(8)Asn+5(U(%))'0) »
([, A]Q([0, g], ©)) = [x, A]Q([0, £], Agn+5(8)?)

for x=.S%+30 o=Spin(8n+3), NEH, ve H" respectively. Here we denote
by [ ] the equivalence classes. Let &, and & be the quaternionic vector
bundles over P3**X 3, Spin(8n+-3) with b and ¢ as clutching functions where
=X denotes an unreduced cone of X. Then clearly we have

Ebzgc

through the isomorphism a and since &,—2%" &, can be viewed as an element of
KH ~Y(P®**x Spin(8n+-3)) we then see by construction that B(h)=E,—2** &,
so that

B — E—2%ey .
From this it follows that
t(B(h) = (Vsn+2T1) Fgpsa 2" 17,7544, Q1

since o AEgy=mn, by (1.5). However 2% 5,9,,.,=0 by Proposition 3.4. Hence
we have

HB(H) = (Yan+2+1)RRgnss -

which proves iii).
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Let i: 3*°& 33° be the inclusion. Then #*: 1?654(239)—> KOz (0=
RO(G) +7, is injective because of KO™(P?)=0. We can choose a generator g,
of KOz*(Z*%)==Z so that

1*(ws,e) = (1—H), .
Let set
§ — giioB: KOX(P"™) @ or1yKOX(Spin (814-2))
— KO¥(=*°A Spin(8n+-3),) .
Then we have

Lemma 4.5. i) 8(1Q%zs)=—ws A1,

ii) 8(’-"8n+2®1)=7)1w3,4/\1'

Proof. i) Let a be the automorphism of the vector bundle S®+3%x
Spin(8n-+3) X H 24” given by a(x, g, v) =(x, g, Aguro(1(x)g)v) for x&S¥*30, g =
Spin(8n+-3), ve H " and g, denote the quaternionic vector bundle over
3.88+3.0 % Spin(8n-3) with a as a clutching function. We view &,—24&, as an

element of 1?1:7(28”+3'°A Spin(8n-+3),) in a natural manner. Then by consider-
ing (4.1) we obtain

8(1®’?8n+a) = t(§4_24”83)

in 1?65“(23"‘“”/\ Spin(8z-+-3),).
Define the isomorphism of vector bundles

b: CS#+39% Spin (8n+3) X H Q g H?" == CS**+3° % Spin (8n+-3) X H="

by b([t, x], & 1Qv)=([t, x], & Asnss(g)'0) for t€][0, 1], x5, g&
Spin(8n+-3), veH 2 and denote by b the restriction of b to S#+39 Spin(8zn+3)
xXH ®BH"" where we take S8*+30= {0} x S®+30  Also let £,; be the vector
bundle with ab as a clutching function. Then clearly £3=£,. Hence

S(l ®E8,,+3) = t(E ' 2t EH) Al

in KOG*(S#%9 A Spin (8n-+3),).
We consider #(£,;—2*&5) € KOG (Z8*3°). Let j: 3% C 35+30 be the in-
clusion. By construction we then have

GFI(E5—242E,) = 2L —1)
since o A&g=n, by (1.5) and ¢(»,)=2x? so that
J*HEas—2"Eg) = 2(H—1), .
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Here j* is injective because 1%54(28”+3'°/2°'°)gKO'*"(Ps"*z):O by Proposition
3.4. Therefore by our choice of w,, and (1.1) we see that

t(‘f a—2" 5}1) = —Wgy,0\ g5
so that we get
8(1 ®’c8n+3) = _an.o/\ms.d

which proves i).
ii) Consider the exact sequence for (B®*3:0, §#+30) in KO-theory. Then

8: KO™5(P***) = KOz%( S“”+3’°)z1?655(28"+3-°) )
Il I
Zz * Mgn+2 Z2 7, Ogn 0 A W4

Hence clearly &(pgy+s)=710sn,0/ A5, From this and an inspection of (4.1)
immediately we have &(ugn+,®1)=70,4/ 1, which completes the proof.

From Lemma 4.5 it follows that 8(ug,,®14+-1Q%,Rs,4s)=0. Hence by
exactness we see

(4.6) There exists an element vg, ;= KO~ SO(8n+3)) such that
I(Vsnts) = 18n+2 @1+ 1@, Rypes -

Using this we determine the order of 7,&,,,,. Observe the exact sequence
(3.4) in [3]:
- f{‘d—& (Pon+2) _"; R-5(pene) _i /K\6-4( Pent2)
Il I I
Zye pante  Zopnt1o p¥(Vansa)  Zotn*M4Vanta
Since 8(u’c(Va+2)) =14 Ven+2» We have 8(2* u3¢(7¥gni,))=0. Evidently this implies
(pan+a) = 2% p*c(Vonso) -

Let us write I, for I in complex case. Then it follows from (4.6) that
L(c(ons) =22 (opsa), Whille L(2% 3¢ (Egns)) =2 57 c(¥Yanss) and I, s injective
by Lemmas 3.8 and 3.7 in [14]. Hence we have

C(Vguyg) = 2" I‘sc(gsnﬂ) .

Consider again the exact sequence (3.4) when X=S0O(8z4-3) in [3]. Then
analogously we have 8(u®c(Egyis)) =714 Esnts and therefore

8c(”&»ﬂi) = 24“ 74 Es;ﬁa ’

so that by exactness we obtain

24”774‘58n+s =0.
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On the other hand, 7%(x, &g, 1) =74 Yenss Which has order 24 by Proposition
3.4. Hence we see

(4.7) 74Esp+s has order 2%,

Lemma 4.8.
—~ by
0 < KO¥ (=** A Spin(8n+-3).) < KO¥(P*"**) @ gor+»KO*(Spin (8n-+3))

I
«~— KO*(SO(8n+3)) < 0
ix exact and there holds

S(xI(y)) = &(x)y -

Proof. The equality follows from (4.3) immediately and so it suffices to
show

J=0: ;{\63(23”*3"’/\ Spin(8n+3).,) - KO*(SO(8r+3))
in (4.2) when /=38n+-3.

Consider the exact sequence

« —> RE(SM A Spin(81-3),) = K*(SO (8n+3))
£ ]
s K*(Spin(8n+3)) — +--

which arises from the cofibering S°— B*— 310 under obvious identifications.
Then by Theorem 3.10 and Proposition 2.3 in [14] we see that Im X is addi-
tively generated by

1 c(Egnrsm(by, -+, by,))
for 03, by -+, byy=0, 1 where m(by, -+, Byg) =B (N pares)’s B (I pyus)r.

Let ~=K, KO and let X,, denote the homomorphism %%(Z*° A Spin (8n-3).,)
— h*(SO(8n+-3)) induced by an evident inclusion S*°C3*°. Using (1.3) and
(3.2) we can verify from the result above that Im X, is additively generated by

2p c(Egursm(by, *++, byy))

for 0<7<3, b, +-+, b,,=0, 1, so that we see that 2 Im Xy, is additively gene-
rated by

22 Esn+s m(bv °*% bu) and 2’74 §8n+3 m(bl’ ) bh)

for by, -+, b,,=0, 1.
Thus for x& KO¥(=*° A Spin(8n-+3)..) we can write
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2Xgo(%) = 2%Egpis Zt(by, +++, byn)m(by, -+, byy)
+2774§8n+32a(61» *% C4n) m(clv % 04,,)

for a(x,, -+, x,,)€Z. Using (1.1) we therefore have

J(@gag A %) = —2""1Eg, s Xgo(¥)
= 2HE g wSar(by, «e, by,)m(by, ++, by,)

because 24" 7,&g,.s=0 by (4.7). Applying I to this formula, by Lemma 4.4 we
have

IJ(“’B»,O/\x) = 24”+178n+2®2a(b1’ M) b4n)m(bv °tty bGn) ’

which equals zero by exactness. Moreover because by Propositions 3.4 and
3.5 the order of vg,,, is 2**** and {m(b,, --+, b,,)} is a basis of a free submodule
of KO*(Spin(8n+3)) we see that a(b,, *++, b,,) are divisible by 2, so that since
by (3.3) &gues has order 242 we obtain

J(CDBn.O/\x) =0 ’
which completes the proof.

Theorem 4.9.

KO*(SO(8”+3)) = AKof(+)(:8(7\'IPsn+a): °ty :8(7\'4”P8n+a), "8n+3)
®Z(Z 1P Zyn+2- Esni2DZ,e v8n+3)

as a KO*(+)-module and the following relations hold:

f§n+3 = _Zfsnﬂ ’ 24"7l4§sn+3 =0,
8n-+3
BOVpuns) = m(BOO puns)+ (V2B o) (L),
K§n+3 = V§n+3 = Kgyr3Eants = MaVgnss = 0,
Kgn+3Vgn+3 — 77318(7\-2 A8ﬂ+3)£8n+s ’
’ﬁ Vgpt+s =— 211 Eontss
N1 Kgnts = EgnrsVants

in which @z is left out.

Proof. We begin with the relations. The first two ones are already shown
in (3.2) and [7; p. 67] (also (1.7) in [14]). According to Lemma 4.8, I is an
injection of algebras. Hence using the formulas in Lemma 4.4 and (4.6) the
others follows from the relations in Propositions 3.4, 3.5, (3.3) and (3.7).

Let Ry,,, denote the right side of the above equality together with the rela-
tions. Then by a similar argument it is verified that Ry,,, is a subalgebra of
KO*(SO(8n+3)).
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Moreover, in virtue of the surjectivity of § and the formulas of Lemmas 4.5

and 4.8 it follows that I@%(Z“/\ Spin(8rn4-3),) is generated by w,,Ax for
X E Ry, 13 as a KO*(+-)-module.
Let X be a G-space with base point. We consider the exact sequence in

KO;-theory associated with a cofibering X=3"AX 5 SHAX 4 SLZMAX

where 7, p are evident maps. Since Z¥ZAX ~SI! AS*AX there is an

isomorphism KO#(SM/S™ A X)=KO*S*AX). By observing the above
homeomorphism we can check that the composite of this isomorphism with p*
agrees with a transfer

r: KO¥(S*'AX) - KO¥SMAX),

so that we have an exact sequence

o~ o~ ¥ o~
o > KO¥ZMAX) > KOASHAX) > KOKX) — - .

Here take X to be 33* A Spin(8n+3),. Then this yields the following exact
sequence:

o~ —_~ *
o — KO*(* A\ Spin (8n-+-3),) — KOS A Spin (8n-+-3),) —
R R
KO*(Spin(81-3)) s yr(wry)  KOXSO(S8n--3)) -y 4
— KO¥(S** A Spin (8n-1-3),) — «-

with Thom isomorphisms. From (1.2) and the definition of «,, it follows
that ¢*(w, ) =w;,4/\1. Therefore by the result above we see that

i*(Rypy+ 01.0) = KOK(SH* A Spin (8n-+3),) (a).
By construction we obtain
7(Ran+a) = Kanss -
Using this and the properties of = such that
™(y) = (1+H)y and 7(xy(y)) = 7(x)y

we see by Proposition 3.5 that
Im 7C Ry s w44 (b).

From (a) and (b) it follows that KO*(SO(8n+-3)) C Ry, that is,
KO*(SO(81+3)) = Ryuss

which completes the proof.



ReaL K-Groups oF SO(n) 205

To express B(A(\* payts)) and B(A*Ag,+,)) appeared in Theorem 4.9 in terms
of the generators of KO*(SO(8n-3)) it is sufficient to know about B(A***! pg,s)
as in KO*(Spin(8n+-3)). In virtue of the injectivity of 7 and Lemma 4.4, this
is easily obtained from (3.7) as follows:

(4.10) B pgyys) = 24"y Kgyss— BN Paass)
— B pgura) =+ — BN pants) -
b) KO*(SO(8n-+4))
Let us define maps
3, &: SO(8n+4) — GL(2'*, H)
by 8(m(g))=Asn+4(8) 7 Adurs(8), E(n(8))=Asn+4(g)* for g&Spin(8n+-4) and put
tanrs = HB(3)), 0 = 1(B(€)) EKO™H(SO(8n+-4)) .
We consider (4.2) when [=8n-}-4.
Lemma 4.11. i) I(&,.)="Ye.+3R1,
i) 1B ) =1@B80 e+ (5 ) mavnss @)1 (1SE=Z804-4),

lli) I(K8n+4)= 1 ®(’?;n+4"'k§‘n+4)““ ﬂ8”+3® 1 y
iV) I(€8n+4) =(78n+3+ 2) ®I?g',,+ 4 175,.+3® 1.

Proof. i), ii) Similar to the proofs of i), ii) of Lemma 4.4.
iii) Considering (4.1) we see that I(«g,.,) is represented by the map

f: P¥*3x Spin(8n-+4) — GL(2*, H)
given by f(z(x), £)=Atus1(8) ™ Adus s(@(x)Adus 4 (4(x)) Adra(g) for xeS™2,
g&Spin(8n+4). But the composite of f with an inclusion GL(2**, H)C
GL(3-2', H) is evidently homotopic to the map from P8&+3x Spin(8n+4) to
GL(3-2', H) given by
(7(%), 8) = Asnsa(8) B Adns (&) B Abins (%)) A a(¥(%))

for xe S840 g=Spin (8n+4). iii) is immediate from this.
iv) Define a map

f: P8n+3_) GL(th, H)

by f(m(x))=Ags+4((x))? for xS0  Then by arguments parallel to iii) of
Lemma 4.4 we have

I(Osnsa) = (Yonss+2) @Fnsa+1(B(f)) @1

where #(8(f)) € KOS (P**)=Z - 55, .+
Because
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K5 S%+3) = K~4(Spin(8n-+5)/Spin (8n+4)) = Z- u*(B(Asn+4))
(see e.g. Theorem 13.3 in [11; § 13]), observing the composite
RO-5(pwi) 5 R-(pow) T R-5(5%4)
we have by definition
7*C(Dguss) = 21°5(B(Adnsa)) and  z*(U(B(f)) = —2p°(B(A%n4)) -
This shows
HB(f)) = —Tauss»

which completes the proof.
In proving Proposition 3.4 we showed that & (ugy+s)=E7 Wsne A\ w44 E=1

or H for the coboundary homomorphism &§': KO*(P*+3)=KO¥(S 8”+4'°)—->I’{‘6§
(z8#+49)., However by definition we may assume that

& (Hen+s) = M @ga0 Aoq -
Take wgy14,4 10 be wg, oA ey,4 and set
8 = Pan+4.40: KO¥P¥3)Q p v, KO*(Spin (8n+4)) - KO*(SO(8n+4)) .
Then we have

Lemma 4.12. i) §(1Q#§u+4)=Espsst1, S(1QR5ps0)=—1,
ii)  O(Pen+3®@1)=Egnsat2,
ili)  3(vgy+:s®1)=m,.

Proof. i) As in the proof of Lemma 4.5, i), by using the half spin repre-
sentations Ag,.4, Agzas We can define quaternionic vector bundles %3, £7; over
S840 similar to &,3 such that

S(1QRgurs) = t(ET—2"E) A1, S(1QRznss) = t(E T3 —2Ex) A1
and

UEG—2"Ey) = Hwguo Aoy UE5—2"Ep) = —Hagy g Ny 4 -

Hence i) is clear.
ii) Immediate from (c) in the proof of Proposition 3.4, 2), that is,

8,( Dn+s) = (H + 1)“’89:,0 Ny -

iii) Similarly immediate from the formula for ug,,, above.
From Lemma 4.12 it follows that 8(us,+s®1+1®%,%s:43)=0 and hence
by exactness we have
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(4.13) There exists an element vy, , & KO™(SO(8n--3)) such that
I(Vg,,+4)=[l43,,+3® 1+ 1Q@%5m4 4
Making use of (4.13), by arguments parallel to (4.6) we get

(4.14) 5, Espss has order 2%,

Observe J in (4.2) when /=8n+4. Similarly using (1.1) and (1.2) we
then have

J(@s s Aoy A8) = =249, Eqpi
for xe KO*(SO(8n+-4)), so that by (4.14) we see that
J=0.
Clearly from this and (4.3) we get

Lemma 4.15.
8 B
0 < KO*(SO(8n-1-4)) < KO*(P%*+3)Q gor+) KO*(Spin (8n+4))
I
«— KO*(SO(8n-14)) < 0
is exact and there holds

3(xI(y)) = 8(x)y -

Using Lemmas 4.11, 4.12, 4.15, (4.13), Propositions 2.4, 3.5, (3.3) and
(4.14), by arguments similar to Theorem 4.9 we obtain

Theorem 4.16.
KO*(SO(8n+4)) = Agor) (B Psnta)s ***s BN Panta)s Kanras Osnra)
QZ - 1D Zyn+2Egy D2y Vayors)
as a KO*(-+-)-module and the following relatoins holds:

Etzxnu = —ZESn+4 s 2‘"’7453%4 =0 ’

B pane = 1 (BN pons )+ ()80 e))  (1h8n44),

2 _p2 .2 __ _ _
Kinsa = Ofnis = Vipyq = 08»+4§8»+4 = My Vsn+s = MKgniq OgnraVanis = 0

2 . D4n+1
M Vsuss = 2 Eonss

in whicl. @ , is lefto out.

Arguing as in the case a) and noticing that (Zi%)EO mod 2 we have
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(4.17) BN pgyr ) = 24" 0y(Ogyis— Kanis) — B! pgors)
_18(7\4"—3Ps»+4) — =B Pn+4) »
B pgyrg) = 2 (Osnss— Kansa) — 2B\ Psaos)
—2B(\"7% pgasg) — - —2B(N? P8n+4) ’

from which we can express B(A*(A* pg,+4)) in the form desired.
c) KO*(SO(8n-+5))
This case is discussed exactly as in the case a). Define a map
&: SO(8n-+5) — GL(2***, H)
by &(z(g))= Ag+5(£)? for g& Spin(8n-+5) and set
Kkanrs = L(B(E)) € KO3(SO(8n-+5)) .
We consider (4.2) when /=8n+-5.
Lemma 4.18. i) I(E345)="78,+4®1,
i) 2080V pons) =1@B0 ponse)+ (] Jritonrs @1 (1SR=8145),
i) I(Kgyss)=(Von+at2) Bgpss:

Proof. Similar to the proof of Lemma 4.4.
Take wgy44,4 to be wg, s\ w,,4 as in the case b) and set

8 = $3ts1.5: KOH(P) @K (Spin(80-+5))
> ROX(Z*'ASpin (8n-15),) .
Let ml,oeﬁé(zl'°)gz be a generator such that
i*(wy,0) = 1—H€KO04(=*) = R(G)
where 7: 3% 30 be the inclusion. Then we have

Lemma 4-19. i) 8(1 ®E8"+5)= _wl'o /\ 1,
i)  O(usnrs® 1)=’71 1,0\ L.

Proof. Also similar to the proof of Lemma 4.5.
By this lemma we see

(4.20) There exisits an element vg, s KO™5(SO(8n-+5)) such that
I(Vans5) = pan+4@ 14171 Fgnss -

Analogously from this we have

(4.21)  ,Egu4s has order 24"+
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and hence it follows that J in (4.2) when /=8n-5 is a zero map. Consequently
we obtain

Lemma 4.22.
—_~ S
0 < KO¥(=""ASpin(8n+-5),) < KQ*(P”"“) Q xor+)KO*(Spin (8r+-5))

i O*(SO(8n+-5)) < 0
1s exact and there holds
8(xI(y)) = o(x)y .
Theorem 4.23.

KO*(SO(8”+5)) = AKo*(+)(B(7"1P3n+5)» °tty 18(7\'4"+1Psn+5): K8n+5)
®z(z‘ 1B Zyn+s-EgyisDZ,e Vs»+5)

as a KO*(+)-module and the following relations hold:

§§n+5 = —‘zfsn+5 ’ 24"+1774E8n+5 = 0;

BN pgpas)® = m (:8 (N*(V* pgnas)) + (Sn]j— 5):3 (7\'sz”+5)) (I1=k=8n+5),

2 .2 _ — —
Kin15 = Vnss = Kgyi5Egpis = NyVsnis = 0,
.2 2
Keni5Van45 — 771/8(7\‘ A8u+5)58n+5 ’
2 __ Ddn+2
N Vgars = 2" 2 Eg, 05,

M Kants = EgntsVansts

where Q ; is left out.

Proof. We write Ry, for the right side of the equality together with the
relations above. As in proving Theorem 4.9 we can then verify that Rg,.s is

a subalgebra of KO*(SO(8n+-5)).

To prove that R,,,s D KO*(SO(8n+-5)) we make use of exactness at KO?E’(-)?’)
of the exact sequence stated in the proof of Theorem 4.9. By definition we
see that the homomorphism next to ¢* coincides with a forgetful homomorphism
under an obvious identification. Hence taking X to be Spin(8n-5),, we have
an exact sequence

—~ *
KO¥(=" A Spin(8n+5),) — KO*(SO(8n-5)) 5 KO*(Spin(8n+5)) .
Clearly we have

”*(B(Wkpsws)) = :3(7\!’108”5): ”*(Esws) =0
and

7 *(Kgnis) = 2Rgnys -
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Moreover considering z* in the complex case and using the results for
K*(SO(8n+-5)) and K*(Spin(8z+-5)) [14], we see that #g,,s; does not lie in

Im z*, so that we have
Im z* = 7*(Rgyss) -
In virtue of the surjectivity of 8; by the same argument as in the proof

of Theorem 4.9 it is verified that K#(Z°ASpin(8n+5),) is generated by
w10\ %, XERg, 5. Therefore by exactness we obtain

KO*(SO(8n+-5)) = Rgpss»

which completes the proof.
Furthermore we have a relation similar to (4.10):

(4-24) ﬁ()\'4”+2P8n+5) = 24”+1774"an+5_:3(7\»4"+lpsn+5)
—:3(7\-4” P8n+5)_ o —:8(7\'11’8»&5) .

Similarly the calculation of B(AY(A\*ps+s)) and B(A*Agyqs) is reduced to this
formula.

REMARK TO THE PREVIOUS PAPER [14]. Analogously we see that &’s stated in
Lemmas 4.3, 4.10 and 4.14 of |14] are equal to (82:%), (SZ::I‘) and (82:%)

respectively and hence we obtain

B pgy_y) = 271 B(Egy—1) — BN pgy—1) — BN pgu1) — "'—B(lesn—l) ’
B pga) = 24 7H(B(Ean) — B(8sn) — BV pan) — B pgn)—++* — BN psa) »
BM"pgs) = 2%(B(Esn) — B(8s)) —2B(N*" 2 pga) —2B(A"~ pgs) —+-* —28(N’ psn) »
B (7"4" Ps»+1) =2"g (Esntr)— B (7\-4”—1 P8n+l)_ﬁ(7\'4”—3p8n+l)_ _:8(7\'1!’8;:+1)

with the notations as in [14].
Using these formulas it is also possible to express B(A?Ag,—1), B(A*Agurr)
and B(A*(Mfp;)), [=8rn—1, 8n, 8n+-1, in terms of the generators.
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