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Introduction

Simons [18] studied minimal submanifolds of spheres and showed, among
other things, that a compact minimal submanifold M of the unit w-sphere must
be totally geodesic if the square length of the second fundamental form is less
than nl(2—p~l) (p=codimM) (cf. [13] for the equality discussion). Later,
Ogiue [16] and Tanno [20] considered complex submanifolds in the complex
projective space and obtained similar results to the Simons' theorem (cf. [17]
for other related topics and the references). On the other hand, Greene and
Wu [9] have proven a gap theorem for noncompact Riemannian manifolds with
a pole (cf. [7] [10] [14]). Roughly speaking, their theorem says that a Rieman-
nian manifold with a pole whose sectional curvature goes to zero in farster than
quadratic decay is isometric to Euclidean space if its dimension is greater than
two and the curvature does not change its sign. These gap theorems suggest that
one could expect similar results for certain open submanifolds of Euclidean space,
the hyperbolic space form, the complex hyperbolic space form, etc.. Actually
in this note, we shall prove the following theorems.

Theorem A.
(I) Let M be a connected, minimal submanifold of dimension m properly im-

mersed into Euclidean space R*. Let p denote the distance in Rn to a fixed point

of Rn. Then M is totally geodesic if one of the following conditions holds :

(A-i) τw^3, M has one end and the second fundamental form aM of the im-

mersion M-*Rn satisfies

lim sup P(Λ ) | aM \ (x)<κQ< 1 ,

τΰhere KO is defined by /c0{(l — #o)~1+l}=\/~2~

(A-ii) m=2y M has one end and

(A-iii) 2m>n, M is imbedded and
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for some constant 6>m.

(II) Let M be a connected, minimal submanifold of dimension m properly

immersed into the hyperbolic space form Hn( — 1) of constant curvature — 1. Let
p denote the distance in H"(—\) to a fixed point of Hn(—l). Then M is totally

geodesic if one of the following conditions holds :

(A-iv) m^3, M has one end and the second fundamental form aM of the
immersion M-~*Hn(—l) satisfies

sup p\x)/M \aM I (x)< + oo

for some constant £>1.

(A-v) m— 2, M has one end and

as x^M goes to infinity.

(A-vi) m= n— 1, M is imbedded and

as x^M tends to infinity.

Theorem B.
(I) Let M be a connected, noncompact Riemannian submanifold of dimension

m properly immersed into Rn. Suppose that M has one end and the second funda-

mental form aM of the immersion M->R* satisfies

for a constant £>2. Then M is totally geodesic if 2m>n and the sectional curva-

ture is nonpositίve everywhere on M, or if m=n—l and the scalar curvature is non-
positive everywhere on M.

(II) Let M be a connected, noncompact Riemannian submanifold of dimension

m properly immersed into Hn(—l). Suppose that M has one end and

as x^M goes to infinity. Then M is totally geodesic if 2m>n and the sectional

curvature is everywhere less than or equal to — 1 orifm=n—l and the scalar cur-

vature is everywhere less than or equal to — m(m — 1).

(Ill) Let M be a connected hypersurface of H"(—l) which bounds a totally

convex domain D of Hn(—l). Then M is a totally geodesic, provided that
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as x£ΞM tends to infinity.

Theorem C. Let M be a connected, complex submanifold properly immersed

into the complex hyperbolic space form CHn(—l) of constant holomorphic sectional

curvature — 1 . Then M is totally geodesic if the second fundamental form aM of

M satisfies

as x^M goes to infinity.

REMARKS.

(1) The first part (I) of Theorem A with 'a stronger condition instead of
(A-i) has been proved in [11] and a few examples are given there to illustrate

the roles of several hypotheses on M. We should also mention the recent paper

of Anderson [3] in which he has investigated complete minimal submanifolds

in Rn of finite total scalar curvature. Especially as a consequence derived from
his main theorem, which is a generalization of the well known Chern-Osserman
theorem on minimal surfaces in Rn of finite total curvature, he shows that a

complete minimal submanifold M immersed into Rn is an affine w-space if

m— dim M^3, Mhas one end and the total scalar curvature: \M \aM \ m is finite,

where aM denotes as before the second fundamental form of M. Moreover the

proof of his main theorem suggests that for a complete minimal submanifold

M of dimension m^3 immersed into Rn

y the immersion is proper and \aM \ ̂
c / \ x \ m for some positive constant c if the total scalar curvature is finite. It is

easy to see that the total scalar curvature is finite if the immersion is proper and

\aM I ^c/\x\* for some constants c and £>1 (cf. Section 1).

(2) Recall that Hn(— 1) has a natural smooth compactification Hn(— 1) =
H*(—l) U 5(oo) where S(°o) can be identified with asymptotic classes of geodesic

rays in H"(— 1). In [1], Anderson has proved that any closed (m— ̂ -dimen-
sional submanifold M(oo) of 5(oo) is the asymptotic boundary of a complete,

absolutely area-minimizing locally integral m-current M in H"(— 1). As is

noted in [1], M is smooth in case m=n~ 1^6. It would be interesting to
investigate the curvature behavior of his solution M in relation with the 're-

gularity* of M=M\jM(oo). One should also consult the recent paper of do

Carmo and Lawson [5] for a related result to Theorem A (II).

(3) In [15], Mori constructed a family of complete minimal surfaces μλ:
S1xR—*H3( — 1). The second fundamental forms αλ of these embedded sur-
faces Mλ=μλ(S1xR) have the property that |αλ|(#)~exρ — 2ρ(x), where p is
the distance in H\— 1) to a fixed point. Note also that M has two ends.

(4) The last part (III) of Theorem B is concerning the boundary of a

totally convex domain in Hn(— 1). When we replace Rn for Hn(— 1), we have
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a similar result (cf. [19]).

(5) Let Σ be a compact smooth surface with genus>l and set Σ=
(/>€ΞΣ). In the last section of this paper, we shall construct a proper embedding
of Σ into R3 such that the second fundamental form a^ satisfies : | αΣ | (x) ̂  c \ x \ ~2

and further the Gaussian curvature with respect to the induced metric is every-
where nonpositive (cf. the first part (I) of Theorem B).

(6) In the first part (I) (resp. the second part (II)) of Theorem B, the con-
ditions on the dimension and the curvature of M can be replaced with the fol-
lowing weaker assumption: for every x^M, there is a subspace T of TXM such
that dim T>n—m and the sectional curvature for any plane in T is nonpositive
(resp. less than or equal to —1) (cf. the proof of Theorem B in Section 2).

The work of this note was done while the first-named author was staying at
University of California, Berkeley, as a research fellow supported by Ministry of
Education of Japan. He would like to express his hearty thanks to Professors
S. Kobayashi and H.H. Wu for their kind hospitality. He would also like to
thank Dr. M. Anderson for sending him the preprints of his interesting works.

1. Preliminaries

This section presents a number of lemmas to prove the results stated in
Introduction.

1.1. Throughout this section, H denotes a complete, simply connected Rieman-
nian manifold of dimension n whose sectional curvature KH satisfies

We write £(00) for the asymptotic classes of geodesic rays in H.
Recall that H=H U 5(co) has a natural topology which makes H homeomorphic
to an w-cell (cf. [6]). In particular, in case of if = the hyperbolic space form
H"(—a2) of constant negative curvature — α2(Φθ) or JFf^the complex hyperbolic
space form CH"(—a2) of constant holomorphic sectional curvature — tf^ΦO), H
is a natural smooth compactification of H. For any subset A of H, A(oo)
stands for the asymptotic boundary of Ay namely, the intersection of the closure
A in H with 5(oo). (As it is pointed out in [5], this concept of asymptotic

boundary seems crucial in understanding certain noncompact submanifolds of H.)
Observe that for any point o of H, S(oo) can be naturally identified with the
geodesic sphere S(t) of radius t around o through the exponential map at o.
Throughout the paper, such identification will be often used to investigate the

behavior at infinity of certain noncompact submanifolds of H.

Throughout the paper, we write Ja(t) for the solution of equation: J'a'—a2Ja

=0, subject to the initial conditions /β(0)=0, /£(0)=1, namely, Ja(t)=t if a=Q,
-1 sinh at if α>0.
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Let us now begin with stating the following well known fact.

Lemma 1 (cf. e.g. [8]). Fix a point o of H and denote by p the distance

to o. Then the hessian V2p satisfies

onH-{o}.

The next lemma is an immediate consequence of Toponogov comparison
theorem.

Lemma 2. Consider a geodesic triangle Δ in H with vertices ply p2, ρ3.

Then

9

smh al2 smh al3

where Σ is the angle of Δatp1} lι=disH(p2,p3)9 4=dί8ιr(ίι* A) and ίs=di%(A* A)

Lemma 3. Let c(s) be an arc-length parametrized smooth curve in H.
Define a curve %.(s) by γc(s)=expe(s)—sό(s), where expΛ stands for the exponential
map of H at x&H. Then

£ J ) I Vcc \(u)du (s<t)

where V denotes the Levί-Civίta connection on H.

Proof. Since | γc(s) \ ̂ ίjb(s] \ VcC\(s) by the well known comparison theorem
on Jacobi fields, we have the above inequality.

1.2. We shall now consider a connected Riemannian submanifold M of dimen-
sion m immersed into H. We write aM: TMxTM-^TM^ for the second
fundamental form of the immersion M->/f(i.e., ocM(X, Y)=^XY— Vx Y, where
V denotes the Levi-Civita connection of M). Fix a point o of H and set

p(Λ?): = dis^(o, *), p: = p|M, vp: = Vp-Vp, M(t):= {xt=M: p(x) = t}, M*: =
{x^M: p(x)^t} and Mt:={x^M: ρ(x)^t}. In this subsection, some esti-
mates for I Vp I will be given under certain conditions on H and M.

Lemma 4. Suppose the gradient Vp of p never vanishes on a connected
component T(t) of M(t). Then :

2D(T(t)) max { | aM(X, Vp) | + | V2P(*, Vp) | : X e

for any x,y^T(t), where D ( Γ ( ΐ ) ) stands for the intrinsic diameter of
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Moreover V2p(^C Vp) in the above inequality vanishes when H=H"(—a2), or
H=CHn(—a2) and M is a complex submanifold.

Proof. Let γ: (0, d]->T(t) be an arc-length parametrized smooth curve in
T(t) which joins x to y. Then we have

p, Vp>

= -2V2p(7, Vp)

^2[|α jf(γ, Vp)| Kl +V2p(7, Vp)|]

This shows the inequality of the lemma.

In what follows, we assume that M is noncompact and the immersion
M-+H is proper. Let us take a nonnegative continuous function k(t) such that

\aM\ ^&°p on M. Suppose that for some nonnegative constants r and q<l,

(1.1)

on [r, °o ). Then, since the hessian V2p of p satisfies

, X) = v2P(*, *)+<tfM(*> x), vry
r, xy

we see that, for a suitable smooth function F(t) (e.g., F(i)= \ exp \ Λ(w)+ 1 duds)y
JO JO

Fop is strictly convex on Mτ, so that we may assume Vp never vanishes on
Mr. Thus M turns out to be diίfeomorphic to the interior of an m-dimensional
compact manifold N with boundary dN. The intersection of a closed regular
neighborhood of a component of dN with M will be called an end of M (which
agrees with the usual topological meaning). We shall now define a smooth vector
field Vp on Mτ by Γp= Vp/ 1 Vp | 2. Then

--2V2p(Vp, Vp) |Vp|- 2

^-2(ΛU)°pkpl2+2|αM(Vp, Vp)|

on Mτ. Hence we obtain

(1.2) V, (Jl°P\^\2)^2\aM(Vp, Vp)|

^2Λop|y p |/;op.

Let Λ; be a point of M(τ) and ^^(ί) (ίe[τ, oo)) the maximal integral curve of Vf
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such that vx(r)=x. Then it follows from (1.2) that

Thus we have the following

Lemma 5.
(i) (fl=0) limsup\vp\(x)^c if lim sup ρ(x) \ aM \ (x) ̂  c for some constant

"- -

(ϋ) (a=0) suppδ | ϊ>p |<+oo, S = min{£— 1, 1} if sup p*\aM\ < + oo far

some constant 6: 1<£<2 or 2<£.
(iii) (α>0) sup p8 1 vp \ < + oo ^y sup pε | aM \ < + oo far some constant £>0.

(iv) (0>0) sup ^βp I z/p I < + oo if sup pVp I orM | < + oo far some constant
6>l.

1.3. In this subsection, we shall observe the behavior of M(t) for large t under
assumption (1.1). Let vx(t) be as in the preceding subsection and define a map
μt: M(τ)-*M(t) by μt(x)= vx(t) (t^r). Then μt gives a diffeomorphism from
M(τ) onto M(t). Let γ(^) be a smooth regular curve in M(τ) and set PF(s, ί) =
dvγ(s)(t)/ds. Then using Lemma 1, we obtain

-A. log I ̂  I = I Vp| -2| IF I -2V2

P(^, W7)

This implies

I Wit fM J (t\ C*

\W(sτ)ΓjMeXP)r~k}Vf

and hence

(1.3)

for any X e ΓM(τ). Similarly, we obtain
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for every XξΞTM(τ). As an immediate consequence of (1.4) and Lemma 5,
we have the following

Lemma 6. Suppose a>0 and pv| CCM \ is bounded on M for a constant
Then :

where T(t) is a connected component of M(t) and c> 1 is a constant independent
oft.

Let us now denote by S(t) (resp. Π,) the geodesic sphere of H around o
with radius t (resp. the projection from S(t) onto 5(1) along the geodesies joining

S(t) to o). We define a family of immersions {φt}t^τ from Λf(τ) into 5(1) by
φt=Htoμt. Then for each x^M(τ), the smooth curve γ*: t-*φt(x) in 5(1)

satisfies

I Ύ(ί) I ̂ ( I Vp I -1 1 i p I )(/»,(*))//.(*).

Set φw(x) = limφ (x) if the limit exists. This is the case for all #eM(τ), if

, or if a=0 and p8 1 aM \ is bounded for some constant £> 1 (cf. Lemma 5 (ii)).
Moreover φ^: M(τ)->5(l) is continuous. In fact,

+ dissω(φt(y),

where 97 is a positive continuous function such that fη(t) (resp. eatη(t)) is bounded
in case of a=Q (resp. α>0). Observe further that

(1.5) dis*(/*,(*)»

where exp0 denotes the exponential map of if at o and 5(1) is identified with
the unit sphere of the tangent space T0H at o.

REMARK. We see from (1.3) and (1.4) that <£«,: M(τ)-»5(l) is a Lipschitz
map if #=δ>0 and p*\(XM \ is bounded on M for a constant £>^. Moreover
making use of the Poincare model or the upper half-plane model for Hn(—1),
we can prove the following

Proposition 1. Let M be a connected, connected, noncompact Riemannian

submanίfold properly immersed into Hn(—\). Suppose ρ*\aM I zί bounded on M
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for a constant £>1. Then M=M\jM(oo) is a Cl-submanifold immersed into
B*(—\)=Hn(—\) U 5(oo) (a natural smooth compactίfication of #"(—!)).

The proof of this proposition will be given at the end of Section 4.

1.4. Now we consider the case H=R" or H*(— 1). We shall compute the
second fundamental form at of the immersion φt: M(τ) ->£(!) and derive some
lemmas to prove Theorems A and B. Observe first that the second fundamental
form βt of the immersion M(τ)-*S(t) is given as follows:

<βAXt Y), vy = |Vp|-2{V2p(*, Y)+<aM(X, Y), »,»<"»">+<«*(*, Y), »>,

where X, Y <=TM(t), v<=TM(t)-^C\TS(t), and TM(tγ- denotes the orthogonal
complement of TM(t) in TH. This is an immediate consequence of Gauss
formula. Suppose now H—If. Then for any xeM(τ) and every X, Ye
T,M(τ), we have

<at(X, Y), v>, = <at(φt*X, φt*Y), v> at φt(x)

= <&(.£, Ϋ), ί)> at μt(x)

= iVpl-'rXl, Ϋ>-<aM(X, Ϋ), ί>>KVf, ί)>

+<aM(X, Ϋ), ty at /*,(*),

where X=μ,tX, Y=μ,*Y and v=t~2 TlΓ*v This implies that

(1.6) |α, |(*)£(1+ l α ^ D l i / p l | Vp|-2+ί|αM | at /*,(*) (=exp. ί

Similarly, in case of H=H"(— 1), we obtain

(1.7) |α/|W smh 1

at μ^Λ?) (= exp, tφt(x)) .

Making use of these inequalities (1.6) and (1.7), we can prove the follow-
ing two lemmas.

Lemma 7. Let M be a connected, noncompact Riemannίan submanifold
properly immersed into Rn. Suppose that p(x)\<xM\(x) goes to 0 as x^M-+oo,
where ρ(x) stands for the distance in RM between x^M and a fixed point o^Rn.
Then for each end Mj of M (j=l, •••, &), φoo(Mj(τ)) is a totally geodesic (m—l)-
subsphere S™~1 of the unit sphere S(\) of Rn

} where k denotes the number of the ends
of M, m= dim M and MJ(T) is the connected component of M(r) which corresponds
to Mj. Moreover let P{ be the m-plane of Rn such that Pj Π 5(1) = S1?~1. Then if
ρ*(x) I aM I (x) is bounded on M{ for some constant £>2,



688 A. KASUE AND K. SUGAHARA

on Mjy where c is a positive constant.

Lemma 8. Let M be a connected, noncompact Rίemannian submanίfold
properly immersed into Hn(—\). Suppose e™(x^\aM\(x) tends to 0 as x^M for
some constant 8^2, where ρ(x) denotes the distance to a fixed point o of Hn(—l).

Then for any end M, of M 0=1, — , k), φ^M/T)) is an (m-V)-subphere S?-1 of
the unit sphere S(l) of Hn(— 1), where Mj(r) is the connected component of M(r)
corresponding to My. Let Hj be the totally geodesic submanifold of Hn(— 1) such
that Hj(oo)=S*~l, where S(V) is identified with the points at infinity S(oo) of
Hn(—l) through the exponential map at o. Then

άian^x, fliy-W - 0

as xSΞMj goes to infinity. Moreover there is a distance minimizing geodesic ray
σ(s) (ί^O) of MJ such that

^*" - 0

as s tends to infinity.

We shall give only the proof of Lemma 8, the same argument as in which
will derive Lemma 7.

Proof of Lemma 8. Let Γ(τ) be a connected component of M(τ) and set
Tτ={μt(x): Λ?eΓ(τ), t ̂ r}, where μt: M(τ)~-+M(t) is as in Subsection 1.3. Let
us take a distance minimizing geodesic ray σ(s) (S^T) of Γτ such that
disM(<r(s), Γ(τ))=ί— T. Then we have

(1.8) s^c1+p(σ(s))y

where cλ is a positive constant independent of σ. In fact, let vs(t) (t^τ)
be the maximal integral curve of the vector field Fp = V p / | V p | 2 such that

o5(pW<)))o =« Then

S P(<Γ(S))
I v, I (u)du

^p(σ(s))~r + Γ( I Vp I -\vs (u)}-\)du
JT

= p(σ(ί))-τ+ Γ I Vp I -\vs(u)) I Vf I \vs(u)}du .

This proves (1.8) (cf. Lemma 5 (in)). Now we define a smooth curve 7σ(s) by
7σ(ί)— expσ(s)— ίσ(ί), where expσ(s) denotes the exponential map of ίΓ*(— 1) at
σ(s). Then it follows from Lemma 3, the assumption on aM of Lemma 8 and

(1.8) that
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i t
smhu\aM\(σ(u))du

t

where η(i)>0 is a monotone non-increasing function such that η(t) goes to 0 as

£->-)- oo. Hence Ύj(s) converges to a point o of Hn(— 1) and we have

(1.9) <&*.(-,>(•/,(*), ό)5Ξ j J ̂ uy^ du .

In what follows, we take this point o as a reference point instead of the previous
fixed point o. Then considering the geodesic triangle Δ in Hn(— 1) with vertices
σ(s), Ύσ(s), o and applying Lemma 2 to Δ, we obtain by (1.9)

(i.io) i »,ι («•(*))£<*- Γ ι(uy>-*> At ,
J s

where c2 is a positive constant. Now (1.10) and Lemma 4 imply that for any
point x of Γ(ΐ)=M(t) Π Γτ (f=ρ(cr(ί))),

^c2ίf
 5 Γ η(u)e(l-^udu

Js

+D(T(t)) max { | a^X, Vp)\:Xe TT(t), \X\=1}

Since |p(σ(s))— ί| ^Cj and Z)(Γ(ί))^c3e' for some positive constant c3(cf. Lemma
6), we have

(1.11) max \Vp\(x)^ή(t)eW ,
*eΓCO

where ή(t)>0 is a monotone non-increasing continuous function such that
^(£)— >0 as £-)--» oo. It turns out from (1.11) and (1.7) that the second funda-
mental form at of the immersion φ,: Γ(τ)->5(l) goes to zero as £->-f-oo, where
φt is as in Subsection 1.3 (with respect to ό). That is, φoo(Γ(τ)) is a totally
geodesic (m— l)-subsρhere Sm~l of S(\), (This shows the first assertion of
Lemma 8.) Let H be the totally geodesic submanifold of Hn( — 1) through o
such that HΓ\ S(l)=Sm~1. Then by (1.5) and (1.11), we see that

x) Γ ή(u)
Jp(jc)

on Γτ. Moreover it follows from (1.5) and (1.10) that
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for some positive constant c4. This completes the proof of Lemma 8.

1.5. It remains to consider the case: H=CH"(—l). In this subsection, we
shall compute the second fundamental form at of the immersion φt : M(τ)-*S(l)

and show an analogue to Lemmas 7 and 8. We assume that M is a complex

submanifold properly immersed into CH"(— 1) satisfying (1.1). Set «Λ =

ΓCΐΓ(-l): OΓ, VP> = <X,JVP> = Q} and M = {X<Ξ TM: <J5Γ, Vp> =
, /Vp>=0}, where / stands for the complex structure of CH*(— 1). Clearly

M=TMϊ\M. For J?eΓC/Γ(-l), we denote by Xr (resp. Xh) the {Vp,/Vp}-
component of X (resp. the ^-component of JY"), namely, J?"r=<.XΓ, Vp)>Vp+

<X,jVp>JVp and J?Λ=Jί-^r. For each f>0, we put &(J£, Y)=<Π^,
Π,*Y>, gr

t(X, Y)=gt(Xr, Yr) and fi(X, Y)=gt(X\Yh\ where Jί, FeΓ^ί) and
Π^: S(ΐ)-+S(l) is the projection from S(f) onto *S(1) along the geodesies issuing

at o. Then we have

(1.12)

Note here that

(1.13) V*p(X, Y) = coth t<.X", yr>+— coth
Z*

for any X, Y^TS(t). Then the Levi-Civita connection ¥ on S(t) with respect

to gt is given by

(1.14)

coshί/2

where Jϊ, F, Pe Γ5(ί) and

= Γsinhliy rsi

sinh t sinh ί/2

This is an immediate consequence of (1.12), (1.13) and the definition of Levi-

Civita connection: the Levi-Civita connection V on a Riemannian manifold

(N, g) is given by

g(VxY, Z) = {X-g(Y, Z)+Y.g(Z, X)-Z g(X, Y)

+g(Z, [X, Y])+g(Y, [Z, Y)l)-g(X, [Y, Z])} .
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Suppose V^TS(i) be orthogonal to TM(t) with respec respect to gt> which
implies equivalently that v^TS(t) defined as above is perpendicular to TM(t)
with respect to < , )>. Then for any X^TM(t)y we obtain

(i.i5) <jx, vy = <jx, vp/ 1 vp i ><vp/ 1 VP I , vy

Moreover we have

(1.16) <V* Y, Vy = I Vp I -2 jcoth t<X, jVp><Y, /Vp>+^- coth ί/2<**, Y*>

-<aM(X, Y), *,><*„ v>+<aM(X, Y), vy .

Hence it follows from (1.14), (1.15) and (1.16) that

nx _ (2(cosh l/2)2-
sinhί lVpl 2

|Vp| 2 2 |Vp | 2

+<aM(X, Y), vy .

This shows that for some positive constant c, we have

(1.17) lαi lW^^lVpl-N^I+^lVpl-Nαj

at μt(x) (=

on M(τ). Then (1.17) and the same argument as in the proof of Lemma 8
prove the following

Lemma 9. Let M be a connected, complex submanίfold of complex dimension
m properly immersed into CH"(—l). Suppose that e3P(*^2\aM\(x) goes to 0 as
x^M-^+oo, where p denotes the distance in CH"(—l) to a fixed point of
CH"(~l). Then for each end Mj of M, there exists a totally geodesic complex
submanifold CH, of complex dimension m in CH*(— 1) such that Λf/oo)==CHχ<χ>).

1.6. In order to prove a part of Theorem A, we shall need

Lemma 10. Let M be a minimal submanifold of dimension m properly im-
mersed into H. Then :

for any t>0. In particular, the function
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Volm(Ba(t))

is monotone non-decreasing in t. Here Mt and M(t] are as before and Ba(ΐ) denotes

the metric ball of radius t in Hm(—a2) (a^O) and Sΐ'\t) = dBβ(t).

Although this lemma is well known (cf. e.g., [1]), we shall prove it in a

more general form for the convinience of the readers.

Proposition 2. Under the same assumption as in Lemma 10, let f be a non-

negative subharmonίc function on M. Then :

I/ L/
for any £>0. In particular, the function

Γ

JMt

is monotone non-decreasing in t.

The proof of this proposition will be given at the end of Section 4.

1.7. REMARK. Let H be a complete, simply connected Riemannian manifold

whose sectional curvature is bounded above by a nonpositive constant — a2

and let M—*H be an isometric immersion from a complete, connected, non-

compact Riemannian manifold M into H. Suppose that the second fundamen-

tal form aM of the immersion satisfies

limsup (/,//£)(disM(*, o))\aM\(x)<\ ,
Λf =9 #->•«*

where disM (x, o) stands for the distance in M between x and a fixed point o of

M. Then the immersion turns out to be proper. Actually, taking a suitable

smooth function F(t) with ί">0, we see that F°ρ (ρ=di$H(o, *)) is strictly

convex outside a compact subset of M. Suppose that the immersion would not
be proper. Then we can find a geodesic ray σ: [0, °°)—>M such that ρoσ is

bounded, and hence Fop(cr(ί))// is bounded away from 0 for large t. This con-

tradicts the boundedness of Fop(σ(t)).

2. Proofs of Theorems A, B, and C

In this section, we keep the notations in the preceding sections.

Proof of Theorem A. We shall begin with proving the second part (II)
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of the theorem. Let M be a connected, minimal submanifold of dimension m

properly immersed into H"(— 1). Suppose first that M satisfies the condition
(A-v). Then it turns out from Lemma 8 that there is a 2-dimensional totaly

geodesic submanifold H such that p#(#): = dis#» (_!)(#, H) goes to 0 as x^M->

+ °° . On the other hand, ρH is subharmonic on M, and hence ρM must vanish

identically on M. This implies that M—H. Suppose next that M satisfies

the condition (A-iv). Then the sectional curvature Kt of M(i) for large t has
a lowre estimate :

(2.1) ^(sinhί)-2-Cl(|αJH-|«Mi>plN-|«Λ ίll''pl),

where cλ is a positive constant. Actually the sectional curvature Kt(π) of M(t)
for a plane π C TM(t) is given by

Kt(x) = -l+<aM(X, X), aM(Y, Y»-<aM(X, Y), au(X,

+ \vPΓ{v2p(x, x)v*p(Y, Y)-(v*p(x, y))2}
= (sinh *)-'+<«„(*, X), aM(Y, Y)y-<aM(X, Y), aM(X, Y)>

, X)+aM(Y, Y), *,>-<«„(*, Y), ^>2},

where {X, Y} is an orthogonal basis of n. Now we apply Lemma 5 (iv) to
(2.1) and obtain

where η(i) goes to 0 as ί-*+oo. Then Rauch comparison theorem (as a special

case of the Bishop comparison theorem for Ricci curvature) derives the following

volume estimate :

and hence

where ω^.j^the volume of the unit sphere of Rm and we have used the assump-
tion that M has one end. Since we may assume that M contains the fixed point,

it turns out from Lemma 10 that

for any t>0. Now it is easy to see that M is totally geodesic (cf. the proof

of Proposition 2 in Section 4).
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It remains to prove that M is totally geodesic if it satisfies the condition
(A-vi). This is an immediate consequence of Lemma 8 and the following

Lemma 11. Let M be a connected minimal submanίfold of dimension m
properly immersed into Hn(—V) such that the second fundamental form aM satisfies

as x&M tends to infinity, where ρ(x)=disH»(.1)(x) ό) and o is a fixed point of
H*(—l). Suppose there is an open ball B of S(o°) (the points at infinity of
H"(—l)) such that BΓ(M(oo)=φ and for some end Γ of M, Γ(oo) is contained in

the boundary SB of B. Then M must lie in the totally geodesic hypersurface H of
H"(—l) which corresponds to SB (i.e., H(oo) = SB).

Proof. Let D+ (resp. D~) be the open domain of Hn(— 1) which bounds

(resp. 1

S(x) =

H and S(oo)\B (resp. H and B) in H"(- 1). Define a function δ on M by

dis^c-iK*, H) if x^D+f}M

— distf «(_!>(#> H) if x(=D~ Π M .

Then δ is smooth and satisfies

ΔMδ = tanh 8 (m— | Vδ | 2)

on M. In particular, we have

(2.2) ΔMδ^mδ

on M. Since M(oo) fϊ B=φ, we see by the maximum principle that δ^O on M.

Now suppose that δ would not vanish identically. Then by (2.2),

(2.3) δ>0

on M. Observe here that on Γ,

(2.4) 8(x)>c1e~mpω

for some positive constant c±. In fact, take a bounded smooth function f ( t )

and a sufficiently large number T such that

on Γτ = {#eΓ: p(x)^ T} (cf. Lemma 5 (iv)). Define a function F by F=
exp— (τwp+/op). Then F satisfies

(2.5) Δ,MF^mF

on Γr. After multiplying a positive constant with F, we may assume by (2.3)

that
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(2.6) F<8

on 9ΓΓ. Then it follows from (2.2), (2.5) and (2.6) that F<8 on ΓΓ. This

implies (2.4). However it contradicts the inequality (B—m) in Lemma 8. Thus

we have shown that δ identically vanishes on M, i.e., M=H. This completes

the proof of Lemma 11.

As for the first part (I) of Theorem A, it was proved in [11] when M satisfies
the conditions (A-ii) or (A-iii). Let us now suppose the condition (A-i) holds.
Then it follows from (1.6) that the sectional curvature Kt of M(t) for large t

has a lower estimate:

where KM : — lim sup | x \ \ aM (x) \ and η(t) goes to 0 as £->+°o. Since

1 — kκ2

M{(\~fc2

M)~1}2+l>0 by the assumption, we have

for large t, where ^ is a positive constant depending only on m and KM. Then
it turns out from the proof of Theorem 1.1 in [2] that for some divergent

sequence {tn}> — M converges to a minimal cone Σoo of RN, where the con-
*n

vergence is smooth in RN\{o}. Moreover the second fundamental form α«, of
the minimal submanifold Σoo 0*5(1) in the unit sphere 5(1) satisfies

(Cf. (1.6)). Thus we see from the Simons' theorem cited in the introduction
that a co vanishes, that is, Σoo consists of m-planes. Since M is assumed to have

one end, M must be totally geodesic (cf. the proof of Proposition 2 in Section

4).

Proof of Theorem B. Initially, we shall prove the first part (I) of the

theorem. Let M be a connected, noncompact Riemannian submanifold prop-

erly immersed into R". Suppose that M has one end and ρ*(x) \ aM \ (x) is bound-
ed on M for some constant 8 >2. Then by Lemma 7, there is an m-plane P

of R" such that disR»(x, P) goes to 0 as #^M->-|-oo. Therefore if M does not

coincide with P, we can find a point x^M and a sufficiently large ball B of R"
such that M is tangent to QB at x from the inside of B, which implies that

<aM(x, x), vBy^c<x, xy
for any tangent vector J\Γ(ΦO) of TXM, where c is a positive constant and VB

denotes the outer unit normal of QB. Thus it follows from Otsuki's lemma
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(cf. [13: p. 28]) that M must coincide with P if 2m>n and the sectional curva-
ture of M is nonpositive, or m=n — 1 and the scalar curvature of M is nonposi-
tive. This proves the first part of Theorem B.

The second part (II) of the theorem follows from the same argument as
above.

Finally, we shall prove the last part (III). Let M and D be as in Theorem
B (III). It suffices to prove the assertion in the case: m= n— 1=2, since for
any totally geodesic 3-subspace H3 of H"(— 1) which is tangent to a normal
vector of M, H3 Π D is a totally convex region of H3. Let us take a point o
of M as a fixed point. Set D(t)=D Π S(t), M(t)=M Π S(t) and ίP-exp, TVlf,
where exp, stands for the exponential map of H\— 1) at o. We claim that
M—H2. Suppose it would not be the case. Then it follows from the con-
vexity of D that there are positive constants cλ and c2 such that

(2.7)

for any ΐ^c2. We write VM for the unit inner normal of M. Let γ^
be an arc-length parametrization of M(t) (=dD(t)) and vt the inner unit normal
of M(t) in S(t). Then we have

for large £, becaue because ^V y / Ύ / , Vp>— — cothί, <VP, ^M/'^O an(i ^o ^M)"
converges to 1 as t-*+oo (cf. Lemma 5). Hence by (2.7) and Gauss-Bonnet
theorem, we obtain

On the other hand, since

* max \aM \
JfCO

JfCO

for some positive constant c3 (cf. Lemma 6), we have
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cze
l max \aM \ ^(1— 2c1)τr>0 .

This contradicts the assumption on | aM \ . Thus we have seen that M must
be totally geodesic. This completes the proof of Theorem B.

Proof of Theorem C. We can apply Lemma 9 to M. Let CHj (j= 1 , , k)
be as in Lemma 9, where k denotes the number of the ends of M. For each j,
we can find (n—nί) bounded holomorphic functions {hjta}a=lt...tn-m on CH*(— 1)
such that CHj={z^CHn(— 1): hjtl(z) = =hJtn_m(z)=Q}. Define a function

* «-l

P on M by P(x)= Π(Σl^y *I2(<*0) Then P is a bounded plurisubharmonic
y = l 05 = 1 '

function on Λf such that P(#) goes to 0 as xGΞM— »+oo (cf. Lemma 9). This
A

implies that P=0 on M, that is, Me U CHj. Since M is assumed to be con-

nected, M must be contained in some CHj. Thus we have shown that M is a
totally geodesic complex submanifold of CH"(— 1).

3. A gap theorem for noncompact Riemannian manifolds

In this section, we shall prove a supplementary result to the gap theorems
for noncompact Riemannian manifolds due to Greene and Wu [9: esp. The-
orem 4 and Theorem 5]. Our proof is more elementary than theirs, but the
basic idea is due to them.

Theorem 1. Let H be a complete Riemannian manifold with a pole o (i.e.,
exp0: T0H-*H induces a diffeomorphism between T0H and H). Set k(ί)=the
maximum of the sectional curvature of H on S(t) and k(t)=the minimum of the
sectional curvature of H on S(ί), where S(ΐ) denotes the geodesic sphere around o
of radius t. Suppose the dimension n of H is greater than or equal to 3. Then
H is isometric to H"(~a2) (α^O) if (and only if) either of the following two condi-
tions holds :

(3.1) k(t)^k(t)^— a2 , lim sup^"1 sinh at)\k(t)+(?) = 0 ,
/ >o*

(3.2) -c?^k(t)^$(t) lim inf (a'1 sinh atY(%(t)+a*) = 0 .
ί̂ .oo

Here we understand Hn(—a2)=R" and a"1 sinh at=t when a=Q.

Proof. For the sake of simplisity, we shall prove the theorem in case of
α=l. Define a metric gt on S(t) by gt(X, Y)=(sinh t)~2<X9 Y>. Then the
sectional curvature Kt(π) of gt for a plane π in TS(t) is given by

, X)Et(Yy Y)~

+sinh t cosh t(Et(X> X)+Et(Y, Y)) ,
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where {X, Y} is an orthonormal basis of π with respect to the induced metric

< , > on S(t) and we have set Et(X, Y)=ψp(X, F)-coth t<X, Y> (p=disff(o, *))•
Suppose first condition (3.1) holds. Then Et is positive semi-definite (cf.

Lemma 1) and hence we have

By (3.1), we can take a sequence {t^ifSlΛt». such that £(f , ) =(sinhf f )
f(Ar(f ,-)+!)

goes to 0 as f f - >-|-oo. This implies that

lim sup Voln-ι((S(ti), &,))^ωίl_1 ,
f .->oo

or equivalently

limsup VoU(^- ))^ i .
V»- κ ω,_1(sinh ί,)""1

On the other hand, we know that for any ί>0,

and if limsup Voζ.^S^/ω^.^sinh ί)"- !̂, then /f is isometric to /Γ(— 1)
/•j.00

(cf. [9: Lemma 2] or the proof of Proposition 2).

Suppose next that condition (3.2) holds. Since V2p(X, X)^
(cf. the proof of Lemma 5 in [9]), we see that

By the assumption, we can take a sequence {£t }t =ι,2,... such that £(*,•)— (sinhί,-)2-
(fe(ί ,-)+!) goes to 0 as /,-->+ °° Moreover it follows from Rauch comparison
theorem that a diffeomorphism φt from the unit sphere S*""^!) in T0H onto S(i)
defined by φt(v)= exρ0 tv satisfies: φ*gt^go> where g0 is the metric on S1*""^!)
of constant curvature 1. Then the next lemma and the above argument show

that H is isometric to Hn(—a2}.

Lemma 12. Let (Sn, g0) be the standard sphere of constant curvature 1 and

g a Riemannίan metric on Sn. Suppose the curvature of (Sn, g) is bounded above
by l-f£ for a constant 6: Q<^8<3, and suppose there is a diffeomorphism φ: Sn-*Sn

such that φ*g^*gQ. Then the injectivίty radius Iτq(Sn,g) of (S* , g) is greater

than or equal to 1π\/\-\-S—π.

Proof. It suffices to consider the case: Inj (5Λ, £)<τr/\/l-^£. Then there
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is a closed geodesic 7: [0, l]-*(S", g) with |γ |^= 1 such that the length Lg(j) is
equal to 2 Inj (Sn, g). Define a closed curve C: [0, l]^(Sn, g0) by C=φ-1oγ.

We consider first the case: the antipodal point — C(0) of C(0) does not lie on C.
Then for any ίe[0, /], let us denote by Ct(s) (O^s^l) the unique geodesic in

(S*> So) which joins C(0) to C(t). Set 7t==Φ°Ct and write for the (unique) lift
of Ύt to B(R0)c:Tγ(Q)Sn (i.e., exp«y«))07i=7/) such that 7/(0)=0 if it exists, where

B(R0) denotes the ball of T^S" with the maximum rank radius R0 (^τr/\/l + £)

and expy(0): Tyι0)S*-*(S*9 g) is the exponential map of (Sn, g) at 7(0). Observe
that if t is close to 0 or /, 7, exists and further if 7, exists and t' is close to t, then

so does 7f/. Since 7 is a closed geodesic with Lg(
rγ)=2In)(S", g), there is a

number f,e(0, /) such that 7/β exists and |?,β(ίβ) | =ar/\/l+£ for some ίβe(0, 1).
We may assume that £0e(0, £/], by changing the orientation of 7 if necessary.
Then we have

*.tJ U 7,J[W

Here we have applied Gauss lemma to the last inequality. Thus we have
obtained a lower estimate of Inj(5n, g): Inj (Sn, g)^2π/\/l-{-β—π. Now we
consider the case that for any t e[0, /], —C(t) lies on C. Take the number ^

such that —C(Q)=C(t1). Then for any *e[0, tj U &, /], we denote again by C

the unique geodesic joining C(0) to C(t) and by C^o (resp. C/1+0) the limit of Ct

as ί->/!— 0 (resp. ί-^+0). After connecting C f l_0 with Cίl+0 by a one-para-
meter family of geodesies joining C(0) to C(^) and using the same argument as
above, we have a lower estimate: Inj(Sn, £)^2τr\/l-f£ — π. This completes

the proof of Lemma 12.

Let us now show a slight generalization of the Greene and Wu's result in
the case of nonpositively curved manifolds.

Theorem 2. Let H be a complete, connected Riemannίan manifold of non-
positive curvature. Suppose the curvature KH satisfies

dis*(*, o)2KH(x) -* 0

as x^H-+o°. Then H is isometric to Euclidean space if H is simply connected

at infinity.

Here a noncompact manifold H is said to be simply connected at infinity if
for any compact set KdH, there is a compact set /? with KdK.<Σ.H and with
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H\f£ (connected and) simply connected.

Theorem 2 is an immediate consequence of Theorem 1 and the following

Lemma 13. Let H be a complete, connected and noncompact Riemannίan
manifold of nonpositive curvature. Suppose there is a compact set K of H such

that the fundamental group of a noncompact connected component ίϊ of H\K is

finite. Then H is simply connected.

Proof. Let π: S-+H be the universal covering of H and Ω a connected
component of π~\Ω). Then the restriction of the projection π to Ω gives rise
to a finite covering of Ω, and hence the boundary of β in H is compact. This

implies that Ω=^r"1(Ω) and further π: ίt-*H is a finite covering. Thus it turns

out that H must be simply connected.

REMARKS. (1) The proof of Theorem 1 indicates a more general version

of the theorem and some relations between the curvature and the volume growth

rate of the metric balls of H (cf. [12]).

(2) In Theorem B, we can delete the condition that M has one end if we

assume the sectional curvature of M is everywhere nonpositive (cf. Lemma 13

and the proof of Theorem B).

4. Surfaces stated in Remark (5) of Introduction and the proofs
of Propositions 1 and 2

In the first part of this section, we shall construct a nonpositively curved

surface Mg of genus g>l in T?3 such that it has one end and the second funda-

mental form decays in quadratic order. Our Mg can be obtained by gluing

two copies of the following surface :

We shall now explain the main parts 21? Σ2 and Σ3 of the above surface.

2ι is a part of a plane. Σ2 is a part of a surface Σ2—i(a(t)u(t)y KO+^M* &($))•
t&R, s&[soί fj, u(s)=sl-\-%—s}. Here a(i), b(f), v(s) and w(s) are given as

follows:
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WO. *«)

-δ \

1/2Z
δ l

Here δ: 0<S<1, a'(t)*+b'(t)*=l, and v'(s)2+w'(s)2=l. Finally Σ3 is given by
Σ3 = {(«κW/vT, * Λ/T, »W): ί e [ίβ, oo) (f. < N/TS), * e (>2, *J}. Here u(j)
and w(s) are defined as follows:

In the rest of this section, we shall prove Propositions 1 and 2.

Proof of Proposition 1. We shall use the Poincare model for H*(—l)
where it is viewed as

.,*,)€=#•:

with the metric

8 =

We set r (#)=|# I for #eM and write Z)r for the gradient of r on M with
the induced metric g0\M. Then ρ(x) = log(l+r(x))/(l—r(x)) and &(Z)r, Z)r) =
g(Vρ, Vp). Hence by the assumption on aM, we may assume that Dr never
vanishes on {x^M: r(x)^τ0} for some τ0>0. Define as before a smooth
vector field Vr on {x&M: r(x)^τ0} by Vr=Όr/g0(Dr9 Or). Let y($) be any
regular curve in {x^M: r(x)=τ0} and, for any s, denote by v(s; t) (r0^t^l)
the maximal integral curve of Vr such that v(s; τΛ)=ίy(ί). Then after direct
computations, we see that for any unit vector Z of .R*,

(4.1)

gtfv('i t)lθt,

-g0(dv(s; ί)/9ί, Z)
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where cλ is an absolute positive constant and | AM \ 0 stands for the length of the
second fundamental form AM of M with respect to gΰ. Moreover by the as-

sumption on <XM and Lemma 5 (iii), we have

(4.2) \AM\.£ —

for some positive constant c2. Hence it follows from (4.1) and (4.2) that
Qv(s\ ΐ)/dt and dv(s', 2)/9ί, respectively, have the limits V^s) and V2(s) as t-*l
and they satisfy

This implies that both VΊ(s) and V2(s) are continuous in s. Thus we have shown

thatM=M UM(oo) is a C^submanίfold immersed into B\ϊ)==Bn(l)\J S*~\l).

This completes the proof of Proposition 1 .

Proof of Proposition 2. Define a function Fa>r(t) (t^O) by

!

s

, .„- . ......... m- . >JΓl(U}dU ds
*'•*>- }, VoL.^ί.-Xii)) "" ~ }, JΓ\s)

Then it follows from the minimality of M and Lemma 1 that

1+ίt.ir

/β/BΔJfp
ί+F../op(log/.y op(«- I Vp 1 2)

snce

/Γ '(«¥«

= 1.

Therefore for any nonnegative subharmonic function/, we have
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S f
/ ̂  \ fΔMFa Γop

M, JM,

^{ fAMFat,op-Fa>r°pAMf

ftfr)) f ,
Sr'fr)) JjfCr/ '

This proves Proposition 2.
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