SOME ESTIMATES OF GREEN'S FUNCTIONS IN THE SHADOW

GEORGI POPOV

(Received July 30, 1985)

0. Introduction

The purpose of this work is to investigate the asymptotic behaviour of Green's functions in the so-called shadow for Laplace operator in an exterior domain. As a consequence a field scattered by a non-trapping obstacle will be examined at high frequencies.

These asymptotics have been studied by many authors since Keller's article [6] appeared. It was shown that for some convex obstacles the scattered field in the shadow should be as small as the exponent $\exp(-A|k|^{1/3})$, A>0, is when the frequency k tends to infinity. Such an estimate is believed to take place for a large class of domains but it has not been proved yet even for strictly convex obstacles except for some special cases. In [12], Ludwig constructed an asymptotic solution u_N for Helmholtz equation in the deep shadow which behaved like $\exp(-A|k|^{1/3})$, A>0, as $k\to\infty$, but he did not show that the difference between u_N and the exact solution could be estimated by the same exponent.

The asymptotics of Green's functions in the shadow were investigated in [1], [2], [3], [14]. Recently, an asymptotic solution of Green's functions in the deep shadow was obtained by Zayaev and Philippov [4] for planar strictly convex obstacles. Probably, the technique developed in [8], [9], [11] may be used to obtain the asymptotic expansions of Green's functions at high frequences for any strictly convex obstacle in \mathbb{R}^n , $n \ge 2$.

Let K be a compact in \mathbb{R}^n , $n \ge 2$, with a real analytic boundary Γ and let $\Omega = \mathbb{R}^n \setminus K$. The obstacle K is called non-trapping if for any R > 0 with $K \subset B_R = \{x \in \mathbb{R}^n; |x| \le R\}$ there exists $T_R > 0$ such that there are no generalized geodesics, (for definition see [13]), with length T_R within $\overline{\Omega} \cap B_R$. Denote by Δ_0 , respectively by Δ_D , the self-adjoint extension of the Laplace operator in \mathbb{R}^n , respectively in Ω with Dirichlet boundary conditions. Let

$$R_j^{\pm}(k) = (-\Delta_j - k^2)^{-1}$$

be the resolvent of the operator $-\Delta_j$, j=0, D in $\pm \text{Im}k>0$. Consider the

cut-off resolvents

$$(0.1) \quad \{k \in \mathbf{C}; \pm \operatorname{Im} k > 0\} \ni k \to R_{D,\chi}^{\pm}(k) = \chi R_{D}^{\pm}(k) \; \chi \in \mathcal{L}(L^{2}(\Omega), L^{2}(\Omega))$$

where $\chi \in C_{(0)}^{\infty}(\overline{\Omega}) = \{ \varphi \in C^{\infty}(\overline{\Omega}); \text{ supp} \varphi \text{ is compact} \}$ and $\chi(x)=1$ in a neighbourhood of Γ . Hereafter $\mathcal{L}(H_1, H_2)$ stands for the Banach space of bounded linear operators mapping from the Banach space H_1 into the Banach space H_2 and equipped with the usual norm. Obviously the functions (0.1) are analytic with respect to k in $\pm \text{Im} k > 0$.

Our first result is

Theorem 1. Suppose K non-trapping. Then the function (0.1) admits an analytic continuation in the region

$$U_{\alpha,\beta}^{\pm} = \{k \in \mathbb{C}; \mp \text{Im}k \leq \alpha |k|^{1/3} - \beta\}$$

for some positive constants α and β .

This theorem was proved for strictly convex obstacles with C^{∞} boundaries and for n=3 by Babich and Grigorieva [2]. Recently, in [8], [9], Bardos, Lebeau and Rauch showed that the region $U_{\alpha,\beta}^-$ is free of poles of the scattering matrix for any non-trapping obstacle with an analytic boundary, provided $n\geq 3$ odd. They investigated the generator B of the semi-group Z(t) introduced by Lax and Phillips in [7]. Using the propagation of the Gevrey singularities of the solutions of the mixed problem for the wave equation they proved the estimate $||B^jZ(t_0)||\leq AC^j(3j)!$ for some t_0 and for any $j\in \mathbb{Z}^+$. Then the region $U_{\alpha,\beta}^-$ does not contain poles of the scattering matrix according to the results in [7], §3. This result can be obtained also from Theorem 1 since the poles of the scattering matrix coincide with the poles of the meromorphic continuation of $R_{\overline{\nu},x}(k)$.

A result close to Theorem 1 was proved by Vainberg [18] and Rauch [16] when K is non-trapping and Γ is smooth. In this case the functions (0.1) have analytic continuations in $\{k \in C; \mp \text{Im } k \le \alpha \text{ Log } |k| - \beta\}$. It is an open problem if Theorem 1 can be extended to hold for any smooth, non-trapping obstacle.

Let us now consider the distribution kernel $G^+(k, x, y)$ $(G^-(k, x, y))$ of the resolvent $R_D^{\pm}(k)$ in $\pm \text{Im } k \ge 0$ which is usually called outgoing (incoming) Green's function. For any k > 0 the distribution $G^{\pm}(k, x, y)$ solves the problem

where $B u = u_{/\Gamma}$.

The point $x_0 \in \overline{\Omega}$ belongs to the shadow $Sh(y_0)$ of K with respect to a given point $y_0 \in \overline{\Omega}$ if there are no generalized geodesics starting at y_0 and passing through x_0 . Denote by d(x, y) the distance function in $\overline{\Omega}$, i.e.

 $d(x, y) = \inf \{ \text{length of } \gamma; \gamma \text{ is a path in } \overline{\Omega} \text{ connecting } x \text{ and } y \}$.

Denote
$$D_x^p = D_1^{p_1} \cdots D_n^{p_n}$$
, where $D_i = i^{-1} \partial/\partial x_i$ and $p = (p_1, \dots, p_n) \in \mathbb{Z}_+^n, \mathbb{Z}_+ = \{0, 1, \dots\}$.

Theorem 2. Suppose K non-trapping and $x_0 \in Sh(y_0)$. Then there exists a neighbourhood \mathcal{O} of (x_0, y_0) in $\overline{\Omega} \times \overline{\Omega}$ such that

$$(0.3) |D_k^m D_x^b D_y^q G^{\pm}(k, x, y)| \le C \exp(-A|k|^{1/3} \mp d(x, y) \operatorname{Im} k)$$

in $U_{\alpha,\beta}^{\pm} \times \mathcal{O}$ for any $(m, p, q) \in \mathbb{Z}_{+}^{2n+1}$ and for some positive constants α , β , A, and C = C(m, p, q).

Now consider the scattering of plane waves by the obstacle K. Let $\omega \in S^{n-1} = \{\theta \in \mathbb{R}^n; |\theta| = 1\}$ and denote $L_s = \{x \in \mathbb{R}^n; \langle x, \omega \rangle = s\}$ where $\langle x, \omega \rangle = \sum_{i=1}^n x_i \omega_i$. Consider the solution $u_s(k, x)$ of the problem

$$\begin{bmatrix} (\Delta + k^2) \, u_S(k, \, x) = 0 \\ u_{S/x \in \Gamma} = -e^{ik\langle x, \omega \rangle} / x \in \Gamma \\ u_S = O(r^{(1-n)/2}), \, \frac{d}{dr} \, u_S - iku_S = o(r^{(1-n)/2}) \quad \text{as} \quad r = |x| \to \infty . \end{bmatrix}$$

The point x_0 belongs to the shadow $Sh(K, \omega)$ of K with respect to a given direction ω if non of the generalized geodesics $\gamma(t)$, t>0, starting at L_s for some $s<\min_{\gamma\in\Gamma}\langle y, \omega\rangle$ and having ω as an initial direction passes through the point x_0 (t is the natural parameter on γ).

Theorem 3. Suppose K non-trapping and $x_0 \in Sh(K, \omega)$. Then there exists a neighbourhood \mathcal{O} of x_0 in $\overline{\Omega}$ such that

$$(0.4) |D_k^m D_x^p(u_S(k, x) + e^{ik\langle x, \omega \rangle})| \le C \exp(-A|k|^{1/3})$$

in $[k_0, \infty) \times \mathcal{O}$ for some A > 0 and any $k_0 > 0$, $m \ge 0$, $p \in \mathbb{Z}_+^n$.

An immediate consequence of (0.4) is the Kirchoff approximation of $\frac{\partial}{\partial \nu} u_{S/\Gamma}$ in the shadow, where ν is the outward normal to Γ .

An estimate close to (0.3) was obtained for strictly convex obstacles in [2]. Moreover, some asymptotic expansions in the shadow for x_0 and y_0 sufficiently close to Γ and n=2 were recently obtained by Zayaev and Philippov in [4]. Provided $x_0 \in Sh(y_0)$ and Γ smooth the Green's functions G^{\pm} were

estimated in [14] as follows

$$|G^{\pm}(k, x, y)| \le C_N k^{-N}$$

for any N>0 in $k \ge k_0 > 0$ and (x, y) in a neighbourhood of (x_0, y_0) .

The estimate (0.4) was predicted by Keller's geometrical theory of diffraction [5], [6], see also [12].

The method we use is close to that developed by Vainberg [18] (see also [16]) in order to prove uniform decay of the local energy for hyperbolic equations. The propagation of Gevrey singularities for the mixed problem studied in [10], [11] and the non-trapping condition allow us to compare the solutions of the mixed problem with suitably chosen solutions of the Cauchy problem for the wave equation. This is used in Proposition 1 to prove that the kernels of the cut-off resolvents $R_{D,x}^{\pm}(k)$ coincide with the Fourier transforms of some compactly supported distributions modulo exponentially decreasing functions, holomorphic in $U_{\sigma,\beta}^{\pm}$. The theorems follow from Proposition 1 by using once more the results on the propagation of Gevrey singularities for the mixed problem.

1. Estimates of Green's functions

In this section we prove theorems 1 and 2. Let us denote by $U_0(t)$ and U(t) the propagators of the Cauchy problem and the mixed problem respectively, i.e.

(1.1)
$$\begin{cases} (\partial_t^2 - \Delta) \ U_0(t) f(x) = 0 & \text{in } (t, x) \in \mathbb{R}^1 \times \mathbb{R}^n \\ U_0(0) f(x) = 0, & \partial_t U_0(0) f(x) = f(x), & f \in C_0(\mathbb{R}^n), \end{cases}$$

$$\begin{cases} (\partial_t^2 - \Delta) \ U(t) f(x) = 0 & \text{in } (t, x) \in \mathbb{R}^1 \times \Omega \\ B \ U(t) f(x) = 0 & \\ U(0) f(x) = 0, & \partial_t U(0) f(x) = f(x), & f \in C_0^{\infty}(\Omega). \end{cases}$$

Using standard energy estimates one can extend the operators $U_0(t)$ and U(t) by continuity in $L^2(\mathbf{R}^n)$ and in $L^2(\Omega)$ respectively. Recall that a function f(z) defined in a domain $M \subset \mathbf{R}^p$ belongs to the Gevrey class $G^s(M)$, $s \ge 1$, if for any compact $M_1 \subset M$ there exist some constants $A = A(M_1, f)$, $B = B(M_1, f)$ such that

$$\sup_{\mathbf{z} \in \mathbf{M}_1} |D^{\mathbf{a}} f(\mathbf{z})| \le A B^{|\mathbf{a}|} (\alpha!)^s$$

for any α , $|\alpha| = \alpha_1 + \cdots + \alpha_n$, $\alpha! = (\alpha_1!) \cdots (\alpha_n!)$.

Let $\chi \in G^3(\mathbb{R}^n)$, $\chi(x)=1$ in a neighbourhood of $B_R = \{x; x \leq R\}$ and $\chi(x)=0$ for $x \notin B_{R_1}$ for some $R_1 > R$. In view of the non-trapping condition there exists $T > R_1$ such that any generalized geodesic starting at B_{R_1} leaves it by

the time T. Then from the theorem about the propagation of Gevrey G^3 singularities proved by G. Lebeau [10] follows that the distribution kernel U(t, x, y) of U(t) is a G^3 function in

$$Q_0 = [\mathbf{R}^1 \setminus (-T, T)] \times (B_{R_1} \cap \overline{\Omega}) \times (B_{R_1} \cap \overline{\Omega}).$$

Therefore the estimate

$$(1.3) |D_t^j D_x^{\alpha} D_y^{\beta} U(t, x, y)| \leq A_Q C_Q^{j+|\alpha|+|\beta|} ((j+|\alpha|+|\beta|)!)^3$$

holds in $(t, x, y) \in Q$ for any compact $Q \subset Q_0$ and any j, α, β . Moreover the constants A_Q and C_Q do not depend on $(t, x, y) \in Q$ and on j, α, β .

Let $\zeta \in G^3(\mathbb{R}^{n+1})$, $\zeta = 1$ in a neighbourhood of the set $\{(t, x) \in \mathbb{R}^{n+1}; ||x| - t| < T\}$ and $\zeta(t, x) = 0$ if ||x| - t| > T + 1. Consider the operators

$$U_{\mathsf{x}}(t) = \chi \ U(t) \ \chi \ , \quad U_{\mathsf{0},\mathsf{x}}(t) = \chi \ U_{\mathsf{0}}(t) \ \chi \ , \quad E(t) = \zeta \ U(t) \ \chi \ .$$

Next we write the modified resolvent $R_{D,x}^+(k)$ in the form

(1.4)
$$R_{D,x}^+(k) = \chi \hat{E}(k) + Z_x(k)$$

where

$$\chi \hat{E}(k) = \int_0^\infty e^{ikt} \chi E(t) dt$$
, Im $k > 0$,

denotes the Fourier-Laplace transform of $\chi E \in L^1(\mathbb{R}^1, \mathcal{L}(L^2(\Omega), L^2(\Omega)))$. Note that the operator-valued function $\chi E(t)$ has a compact support with respect to t since $\chi(x) \zeta(t, x)$ has. Therefore $\chi \hat{E}(k)$ is an analytic function with values in the space $\mathcal{L}(L^2(\Omega), L^2(\Omega))$, while $Z_{\chi}(k)$ is analytic in $\{k \in \mathbb{C}; \text{ Im } k > 0\}$. Let $H^s(\Omega), s \geq 0, s \in \mathbb{Z}$, be the closure of $C^{\infty}_{(0)}(\Omega)$ with respect to the Sobolev norm $||u||_s^2 = \sum_{|\alpha| \leq s} ||D^{\alpha}u||_{L^2(\Omega)}^2$ and let $H^{-s}(\Omega)$ be the dual space of $H^s(\Omega)$. We shall use also the domain D^s of the operator $(-\Delta_D)^{s/2}$, $s \geq 0$, $s \in \mathbb{Z}$, equipped with the graph topology, where the operator $(-\Delta_D)^{s/2}$ is given by the functional calculas. Denote by D^{-s} the dual space of D^s . Theorems 1 and 2 will follow from

Proposition 1. The function $Z_x(k)$ can be extended as an analytic function

$$\{k \in \mathbb{C}; \text{ Im } k > 0\} \ni k \mapsto Z_{\mathsf{x}}(k) \in \mathcal{L}(H^{-s}(\Omega), H^{s}(\Omega))$$

for any $s \ge 0$, $s \in \mathbb{Z}$. Moreover, there exist some positive constants α and β such that $Z_{\kappa}(k)$ has an analytic continuation in $U_{\alpha,\beta}^+$ and

$$(1.5) \qquad ||D_k^m Z_{\mathsf{x}}(k)||_{\mathcal{L}(H^{-s},H^s)} \leq C \exp(-A|k|^{1/3} - T \operatorname{Im} K), \quad m \geq 0,$$

in $k \in U_{\alpha,\beta}^+$ for some positive constants A and C = C(m, s).

Proof. Let us denote $F(t) = [\partial_t^2 - \Delta, \zeta] U(t) \chi$, where $[F_1, F_2] = F_1 F_2 - F_2 F_1$

is the commutator of the operators F_1 and F_2 and ζ stands for the operator of multiplication by the function $\zeta(t, x)$. Then E(t) is the propagator of the problem

(1.6)
$$\begin{bmatrix} (\partial_t^2 - \Delta) E(t) f(x) = F(t) f(x) \\ BE(t) f = 0 \\ E(0) f(x) = 0, \quad \partial_t E(0) f(x) = \chi(x) f(x), \quad f \in L^2(\Omega). \end{bmatrix}$$

The distribution kernel F(t, x, y) of the operator F(t) belongs to the Gevrey class $G^3(\mathbb{R}^1 \times \overline{\Omega} \times \overline{\Omega})$ in view of the propagation of Gevrey singularities of U(t, x, y) and the definition of the functions $\zeta(t, x)$ and $\chi(x)$. Moreover

(1.7)
$$\sup F \subset \{(t, x, y) \in \mathbb{R}^1 \times \overline{\Omega} \times \overline{\Omega}; \\ |t| > T, T \le ||x| - t| \le T + 1, |y| \le \mathbb{R}_1 \}$$

in view of the finite propagation speed for the wave equation.

Let $\widetilde{F}(t, x, y)$ be a G^3 continuation of the function F(t, x, y) such that (1.7) continues to hold. Denote by $\widetilde{F}(t)$ the operator with a distribution kernel $\widetilde{F}(t, x, y)$ and consider the problem

(1.8)
$$\begin{cases} (\partial_t^2 - \Delta) \ W(t) f(x) = \widetilde{F}(t) f(x) \\ W(0) f(x) = \partial_t W(0) f(x) = 0, \quad f \in C_0^{\infty}(\mathbf{R}^n) \end{cases}$$

The distribution kernel W(t, x, y) of W(t) is a G^3 function since the function $\widetilde{F}(t, x, y)$ is such, $\widetilde{F}(t)=0$ in |t|< T and since

$$W(t) = \int_0^t U_0(s) \, \widetilde{F}(t-s) ds$$

Let $\psi \in C^{\infty}(\mathbb{R}^n)$, $\psi(x)=0$ in a neighbourhood of B_R and $\chi(x)=1$ on supp $(1-\psi)$. Denote

$$Q(t) f(x) = (\partial_t^2 - \Delta) (E(t) f(x) - \psi W(t) f(x))$$

= $(1 - \psi) F(t) f(x) + [\Delta, \psi] W(t) f(x)$

in $x \in \overline{\Omega}$ for $f \in C^{\infty}_{(0)}(\overline{\Omega})$. In view of (1.6), (1.7) and Duhamel's formula we obtain

$$E(t)f - \psi W(t)f = U(t) \chi f + \int_0^t U(t-s) \chi Q(s) f ds$$
, $f \in L^2(\Omega)$.

Multiplying the last equality by χ and performing Fourier-Laplace transform with respect to t we obtain

(1.9)
$$\chi \hat{E}(k) f = R_{D,x}^{+}(k) f + R_{D,x}^{+}(k) \hat{Q}(k) f + \psi \chi \hat{W}(k) f$$

for Im k>0. We are going to prove that the functions $\psi \chi \hat{W}(k)$ and $\hat{Q}(k)$ can

be continued analytically for Im $k \le 0$.

Let $\mathcal{H} \in C^{\infty}(\mathbf{R}^n)$, $\mathcal{H}(x) = 0$ for $x \in B_T$, $\mathcal{H}(x) = 1$ outside B_{T+1} and set

$$G(t) f(x) = (\partial_t^2 - \Delta) (W(t) f(x) - \mathcal{H}(x) E(t) f(x))$$

= $(1 - \mathcal{H}) \widetilde{F}(t) f(x) - [\Delta, \mathcal{H}] E(t) f(x)$.

The function $\mathbf{R}^1 \ni t \mapsto E(t) \in \mathcal{L}(D^{-s}, D^{-s+1})$ is bounded for any $s \in \mathbf{Z}$, $[\Delta, \mathcal{A}] \in \mathcal{L}(D^{-s+1}, H^{-s}(\mathbf{R}^n))$, and $H^{-s}(\Omega) \subset D^{-s}$ for any $s \ge 0$, $s \in \mathbf{Z}$. Then $\mathbf{R}^1 \ni t \mapsto [\Delta, \mathcal{A}] E(t)$ is a bounded function with values in $\mathcal{L}(H^{-s}(\Omega), H^{-s}(\mathbf{R}^n))$, $s \ge 0$, $s \in \mathbf{Z}$, and

$$(1.10) ||G(t)||_{\mathcal{L}(H^{-s}(\Omega), H^{-s}(\mathbf{R}^n))} \leq C$$

for any $t \in \mathbb{R}^1$.

In view of (1.6), (1.7), (1.10) and Duhamel's formula we write

$$W(t) f(x) = \mathcal{A}(x) E(t) f(x) + \int_0^t U_0(t-s) G(s) f(s) ds, f \in H^{-s}(\Omega).$$

Note that the support of the distribution kernel of G(t) is contained in $\{(t, x, y); |t| \le 2T+2, |x| \le T+1, |y| \le T+1\}$. Therefore

(1.11)
$$\chi_2 W(t) f = \chi_2 \int_0^{T_1} U_0(t-s) \chi_1 G(s) f ds, \quad f \in H^{-s}(\Omega),$$

for any $T_1 > 2T + 2$, where $\chi_1 \in C_0^{\infty}(\mathbb{R}^n)$, $\chi_1(x) = 1$ in B_{T+1} and $\chi_2 \in C_0^{\infty}(B_T)$.

Lemma 1. Let $\chi_2 \in C_0^{\infty}(B_T \backslash B_R)$. Then $\chi_2 U_0(t) \chi_1 \in \mathcal{L}(H^{-s}(\mathbf{R}^n), H^s(\Omega))$ for any $s \in \mathbf{R}^1$ and any $t \in [2T+3, \infty)$. Moreover the function

$$[2T+3, \infty) \ni t \mapsto \chi_2 U_0(t) \chi_1 \in \mathcal{L}(H^{-s}(\mathbf{R}^n), H^s(\Omega))$$

can be continued analytically in $\{t \in C; |t| > 2T + 3\}$ and

$$(1.12) ||D_t^j \chi_2 U_0(t) \chi_1||_{\mathcal{L}(H^{-s}(\mathbf{R}^n), H^s(\Omega))} \le A(j!) |t|^{-2}$$

for any $t \in \mathbb{C}$, |t| > 2T + 3, for $j \ge \max(0, 3 - n)$, and for some A which does not depend on j.

Proof. The conclusion is obvious when n is odd because of Huyghens principle. Suppose $n \ge 2$ is even, $j \ge 1$, and set $\mathcal{O}_T = \{(t, x, y) \in \mathbb{C}^{2n+1}; |t| > 2T + 3, |x| \le T, |y| \le T+1\}$. Then $U_0(t, x, y) = C_n(t^2 - |x-y|^2)^{-(n-1)/2}$ for any $(t, x, y) \in \mathcal{O}_T$ and for some constant C_n . Using Cauchy integral formula we obtain for any $j \ge 1$, α , β the estimate

$$|D_t^j D_x^{\alpha} D_y^{\beta} U_0(t, x, y)| \leq (2\pi)^{-2n-1} (j-1)! (\alpha+\beta)! 2^{|\alpha+\beta|} \max\{|D_t U_0(z, \tilde{x}, \tilde{y})|; \\ |z-t| = 1, |x-\tilde{x}|+|y-\tilde{y}| = 1/2\} \leq A_{n,\beta}(j!)|t|^{-2}$$

in \mathcal{O}_T which yields (1.12).

According to (1.10), (1.11) and lemma 1 the function

$$[T_2, \infty) \ni t \to \chi_2 W(t) \in \mathcal{L}(H^{-s}(\Omega), H^s(\Omega)), \quad T_2 = 2T_1 + 2,$$

can be continued as an analytical one in $\{t \in C; |t| > T_2\}$ for any $t \ge 0$ and any $\mathcal{X}_2 \in C_0^{\infty}(B_T \setminus B_R)$. Moreover the estimate

$$(1.13) ||D_i^j \chi_2 W(t)||_{\mathcal{L}(H^{-s},H^s)} \le A(3j)! |t|^{-2}$$

is valid in $|t| > T_2$ for any $j \ge \max(0, 3-n)$ and any $s \ge 0$, $s \in \mathbb{Z}$ where the constant A does not depend on j.

Now we can estimate the norm of the Fourier-Laplace transform of $\chi_2 W(t)$ in $\mathcal{L}(H^{-s}, H^s)$. Let Re $k \ge k_0 > 0$ for some $k_0 > 0$. Since W(t) = 0 in |t| < T we can write

$$\chi_2 \hat{W}(k) = k^{-1} \int_0^{T_2} e^{ikt} D_t \chi_2 W(t) dt + k^{-1} \int_{T_2}^{\infty} e^{ikt} D_t \chi_2 W(t) dt$$
.

Using (1.13) we can change the contour of integration in the second integral to obtain

$$\begin{split} \exp(C \, |k|^{1/3}) \, \chi_2 \hat{W}(k) &= \sum_{j=0}^{\infty} C^j \, |k|^{j/3} \, ^{-1} (j!)^{-1} \, \left[\int_0^{T_2} e^{ikt} \, D_t \chi_2 W(t) \, dt \right. \\ &+ e^{ikT_2} \int_0^{\infty} e^{-kt} \, \chi_2(D_t W) \, (T_2 + it) \, dt \right]. \end{split}$$

Integrating [j/3] times by parts in any member of the last sum we have

$$\exp(C |k|^{1/3}) \chi_2 \hat{W}(k) = \sum_{j=0}^{\infty} C^j k^{j/3 - \lfloor j/3 \rfloor - 1} (j!)^{-1} \\ \left[\int_0^{T_2} e^{ikt} \chi_2 D_t^{\lfloor j/3 \rfloor + 1} W(t) dt + e^{ikT_2} \int_0^{\infty} e^{-kt} \chi_2 (D_t^{\lfloor j/3 \rfloor + 1} W) (T_2 + it) dt \right]$$

where [m] denotes the integer part of $m \in \mathbb{R}^1_+$. Since $W \in \mathbb{G}^3$ and in view of (1.13) any member of the last sum can be estimated by

$$A_1\,C^j\,B_1^{j/3}\,e^{-B\operatorname{Im}k}\,,\quad B=\left\{egin{array}{ll} T & ext{when Im }k\!\geq\!0 \\ T_2 & ext{when Im }k\!<\!0 \end{array}
ight.$$

in $\{k \in C; \text{ Re } k \ge k_0 > 0\}$, where the constants A_1 and B_1 do not depend on $i \in \mathbb{Z}$. Provided that $C < B_1^{-1/3}$ we obtain

$$(1.14) ||\chi_2 \hat{W}(k)||_{\mathcal{L}(H^{-s}(\Omega), H^{s}(\Omega))} \le C_s \exp(-C |k|^{1/3} - B \operatorname{Im} k)$$

for Re $k \ge k_0 > 0$, where $C_s = A_1(1 - CB_1^{1/3})^{-1}$. Proceeding in the same way when Re $k \le -k_0 < 0$ we can continue $\chi_2 \hat{W}(k)$ analytically in $\mathbb{C} \setminus \{k; \text{ Im } k \le 0, | \text{Re } k | \le k_0 \}$ so that (1.14) holds in this region for any $k_0 > 0$. Then the Fourier-Laplace transform $\hat{Q}(k)$ of $Q(t) = (1 - \psi)F(t) + [\Delta, \psi] W(t)$ can be continued analytically in $\mathbb{C} \setminus [i0, -i\infty)$ and

$$(1.15) ||\hat{Q}(k)||_{\mathcal{L}(H^{-s}(\Omega), H^{s}(\Omega))} \le C_{s} \exp(-C|k|^{1/3} - B \operatorname{Im} k)$$

is fulfilled in $\mathbb{C}\setminus\{k; \operatorname{Im} k\leq 0, |\operatorname{Re} k|\leq k_0\}$ for any $k_0>0$.

Lemma 2. The function $C \ni k \mapsto \chi \hat{E}(k) \in \mathcal{L}(H^s(\Omega), H^s(\Omega))$ is analytic and

$$(1.16) ||\chi \hat{E}(k)||_{\mathcal{L}(H^{s}(\Omega), H^{s}(\Omega))} \le C(1+|k|)^{2s} e^{(2T+1)\max(0, -\operatorname{Im} k)}$$

for any $s \ge 0$, $s \in \mathbb{Z}$.

Proof. The assertion is obvious for t=0 since U(t) is a bounded function in \mathbb{R}^1 with values in $\mathcal{L}(L^2(\Omega), L^2(\Omega))$ and $\chi \zeta(t, x)=0$ for any t>2T+1. Suppose $s\geq 1$ and consider

(1.17)
$$\left[\begin{array}{ll} (\Delta-1) \chi \hat{E}(k) f = L(k) f - \chi f + ([\Delta, \chi] - (k^2+1) \chi) \hat{E}(k) f \\ \chi \hat{E}(k) f_{/\Gamma} = 0 \end{array} \right]$$

for $f \in H^s(\Omega)$. Here

$$L(k)f = -\int_0^\infty e^{ikt} \, \chi F(t) \, f dt \in H^s(\Omega)$$

and L(k) satisfies the estimate (1.16) for any $s \ge 0$ since the distribution kernel of the operator $\chi F(t)$ is smooth and $\operatorname{supp}(\chi F) \subset \{|x| \le R_1, |y| \le R_1, |t| < 2T + 1\}$ in view of (1.7). Then

$$||\chi\hat{E}(k)f||_{s} \le C((1+|k|^{2})||\chi_{1}\hat{E}(k)f||_{s-1}+e^{(2T+1)\max(0,-\operatorname{Im}k)}||f||_{s})$$

 $f \in H^s(\Omega)$, for some $\chi_1 \in C^{\infty}_{(0)}(\overline{\Omega})$, $\chi_1 = 1$ in a neighbourhood of supp(χ) which proves (1.16) by induction. Differentiating (1.17) with respect to k and using (1.16) it is easy to prove that $\frac{d}{dk} \chi \hat{E}(k) \in \mathcal{L}(H^s(\Omega), H^s(\Omega))$ for any $s \geq 0$, $s \in \mathbb{Z}$. Thus $\chi \hat{E}(k)$ is an analytic function.

According to (1.15) the operator $I+\hat{Q}(k)$: $H^s(\Omega)\mapsto H^s(\Omega)$ is invertable for any $k\in U^+_{\alpha,\beta}$ and for some α , β . Then $R^+_{D,x}(k)$ is an analytic function in $U^+_{\alpha,\beta}$ with values in $\mathcal{L}(H^s(\Omega), H^s(\Omega))$ and satisfies (1.16) in view of (1.9) and Lemma 2. Now, (1.5) follows for m=0 from (1.9), (1.14) and (1.15), choosing α and β small enough. Using Cauchy integral formula we obtain (1.5) for any $m\in \mathbb{Z}_+$.

To prove theorem 2 we choose some neighbourhoods \mathcal{O}_1 and \mathcal{O}_2 of x_0 , respectively y_0 , $\mathcal{O}_j \subset \overline{\Omega}$, so that none of the generalized geodesics starting at \mathcal{O}_2 passes through \mathcal{O}_1 . Set $\mathcal{O}=\mathcal{O}_1\times\mathcal{O}_2$ and suppose that $\mathcal{O}_j\subset B_R$ and $T>\sup\{d(x,y); (x,y)\in\mathcal{O}\}$. According to proposition 1 we have

$$G^{+}(k, x, y) = \int_{0}^{\infty} e^{ikt} \zeta(t, x) U(t, x, y) dt + Z_{x}(k, x, y)$$

where

$$|D_{k}^{m}D_{x}^{p}D_{y}^{q}Z_{x}(k, x, y)| = |\langle D_{x}^{p} \delta_{x}, D_{k}^{m} Z_{x}(k) D_{y}^{q} \delta_{y} \rangle| \leq ||D_{k}^{m}Z_{x}(k)||_{\mathcal{L}(H^{-s}, H^{s})} ||\delta_{x}||_{p+q-s}^{2}$$

$$\leq C \exp(-A|k|^{1/3} - T \operatorname{Im} k) \leq C \exp(-A_{0}|k|^{1/3} - d(x, y) \operatorname{Im} k)$$

in $U_{\alpha,\beta}^+ \times \mathcal{O}$ for some $\alpha > 0$ and $A_0 > 0$. Here $\langle \delta_x, \varphi \rangle = \varphi(x)$ for any $\varphi \in C_{(0)}^{\infty}(\overline{\Omega})$ and s > n + p + q. On the other hand $\zeta(t, x)$ U(t, x, y) is a G^3 function in $\mathbb{R}^1 \times \mathcal{O}$ with a compact support with respect to t. Moreover, U(t, x, y) = 0 for |t| < d(x, y) since the propagation speed for the solutions of the mixed problem for the wave equation equals one (see [17]). Now the arguments used in the proof of (1.14) yield (0.3).

Denote by $e(\lambda, x, y)$ the spectral function of the operator $-\Delta_D$ given as the distribution kernel of the spectral projector E_{λ} of $-\Delta_D$. Since $E_{\lambda} \rightarrow I$ in $L^2(\Omega)$ as $\lambda \rightarrow \infty$ and

$$\frac{de}{d\lambda}(\lambda^2, x, y) = (2\pi i)^{-1} \{ G^+(\lambda, x, y) - G^-(\lambda, x, y) \} \quad \text{for } x \neq y, \lambda > 0,$$

it is easy to obtain from theorem 2 the following

Corollary 1. Suppote K non-trapping and $x_0 \in Sh(y_0)$. Then

$$|D_{\lambda}^{m} D_{x}^{p} D_{y}^{q} e(\lambda, x, y)| \leq C \exp(-A \lambda^{1/6}), \quad A > 0,$$

in $[\lambda_0, \infty) \times \mathcal{O}$ for $(m, p, q) \in \mathbb{Z}_+^{2n+1}, \lambda_0 > 0$.

2. Asymptotics of the scattered waves

In this section we prove theorem 3. Translating the origin to a given point $z_0 \in \mathbb{R}^n$ the function $u_s(k, x)$ is multiplied by $\exp(ik\langle z_0, \omega \rangle)$. Thus we can suppose that $K \subset B_R(x_0) = \{x \in \mathbb{R}^n; |x-x_0| \leq R\}$ and $\langle x, \omega \rangle > 0$ for any $x \in B_{R+1}(x_0)$. Consider the function

$$v(k, x) = u_s(k, x) + \varphi(x) e^{ik\langle x, \omega \rangle}$$

where $\varphi \in G^3(B_{R+1}(x_0))$ and $\varphi(x)=1$ on $B_R(x_0)$, supp $\varphi \subset B_{R+1}(x_0)$. Then

$$\begin{bmatrix} (\Delta + k^2) \, v(k, \, x) = [\Delta, \, \varphi] \, e^{ik\langle x, \omega \rangle} \\ v(k, \, x)_{/\Gamma} = 0 \end{bmatrix}$$

and v(k, x) satisfies the outgoing Sommerfeld's condition at infinity. Therefore

$$egin{aligned} v(k,\,x) &= R_{D,\,\mathrm{X}}^+(k) \left(\left[\Delta,\,arphi
ight] e^{ik\langle x,\,oldsymbol{\omega}
angle}
ight) \ &= Z_{\mathrm{X}}(k) \left(\left[\Delta,\,arphi
ight] e^{ik\langle x,\,oldsymbol{\omega}
angle}
ight) + \chi \hat{E}(k) \left(\left[\Delta,\,arphi
ight] e^{ik\langle x,\,oldsymbol{\omega}
angle}
ight) \end{aligned}$$

for $x \in B_R(x_0)$ where $\chi \in G^3(\mathbf{R}^n)$, $\chi = 1$ on $B_{R+1}(x_0)$, $\operatorname{supp}(\chi) \subset B_{R+2}(x_0)$.

The first term of the last equality is estimated by proposition 1. The second one is equal to the Fourier-Laplace transform of the distribution

$$v_1(t, x) = \chi(x) \int_{-\infty}^{t} \zeta(t-s, x) \ U(t-s) [\Delta, \varphi] \ \delta(s-\langle x, \omega \rangle) \ ds$$

since $v_2(s, y) = [\Delta, \varphi] \delta(s - \langle y, \omega \rangle)$ vanishes for s < 0. The distribution v_1 is well-defined since v_2 has a compact support, $v_2 \in D^{-m}$ for m > 3 and $\zeta(t-s)$ U(t-s) is a continuous function with valued in $\mathcal{L}(D^{-m}, D^{-m})$.

We are going to prove that there exists a neighbourhood \mathcal{O} of x_0 such that v_1 is a G^3 function in $\mathbb{R}^1 \times \mathcal{O}$.

Let us write $v_1=Q(v_2)$ where the operator Q has a distribution kernel $Q(t, s, x, y)=\chi(x) \zeta(t-s) H(t-s) U(t, x, y) \chi(y)$ and H(s)=0 for $s \leq 0$, H(s)=1 for s>0. We shall evaluate the Gevrey G^3 wave front $SS^3(v_1) \subset SS^3(Q)^1 \circ SS^3(v_2)$. We have

$$SS^3(v_2) \subset \{(s, y; \tau, \eta); s = \langle y, \omega \rangle > 0, y \notin B_R(x_0), \eta = -\tau \omega, \tau \neq 0\}$$
.

Moreover, theorem 1.4 in [10] yields

$$SS^{3}(Q)^{1} \subset \{(\phi^{t-s}(s, y, \tau, \eta); s, y, \tau, \eta); s \leq t, \tau \neq 0\} \cup \{(0, y, \tau, \xi; 0, y, \tau, \eta)\}$$

where $\phi^t(s, y, \tau, \eta) = (t+s, x^t(s, y, \tau, \eta), \tau, \xi^t(s, y, \tau, \eta))$ is the generalized bicharacteristic starting at (s, y, τ, η) and t is the natural parameter on it. Thus we have

$$SS^3(v_1) \subset \{(t, x^{t-s}(s, y, \tau, -\tau\omega), \tau, \xi); \tau \neq 0, 0 < s = \langle y, \omega \rangle \leq t, y \notin B_R(x_0)\}$$
.

Note that the initial codirection of the generalized geodesic $\gamma(t) = x^t(s, y, \tau, \eta)$ is $\frac{d\gamma}{dt}(0) = -\eta/\tau$ for any $y \in \Omega$. Then

$$SS^3(v_1) \subset \{(t, \gamma(t-s), \tau, \xi); \gamma \text{ is a generalized geodesic with } \gamma(0) \notin B_R(x_0), \frac{d\gamma}{dt}(0) = \omega, 0 < s = \langle \gamma(0), \omega \rangle \leq t \}$$
.

Moreover $\gamma(t) \notin B_R(x_0)$ for any $t \ge 0$ when $\gamma(0) \notin B_R(x_0)$ and $\langle \gamma(0), \omega \rangle \ge \langle x_0, \omega \rangle$ while $\gamma(t-s) = \gamma_1(t)$, $\gamma_1(t)$ is the generalized geodesic with initial data $\gamma_1(0) = \gamma(0) - s \omega \in L_0$, $\frac{d\gamma_1}{dt}(0) = \omega$, when $\gamma(0) \notin B_R(x_0)$ and $\langle \gamma(0), \omega \rangle \le \langle x_0, \omega \rangle$. Therefore

(sing supp
$$_{G^3}(v_1)) \cap B_R(x_0) \subset \{x = \gamma(t); t > 0 \text{ and } \gamma \text{ is a generalized}$$

geodesic with $\gamma(0) \in L_0$, $\frac{d\gamma}{dt}(0) = \omega \}$.

Since $x_0 \in Sh(K, \omega)$ we can choose a neighbourhood \mathcal{O} of x_0 such that (sing $\sup_{C^3}(v_1)) \cap \mathcal{O} = \phi$ which proves theorem 3 since $\sup_{C^3}(v_1)$ is compact.

References

G. Popov

- [1] V. Babich and V. Buldyrev: Asymptotic methods in short wave diffraction problems, Nauka, Moscow, 1972 (in Russian).
- [2] V. Babich and N. Grigorieva: Asymptotical properties of solutions of some three dimensional problems, Notes Sci. Sem. Steklov Math. Inst. (Leningrad Branch) 127 (1975), 20-78 (in Russian).
- [3] V. Philippov: On the exact justification of the short wave approximation in a shadow region, Notes Sci. Sem. Steklov Math. Inst. 34 (1973), 142-206 (in Russisian).
- [4] A. Zayaev and V. Philippov: On exact justification of Friedlander-Keller formula, Notes Sci. Sem. Steklov Math. Inst. 140 (1984), 49-60 (in Russian).
- [5] J. Keller: Geometrical theory of diffraction, J. Optical Soc. Amer. 58 (1962), 116–130.
- [6] J. Keller: Diffraction by a convex cylinder, Trans. IRE, Ant. and Prop. 4, 3, (1956).
- [7] P. Lax and R. Phillips: Scattering theory, Academic Press, 1967.
- [8] C. Bardos, G. Lebeau, J. Rauch: Estimation sur les poles de la diffusion, Methodes semi-classiques en mecanique quantique, Publ. de l'Universite de Nantes, (1985), 71.
- [9] C. Bardos, G. Lebeau, J. Rauch: Estimation sur les poles de la diffusion, preprint.
- [10] G. Lebeau: Propagation des singularités Gevrey pour le probleme de Dirichlet, Advances in microlocal analysis, NATO ASI Series, Ser. C, Math. Phys. Sci. 168 (1985), 203-223.
- [11] G. Lebeau: Regularité Gevrey 3 pour la diffraction, Comm. Partial Differential Equations 9 (1984), 1437-1497.
- [12] D. Ludwig: Uniform asymptotic expansion of the field scattered by a convex object at high frequencies, Comm. Pure Appl. Math. 20 (1967), 103-138.
- [13] R. Melrose and J. Sjöstrand: Singularities of boundary value problems, I, II, Comm. Pure Appl. Math. 31 (1978), 593-617 and 35 (1982), 129-158.
- [14] G. Popov: Spectral asymptotics for elliptic second order differential operators, J. Math. Kyoto Univ. 25 (1985), 659-681.
- [15] G. Popov and M. Shubin: Complete asymptotic expansion of the spectral function for elliptic second order differential operators in \mathbb{R}^n , Functional Anal. i Pril. 17 (1983), n°3, 37-45 (in Russian).
- [16] J. Rauch: Asymptotic behaviour of solutions to hyperbolic partial differential equations with zero speeds, Comm. Pure Appl. Math. 31 (1978), 431-480.
- [17] J. Rauch: The leading wavefront for hyperbolic mixed problems, Bull. Soc. Roy. Sci. Liege 46 (1977), 156-161.
- [18] B. Vainberg: On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as $t\to\infty$ of solutions of nonstationary problems, Russian Math. Surveys 30 (1975), 1-53.

Institute of Mathematics Bulgarian Academy of Sciences 1090, Sofia, Bulgaria