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Introduction. In the recent paper [18] the second author has constructed
the fundamental solution of the Cauchy problem for hyperbolic equations
in Gevrey classes, and investigated the propagation of wave front sets of their
solutions in Gevrey classes by assuming the constant multiplicities of their
characteristic roots. The purpose of the present paper is to study the propa-
gation of wave front sets in Gevrey classes for solutions of hyperbolic equa-
tions with characteristic roots of variable multiplicities and to give a similar
result to the one for the C~-case obtained by Kumano-go and the second author
[10]. Main results of the present paper are announced in [15] and [19].

Let L be an I X/ hyperbolic system of the form

Mty X, D) 0
(1) L= D,— +(bjk(t, Xa Dz))
0 7\'I(t, X; Dx)

on [0, T1xR;
with real symbols A (2, x, &) in G®([0, T]; Stw) and symbols b;(¢, », ) in
GY([0, T]; S¢w) (0=<o<1/k). Here, for k>1 and a real m we denote by

G®([0, T]; S&w) a class of symbols p(¢, x, &) of pseudo-differential operators
satisfying for any multi-indices &, 8 and non-negative integer 7y

(2) |07 0F 08 p(t, x, E)| SCM~USIHPIEN(r] B1 oy 1)<CE Y12
for (t, x, £)e[0, TIXR:XR¢,

with constants C and M (>0) independent of «, B and ¢. Throughout the
present paper we assume the symbols A; are positively homogeneous in £ (for
|| =1), that is, A satisfy

7\'J'(ta Xy GE) = 07\'i(t’ X E) fOT egl and IEI gl .

*) The first author was partially supported by Grant-in-Aid for Scientific Research (No. 5974004),
Ministry of Education.
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Let Q::‘z)/ denote a class of ultradistributions defined by [6], that is,

xy .1 x)/
D2 = proj lim Dz .

240

Here, for £>0, Q(I_‘z); is a dual space of the Hilbert space
Y = {u(x) EL?; exp(&CEY) d(E) e L%}

and #(£) is the Fourier transform of u(x) (see [20]). If uE.@rzv and x,=x we
denote by WF¢(.)(#) the wave front set of # in the Gevrey class of order
defined as follows:

DEFINITION.  Let (2% &) be a point in T*R)\0 and let DY, The
point (x,” £°) does not belong to WF()(u) for #; =« if there exists a symbol
a(x, £) in S%w (see Definition 1.1-ii) in Section 1) with a(x’, £°)=0 (6=1)
such that f(x)=a(X, D,)u belongs to y*?(R}), that is, it satisfies

|07 f(x)| =SCM"™ alt  forall x=R;.

This definition is equivalent to that of Hormander [2] if u&’ (see Theo-

rem 3 of [20]).
Consider the Cauchy problem

(7) LU =0 ([0, T]), U(0)=GeIY,

for L of the form (1) with A ;€G®([0, T]; Stw) and b;,€G*([0, T]; Sw)
for 0<o<1/x. Then we obtain the following:

Theorem 1 (cf. Theorem 3.4 of [10]). Assume \;(t, x, £) are homogeneous
for |E|=1. Then, for any izzitial data G EQYJ’ there exists a unique solution
U(2) of (7) in B~([0, T1; D7) and it satisfies

(8) WFeup(U®))CT(#; WFep)(G) (0<t=T)
for any «, satisfying k<x,<l1/o.

The theorem of this type in the C”-case was given in [10] and [11]. In
(8) the set I'(ty; V), for a fixed £,&(0, T] and a conic set V' in TH*R:)\O, is
defined as follows: First, we define I'y(¢,; V) (6>0, »=0, 1, 2, .--) as the
conic hull of the set of end points (at t=#,) of all &-admissible trajectories of,
at most, step » issuing from (y, »)EV for large |y|. Then, the set I'(¢; V)
is defined by

©) Pl V)= 1, § T3 V),
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where V, denotes an &-conic neighborhood of V" defined by

Ve=A{lx, &); lx—yl=¢, |E/|E|—n/ln] | =€ (3, N EV}.

Roughly speaking, the &-admissible trajectory is an &-appoximation of the
so-called broken null-bicharacteristic flow (see its precise definition in §4).
The estimate (8) seems to be loose apparently because the limiting curve of
&-admissible trajectories (€ | 0) is not always broken null-bicharacteristic flow
(see last sections in [4] and [5]). However, a result about the optimality of
(8) was shown by the first author [14].

Next, we consider an application of Theorem 1 to the Cauchy problem

{Lu =0 (0<t<T),

10 . X}/ .
(19 Ju(0) = g, €D (j=0, -, m—1)

for a single hyperbolic operator

(11) L=D+S) 3} a;.(t, x)D?Di on [0, T]xR:

30 laiSm-j
with coefficients a; ,(¢, x) in a Gevrey class y® ([0, T]X R}), that is, they satisfy
(0708 a; (¢, ) | SCM~+BD(Rl o) on [0, T]xR:.

As shown in [18] the problem (10) can be reduced to the equivalent Cauchy
problem (7) with ¢=(r—q)/r and is y®-well-posed for 1=<k<<l/o (cf. [12])
if there exist regularly hyperbolic differential operators L, L, ---, L, with
coefficients in y®([0, 71X R}) such that L has a form

(12) L =L Ly L+ Sat X, D,) Di
j=0

with a;(¢, ®, &) in G®([0, T]; S%s~’) and 1<¢=<r. From this reduction it
follows that for any t<(0, T']

(13)  WFau@@®)CT (5 U WFewy(g))  for «Si<rir—g).

In the present paper, we shall consider the reduction to an equivalent problem
(7) from the problem (10) for a hyperbolic operator of more general form than
(12), which is inspired by the work of Komatsu [7] (see (5.1) and Theorem 2
in §5). In the case that the maximal multiplicity of characteristic roots of L
is at most three, we also clarify the conditions of lower order terms of (11) in
order that the problem (10) is reduced to an equivalent problem (7) of a hyper-
bolic system (1) with a given o (<1) (see Theorem 3 in §5). We remark that
the hyperbolic operator L has always the form (12) with g=1 if characteristic
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roots of L belong to G®([0, T7; St) and we admit L; to be pseudo-differential
cperators with respect to x.

For the hyperbolic operator L without any conditions on lower order terms
and without assuming the smoothness of characteristic roots, Wakabayashi [21]
has recently investigated the propagation of wave front sets for solutions of (10)
in Gevrey class of order «; satisfying x=<x,<<r/(r—1), where 7 is the maximal
multiplicity of characteristic roots. The method of [21] is based on the
construction of a parametrix of L, as in Bronshtein [1], and on the notion of
“flows” K7 in T*(R}X R%) emanating from a point 2€T*(R} X R};). When
characteristic roots of hyperbolic operator L are smooth, that is, they belong
to G®([0, T']; Stw), for any ,&(0, T'] and any closed set V in T*(R?), it follows
that

(14) Tt V)= {=(K:N{t = t}); 22" X(V)N {t = 0} Np~Y(O)} .

Here p=p(t, x, 7, £) is the principal symbol of L and 7 is the natural projec-
tion from T*(RiXR};) to T*(R}) (see Theorem 4 in §6, cf. Theorem 4.4 in
[22]). So, our result (8) is the same as the one in [21] in the case that charac-
teristic roots of L are smooth.

The plan of the present paper is as follows: In §§1+4 we prove Theo-
rem 1. §§1-3 are devoted to preparatory lemmas and in §4 we complete the
proof of Theorem 1 with the precise definition of I'(#; V). In §5, we show
a method of the reduction of the form (1), and give, as an application of Theo-
rem 1, a result on the propagation of wave front sets for the Cauchy problem
(10). In §6 we show the equivalence of the estimate given by the flows K7
of Wakabayashi [21], [22] and the one given by the set I'(y; V) of Kumano-go,
Taniguchi and Tozaki [10], [11].

More precisely, we shall state the main idea of §1-3. In §1 we separate
the symbol of the multi-product of Fourier integral operators to the sum of a
main symbol and a regularizer and give the precise estimate for the part of
the regularizer. 'To obtain this estimate we represent each factor of the multi-
product to the sum of symbols depending on a parameter . Then, we can
use the similar discussions as in [17]. In §2 we estimate the part of the main
symbol of the multi-product of Fourier integral operators which is given by
the oscillatory integral of the multiple symbol. In [18], to estimate this we
transform the multi-product of Fourier integral operators to the multi-product
of pseudo-differential operators multiplied by a Fourier integral operator,
using the decomposition Jy;«RI; of the identity operator. In the present paper,
since we estimate main symbols represented by oscillatory integrals of multiple
symbols we use the transformation of oscillatory integrals which corresponds
to the one by means of the decomposition I=1I4RI;. In §3, we give a method
of the integration by parts for the symbol represented by an iterated integral



ProracATION OF WAVE FRONT SETS 769

of Volterra type. To show the corresponding estimate for the C>-case, in
[10] we have estimated the iterated integral after we have simplified the multi-
product of Fourier integral operators to one Fourier integral operator with
multi-phase. But in the Gevrey case we can not employ this method since
we use the equations of the critical points X}{=Vp,(t;_,, t;; X7, i), Ei=
V. bty tiw; X4, EitY, (j=1, -, v) to obtain the simplified symbol of a
(»+1)-multi-product and we have no uniform estimate in the Gevrey class for
the solutions of the equations of the critical points. Here the uniform estimate
means the estimate independent of ». So, we use the integration by parts
for the iterated integral of Volterra type before simplifying the multiple symbol.
It should be noted that to perform this method we must treat the oscillatory
integral of the multiple symbol instead of the multi-product of Fourier integral
operators and so we estimate in §2 the simplified symbol derived from the
multiple symbol.

1. Fourier integral operators in Gevrey classes

First we recall symbol classes introduced in [18] and [20], which are sub-
classes of a symbol class S™ studied in [9]. In what follows we tacitly use the
notation in [9] and [20] and assume that the constant « is always larger than 1.

DeriNiTION 1.1. i) We say that a symbol p(x, £) (€S™) belongs to a
class S&, « if for any multi-index « there exists a constant C, such that

(L.1) [ & (x, £)| S CM 1P BIKE1!

holds for a constant M independent of & and B.
ii) We say that a symbol p(x, &) (€S™) belongs to a class S, if

(12) g;(x’ E)' <CM- (I"‘I+lﬁ|)(a| Bl)"<§>m %]

holds for constants C and M independent of & and 3.
ili) We say that a symbol p(x, &) (€S~) belongs to a class R if for
any « there exists a constant C, such that

(1.3) | P& (%, &) | =C,M™P181* exp(—ECEX™)
holds for positive constants M/ and & independent of & and g.
ReMARK. The inequality (1.3) is equivalent to the condition that
| P, E)| < C,M-PI+M) (@] N1y EY™1*1-N
holds for any integer N with a constant M independent of N, a and B.

Following Definition 1.1 of [18], for a 7&[0, 1) we define a class P (7)
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of phase functions of Fourier integral operators as follows: We say that a
real valued function ¢(x, &) is a phase function belonging to a class P (7) if

J (3, §)= (@, £)—x-E satisfeds
[m]§,§2| ]ggg(x’ E) | /<E>l‘l"‘l _S_T ,

| J@ (e, &) [ S 7M1 (] gIYCEN 1!

for a constant M independent of & and 8. We put .CPG(,()=OSLTJ<I_‘Z"(;(,‘)(T).

(1.4)

Let ¢(x, &) be a phase function in Pg(y. Then, a Fourier integral operator
Py=ps(X, D,) with phase function ¢(x, £) and a symbol o(Ps)=p(x, &) in
S¢,e 1s defined by

(1.5) P¢u(x):O,—Sge‘(‘i’("f)"‘"E’ p(x, B u(x')dx'dE  for ueS,

where d&=(2z)""dE, & is the Schwartz space of rapidly decreasing functions
on R; and the right hand side of (1.5) is the oscillatory integral defined in Chap-
ter 1 of [9]. We denote the set of such Fourier integral operators by S, «,¢.
If p=ux-£, the set 8¢ )4 is the one of pseudo-differential operators. In
this case we write it simply by SZ «). Since S¢w and Rg are subclasses of
S?% ), we similarly denote by 8%, and Rg,+ the corresponding classes of
Fourier integral operators, which are represented by the formula (1.5). We can
identify Rgwy,6 with the set Ry of pseudo-differential operators because it
follows from (1.4) that if p(x, &) belongs to R then &/*® p(x, £) so does.
Here and in what follows, we use the same notation R, for the class of pseudo-
differential operators with symbols in Rgy because no confusion occurs be-
tween the class of symbols and the one of operators.
As proved in [20] we have

Proposition 1.2 (see Theorem 2 and Lemma 2.1 of [20]).

i) Let p(x, £) belong to SEu ) and let ¢(x, &) belong to Pgw). Then the
Fourier integral operator Py=p4+(X, D,) maps .@(;2), into itself.

ii) Let R be a pseudo-differential operator in R, and let u belong to .@fz”.
Then we have Ruc y"(Ry).

Following §2 of [18] we denote for ¢ € P

’(’?'(n)((l’) = {Ptb(X’ D:) = P‘g’(Xa D;)‘l‘ﬁd:(X, Dx) >
Pa(xv E)ESZ'(K) ’ ﬁ(‘% E)egzc(x)} )

that is, symbolically L& (p)=S58%w, s+ Réw ¢ In what follows we often say
that p°(x, £) is a main symbol of pg(X, D,). If ¢(x, E)=x-£ we denote
L’S(‘)(gb) Slmply by L'c';'(,‘).
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For a sequence {¢,;} of phase functions ¢;(x, £)EPs(;), we consider
multi-products

(1~6) Pl,rb1 Pz,¢2“'P\.+1,¢

v+1

of Fourier integral operators P; 4. in Lg(¢;) with ¢=0. As in §2 of [18] we

assume the following:
(A-1) If we set J;(x, E)=¢(x, E)—x-&, {J;/7;} is bounded in S& and an

inequality 217 ;=7° holds for a small constant 7°.
(A-2) If we write P;4.=p;4.(X, D,)=p5+,(X, D,)+D;¢,(X, D,)ESC(0,4,+

Rew,e; the set {pj(x, £)} is bounded in SG and the set {p(x, &)} is bounded
in Rge-

ReMarRk. Concerning the bounded set in S%, or Rgq), see remarks
after Definition 1.1 in [18].

We assume 7° in (A-1) small enough so that Proposition 2.4 in [18] and
Lemmas 1.4-1.6 below hold. Then, a multi-product ®,,,=®,,,(», &)=¢,#
Pt Hpyii(x, £) of phase functions ¢y(w, ), Py, E), ***, Pyri(%, E) is defined by

q>w+1(xa E) = ,%1 (d)j(X\j;-ly Ev')—X{'Ei)-!—qu(X”w E) (X3=x)
and it belongs to P, where {X{, Bi}j.,= {XJ, Ei}}_(x, &) is a solution of

{ ® = Ve i, &),
fj =V, ¢j+l(xi’ Ej“)
G=1,,v; 2==x, EP=F). (cf [11]).

(1.7)

Recall that the multi-product (1.6) is a Fourier integral operator in L% " (Dy+1)
with the above phase function ®,,,(x, £) and its symbol g¢y,(%, &)=0"(Py,¢, Pa,4,
"'P““-“’vu) is written as

qv+1(x’ ‘E)
(1.8) = OS"S'“S exp [{(Yrya(x, &, X, E)— D@y py(x, £))]
x T pa/™, ) 2 48" (o =2, 1 = ),

where 2'=(x, &%, ---, &%), E'=(&", &, -+, "), d¥=dx"---dx", dE*=4E"---dE" and

(1.9) Uy, B, 2, ) = jz (B, E)— 27 EN)+ uan(a®, E)

(¥ =x).

In the above the right hand side of (1.8) is an oscillatory integral, whose well-
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definedness will be proved in the next section in a more general form. The
aim of this section is to find the main symbol of ¢,.,(x, &) for (1.8).
Let X(£) be a function in y®(R}) satisfying

(L10)  0=X(E)=1, X(E)—1(IEI=<2f5), xE) =0 (EI=1]2).
For a main symbol pj(x, £) €S% of P;4, and a parameter { ER", we set
{P?(x, £;0) = X(4E-D)KD) pi(x, &),
i (% & 8) = pi(x, &) —p7 (%, &3 8)
and consider P74 (§)=p74,(X, D,; ¢) Fourier integral operators with a parameter
¢&. Set for k=1, -+, v+1
Tyn(x, &) = 0‘((P11’,¢1"‘P2-11,¢k_1) Pk,«b,,
X (Pk+1,¢k+1“'P1‘+l,¢v+l)) ’
Gon(%, £58) = o (P14,(5)Pi-1,6,_(O)Pis,(8)
X Piy 1,¢k+1'“P3+1,¢\,H)

(1.11)

(1.12)

and set

Gni(% &5 8) = a(Plg,(5)Piire,, (£)) -
Then, for any fixed { we get the decomposition
(113) 9v+1(x, E) = q:+1(x’ E; §)+ I¢E=1 q§+l(x1 E, g)—i_ kzzlq:+l(x’ E) .
In (1.13) we set {=E&, where £ is the fiber variable of the simplified symbol of
(1.6). Then, we have

Lemma 1.3. The symbol ry (%, E)=qvu(*, E)—q5i(%, &; E) belongs to
R and it satisfies for any ¢ and B

(1.14) |7y B (x, E) | SC, A" M P! B 1°* exp(—ECEDY)

with positive constants €, A and M independent of a, 8 and v. Here, C, is a con-
ttant independent of B and v.

Together with Lemma 2.1 in the following section ¢j.,(x, &; &) is a main
symbol of (1.6).

RemMark 1. The constants & A4, M and C, in (1.14) are determined only
by the dimension #, o, ° and constants C, M, C,, € in (1.2), (1.3) and (1.4) for

P;(x? E)? ﬁj(x’ E) and ¢j(x, E)-
ReEMARK 2. The estimate (1.14) still holds even if we replace ®,,(x, &)
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by x+£ in the corresponding formula (1.8) for the multi-products (1.12). This
follows from (1.4) (see the discussion above Proposition 1.2).

We begin the proof of Lemma 1.3 with the estimation of the third term
of (1.13). By means of Theorem 2.1 and Proposition 2.2 (and its Remark 2)
in [18] it is clear that gk, (», £) satisfies the same inequalities as (1.14) because
CEYOM exp(—ELED) S AT w17 exp(—E&LED<[2) for a suitable constant A,.
So, for the proof of the lemma it suffices to show

(1.15) |0 0F gy(x, &5 £)| SC,AM ™% BI* »1™ exp(—&CEDY) .

To this end, we prepare the following three lemmas which are versions
of propositions in §2 of [18]. Let p(x, &; £) be a symbol in SZ(, with a para-
meter { €R" such that for any a, &’ and B we have

(1.16) |07 888 | < CM 1=+ 1B (] ' BIYKEpm= 11711

Lemma 1.4 (cf. Proposition 2.2 in [18]). Let Py({)=p(X, D,; §) be a
pseudo-differential operator with a symbol p,(x, &; §)ESEw satisfying (1.16) and
set P, y=p, 4(X, D,) be a Fourier integral operator with phase function ¢(x, &) in
Pewy and symbol py(x, €) in Stw. Then, we have the following :

i) The product P(¢)P, 4 belongs to L2 (¢) and has the form

(1.17) P(£) Poo = g4(X, Ds; )+34(X, Ds 1)

with symbols ¢°(x, &; ¢) and §(x, &; §) satisfying

(1.18) 102 38 08 ¢'(x, £; £)] SCM0M+¥ %18 () o7 BIY*
% <§>m+m'|“l+|¢”'l ,

(1.19) |63 6% 02 4(x, £; §)| SC o M1'"P! B exp(—ECEN)

for constants C,, M,, C, ,» and a positive constant €.
ii) Let the symbol p,(x, &; ¢) satisfy for a >0

(1.20) p(x =0 [E-LI=E.

Then, there exists a positive constant v°=1°(8) such that for ¢(x, £)E P (7°) the
decomposition (1.17) still holds with (1.18)—(1.19) and the main symbol ¢°(x, €; ¥)
of (1.17) satisfies (1.20) with & replaced by 8'>0 depending only on &.

i)  For the product P, 4 Py({) we have the same statements as 1) and ii).

Remark. The constants C), M, and C, , are determined by the constants
7 and M in (1.4) for ¢(x, £), the constants C and M in (1.16) for py(x, &; &)
and those in (1.2) for p,(x, &).

Proof. The first statement easily follows from the proof of Proposition
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2.2 in [18]. In order to show ii) we recall that the main symbol of the pro-
duct Py({) P, 4 is defined by the first term of the right hand side of (4.4) in [18],
that is,

75 E30) = O [ pi £ 1) M(E—E)KED)

(1.21)
X py(x’, E') dx’' dE ,

where Yp=x-E—x"-E4p(x', E")—p(x, £') and X is a function satisfying (1.10).
In (1.21) we replace X(&) by X(£/6) for a small §>>0, that is,

¢, '58) = 0,— | [ piw, & 1) x(E—£1(6<E )
X po(%’, ') dx' dE .

Then, we can prove (1.20) for ¢°(x, &; ¢) if we take @ small enough. This ex-
change is harmless for the proof of (1.18) and (1.19) if we use 6>57/2 when
we prove (1.19). The proof of iii) is similar to those of i) and ii). Q.E.D.

Let I (resp. I4) denote the Fourier (resp. the conjugate Fourier) integral
operator with symbol 1.

(1.21)’

Lemma 1.5. Assume that Py({)=p4(X, D,; {) is a Fourier integral operator
with a symbol p(x, &; §)E St satisfying (1.16). Then, we have

(122) Pdi(g) I¢*EL'&'(K) s 14,* P¢(§)EL'3(K)

and about the symbols of the product operators we have the corresponding results
to (1.17)~(1.19) with m~+m’ replaced by m in (1.18). If p(x, &; §) satisfies (1.20),
then there exists a positive °=1°(8) satisfying the following property: If ¢(x, E)
E Pso(7°) then, adding to (1.17)—~(1.19), the main symbols of Py(t) Ig» and Iy Py
(8) satisfy (1.10) with & replaced by &' (0<<8'<<3).

RemMARK. We have the similar statement as in the remark of Lemma 1.4.

Proof. The formula (1.22) is the same as (2.10) in [18]. For the proof
of the last statement we replace X(£)evy®(RE) by X(£/6) with a sufficiently
small §>0 when we proceed the proof of Proposition 2.3 in [18]. Then, by
means of the inequality (2.3)-a) in [17] we obtain the desired main symbol
keeping the properties (1.17)—(1.19). Q.E.D.

Lemma 1.6. Let ¢;(x, &) belong to Piw(t;), j=1, 2, Ti+1,=7° for a
sufficiently small 7°>0, and let Py (5)E S ,4, be the same as in Lemma 1.5.
Then there exists a pseudo-differential operator P'(§)=p'(X, D,; {)=p"(X, D,; &)
+2'(X, D,; t) in L%, such that

(1.23) Ly, Py (§) = P'(8) Loya,
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and p"(x, &; §) and p'(x, &; t) satisfy (1.18) (with m-+m' replaced by m) and
(1.19), respectively. Furthermore, if p(x, &; §) satisfies (1.20) the main symbol p"°
(%, &; &) also satisfies (1.20) with & replaced by 8’ (0<<3'<<8), provided that we
take v° sufficiently small corresponding to 8.

ReEMARK. We have the similar assertion as in the remark of Lemma 1.4.

Proof. The formula (1.23) follows from Propositions 2.2, 2.3, 2.5 and
Corollary 2.8 in [18], as in the proof of Lemma 2.10 in [17]. For the proof
of (1.20) for p"’(x, &; &) we use Lemmas 1.4 and 1.5 repeatedly. Then, we
get the lemma. Q.E.D.

Now, we are prepared to prove (1.15).

Proof of (1.15). It follows from Lemma 1.6 that there exist pseudo-
differential operators P}({)=pi(X, D,; ¢) (j=1, -+, k) and Pi=pi(X, D,) (j=
k+1, -+, v+1) in L,y such that

J¢](§)_P(§)I®] J: 11 Yy k_l (q)o:x-ff),
(1.24) I"’k-; Py (8) = Pi) Iy, ,
Io, P4, = PiI,,, R, e o]

As in the last paragraph of §2 in [18] it follows that

Pf',¢,(§)"‘P;—1,¢k_l(§) Pl?nb,,(?) Plz+l,¢h+1"'Pv+l,¢
= P{({)Pir(0) PiE) PisrPin Lo .

If we apply Theorem 2.6 of [18] to the multi-product Oy, (§)=P1(§)--*Pi-1(£)
*Pi(§) Piyy e+ P}y, of pseudo-differential operators we have

Qv+1 W8) = q,,H(X D,; &)+q5(X, D,; é‘)EL(\H-l)O‘ )

As in the proof of Lemmas 1.4-1.6 we exchange X(&) by X(£/6) for a sufficiently
small #>0 in the proof of Proposition 5.1 in [18]. Then, in view of (1.16), the

symbols g% (x, £; £) and ¢i:i(x, &; £) satisfy
|62 82 Bqﬁ;’,(x £; §)| <A*M-« im1+;w’|+|ﬂn(a| a'l By

(1.25) X LESIHDT-@I=1a’
|0 8% 08 ghvi(x, £; £)| S C, o A*M P B1*0 17 exp(—ECEDV)

and, in addition, the main symbol ¢t i(x, &; &) satisfies (1.20) for a &'>0
independent of ». Here, we used the main symbol of Pj(¢) satisfies (1.20)
for a small §>0. Finally we use Lemma 1.4. Then the main symbol of
¢v1(X, D,; §) I, vanishes when {=£. Noting (2.7) of [18] and the remarks
of Proposition 2.2 of [18] we obtain (1.15) by (1.25). This concludes the proof
of Lemma 1.3. Q.E.D.

v+1
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2. Multiple symbols and lemmas
For »', ¥ €R" (j=1, -+, v) we write 2*=(«, --+, «*) and E"=(&, -+, &").
We consider a multiple symbol p,,,(x, &, %, £)€C* satisfying for any «, 8,
a\l:(al, *tty av) and Bv=(617 R Bv)
18 803 0By 82 py (v, B, 2, B)|
2.1) < C M~ (HBHE B (| g1 @l BUIY TT <ETD" 1!
v+l a, v+l Ig_)l

for positive constants C, and M independent of ». We consider a simplified
symbol gy.,(x, &) defined by

(x

Qs §) = O - expli(Wra(, B, 2, B)— @ ris(3, 6]
(22) X pyia(x, £, B, £) dZ*dE"
(dZ = dx'---dx*, 48 = dE'.--at"),
where W, (x, £, &, &) is defined by (1.9) for a sequence {¢;} of phase func-

tions ¢;(x, &) satisfying (A-1) in the preceding section. The integral of the
right hand side of (2.2) means the oscillatory integral, that is,

lim s& exp [1(Wy4a(, ’gv’ x, E)‘q)wl(x’ 9))

€30

(2.3) v
XTI X(&x) X(EE)) pun(, B, ', £) dF"dE"

with XeC= satisfying (1.10). We shall show this limit is well-defined. Set

5v+l(xa g'v, xv’ g):pv+1(x’ gv’ xv’ E) :ij:exp(ljj(xj_l» Ej))'exp(_icbv-!-l(x’ E))
(¥=x, E'*'=E) with J(x, £)=¢;(x, E)—x-E. Then, we have

(2.4) 9% 08 By | S C v D™ TT KEPHYM5at 181
j=1

Set n,=[n/2]+41 and define integers /; (j=1, 2, :+-) inductively by §,=[(m,+n)/
2141, [;=[(my+++-+m;+n)/2)+]++--+1;_,. Then, it follows from the integra-
tion by parts that the limit (2.3) equals

SS exp [i(j\é, (wF " —al) £ a )|

5 TL A1+ |27 —af | )7 "(1— Ags)"s}

J[IT (41 E—E )75 (1— )

J

Pvi(x, &, X, E)dXAE (B =x, P =§),

7
v
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which is well-defined by means of (2.4). Therefore, we can exchange the
order of integration and differentiate the right hand side of (2.2) under the
integral sign (that is, we obtain the Fubini theorem and Lebesgue’s conver-
gence theorem for the oscillatory integral, see §6 of Chapter 1 of [9]).

Set py(x, &, &, &)= ij:p,-(xf‘l, F) (x"=x, E*V'=E) for a sequence {p;}

of symbols p,(x, £) satisfying (A-2) in the preceding section. Then, pyy(x, &,
XY, E) satisfies (2.1). Taking the decomposition (1.13) with {=¢ and Lemma
1.3 into account, we may investigate only gy.,(x, &; &) in (1.13). So, in what
follows we may assume

(2.5) |E/—E| <<EX)8  on supp puy,
Then, the condition (2.1) is reduced to

188625 024 6F pyu(, B, 2, E) |

2.6
&0 < CoM-HBHE B () g1 @) BYY e IIm1E

with m= Vzﬂmj. So, till the end of Section 3 we always assume (2.5) and (2.6).
i=1

Lemma 2.1. Assume (2.5), (2.6) and (A-1) in §1. Then, for g, (x, &)
defined by (2.2) we have
(2.7) | v (x, E)] S CoA" M7+ (] B)<CEDm1*
for any o and B, where A and M, are independent of v.

ReMARk. For the multiple symbol satisfying only (2.1) we can obtain
the conclusion of the lemma modulo the regularizer satisfying (1.14). The
proof, however, is fairly long. So, in this paper we restrict ourselves to prove
the lemma in the above form.

For any ke {l, -, v} we write Z"*=(x!, -+, &*71, &**1 ...) x") and set

2.8) Dy 4(x, B 4%, E) = (il Hebs) (v, EF) —at-EF
. +(¢k+1#"'#¢v+l) (xk, E) .

Then, we have

Lemma 2.2. Assume (2.5), (2.6) and (A-1). Then, the symbol q,., ,(x, &%,
ak, £), k=1, -+, v, defined by
(29) q’l+1.k(x» Ek) xk’ E)
= Os_§"'g eXP [i(\I,V-l-l(x’ gv, x\l, E)_qDV-H,k(x’ Ek’ xk) E))]
X pya(, &, X, E) dXVEE



778 Y. MorimoTo AND K. TANIGUCHI

satisfy
|92 824 02 081 gy, £ o, £)|
(2.10) éCOA“"MI‘('“'“""|+I”|+|5kl)(a! at! B! BH)
X ESm-121-10k)
for constants A and M, independent of v and k.

ReMARK. From the definition (2.9) it follows immediately that if the
support of p,., with respect to (x*, £*) is contained in a subset Q of R% ) then
the support of g, , with respect to (x*, £¥) is also contained in the same subset Q.

In the following we prove Lemma 2.1 and Lemma 2.2. For the proof
we employ the following, which is the case v=1 in Lemma 2.1 if we set {=E&.

Lemma 2.3. Let ¢;E Pp(t;), j=1, 2 (7,+7,=1/4) and set Y(x, &', x', §)
:¢l(xa EI)_x,'EI+¢2(x,! C)—q)z(x, E)) where (Dz(x, E)=¢I#¢’2(x) g) Let P(x’ g,,
¥, £; E)EC™ satisfy

|07 0F 0" 02 0% p| < CoM I+ 11" 1+1PIH"D

(211) ><(a! a,!a//! ,8' ﬁ/!)x<g>m—lxl—la'|—lmul
and assume

(2.12) |E'—E|=<ED/8, |t—E|=<ED4 on suppp.
Set

(213) q(x, L3 €)= Q—SS VO plx, ', o', £ E) du'dE”
Then, there exist constants A and M, depending only on M such that

(2.14) |02 82 08 q(x, 3 £)| SCoAMI*+1% 14180 () ' | B1)
X<§>m—|wl-|¢"|

for any a, &' and .

Proof. Consider (2.13) instead of (4.11) in [18]. Then, we can prove
(2.14) in the almost same way as in the proof of Proposition 2.5 in [18]. We
need not consider the part corresponding to the estimation of p.(x, £’) there
because of (2.12). We can begin with the step (II) of the proof of Proposition
2.5 in [18] by replacing Xo(&, £’) by p(x, &', x', ¢; ). Hence, we get (2.14)
in view of (4.25) and (4.33) in [18]. Q.E.D.

Proof of Lemma 2.1. We divide the proof into two steps.
(I) In this step we shall show
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Qura(®, E) €0ntd

(2.15) = 0, {+[ exp (R (¥ —0) B+ B, )
Xplu(s, B, 2, §) dBAE (=),

where the symbol pi,(x, &, &, £) satisfies

(2.16) cKEDSED=KE>  om supp piy,

and (2.6) with C, and M replaced by CpA4" and M,. Here, the constants A
and M, are independent of ». For simplicity we consider the case v=2 for
a while. Since it follows that

eidu(x'ﬁ’) — O’_SS eiz°(§'-§)+i¢1(x.§) x(4(§_§')/<g>) dzdé‘

for X(£) €y (R}) satisfying (1.10), we get
I(x, &, %% )
=0, ([ ettetr-strin s, 1, 7, ) dvtag
— o‘_SSSS B g =2 (=) ~sleg o, (a1 £D)
XX (4G —E)LKE) pox, &, %, £) dx*dE'dal’ .

Next, we take changes of variables as follows: First we change the variable
2'to y' as

(2.17) 2= Ven(y'; £, E)= S: V(¥ E+0(0'—EY) do
and then the variable £* to 5! as
(2'18) 7]1 = vx(;bl(x’ yl; gl)E S: Vz¢1(yl+ 0(x_yl)s El) da .

Then, we have
Pu(x, £ —=21+ (81 —E") = u(x, §)—Vedi(y'; & E)- ('8
= (¥, gl)'—ﬁbl(yl’ §1)+¢1(y1a El)
= (x—9") Vou(x, ¥'; £)+ (5", &)
= (x—y) 7'+ (5", &)
and

dzldé‘l = rl(x) Elv yl) vx¢rl(x’ yl; 771)) dyldnl ’

where {=V,¢7(x, ¥; ) is the inverse function of =V,¢$,(x, y; ¢) and
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r(x, £y, £) = det 61 Vedi(33 £, £)-(det -2 F,y(x, 33 O)) .
x o0&

In the above we denote gx— f(x), for a vector f='(f,, -+, f,) of functions f;(x),
w2 f=(aiom {11 70,
Now, we set
(2.19) 7%, &5 3, £ E)=X(#(E—EVKED) ni(, &', 3, §)
and set
gi(x, & ' &, %, E5 1)
(2.20) = 0,— S S PNt SRR ST NN BT NN )
X 7i(x, ', ¥, 5 £) po(, &, B, £) du'dE?
with ®,= ¢, #¢p,. Then, by the change of variables (2.17) and (2.18), we have
L(x, &, @, §) = O,— [ ot
X gi(x, Vopi(x, %5 1), ¥ £, o E; EF) dy'dy
By the same way we can obtain
I(x, g yl, E)EO’—S S of (B20":£2) =52+ £2+,5(x2,£))
X gi(x, &, ¥, &, o7, £ &) didE?
= 0,— S S SS ¢ (220189 =22)+ (2= ) =22 2445 (%.8))
XX (4 —E)KED)) gi(x, L', o, &% o7 5 ) du’dEPdzat?
= O’_SS £ (13D 2 +050%, )
Xgy(x & ¥ V.20 % 1), % & &) dy'dn’
where
3% &, 95 B 04 65 1)
(2.21) - O‘_SS £ (R2(5%£2) =22 £2+4(22%,¢") ~ ©3(5%,¢"))
X7y &5 9% 85 ) gilx, § 0%, B2, o2, £ £F) dxPdE®.

Here, ©;=®,8¢d:(= o, #p, #3) and 7y(x, &', ¥, §; £) is defined by the same way
as 7, with ¢, replaced by ®,. Hence, we obtain

gs(x, E) e %=
= Os—Sg I(x, £ &P, E) e T 8"+6s6%00) g2
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I

o,—“ ¢ I, Y, pTY(x, 315 ), s §) dy'dy’
— 0, [[[§ exp (2 (13w -+ )]
X pi(x, 7% 3", £) dy*di”,

where pi(x, 7%, 3%, E)=qy(x, V.$1'(x, 3, 7'), ¥, V. @7'(3", 3% #), ¥ E; ). It
follows from (2.20) and (2.21) that

pix, 77, 3% )
= p3(x, Vo', 3", ), ¥, V. @59, 925 ), 9% £)
if we set
(%, B 3, 8)
= O,—SS 20BERD gyl ED g2 120 B da2dE?
.O_‘——SS PRGN SN Px, £ 9, L1 £) deldE
'P3(xr gz, 532’ E) ’

Here ",b‘j(y’ E’ X, §):CI>,(J’, f)‘x'£+¢j+1(x, g)_q)j+l(y’ C) (]:1) AT 2 (I)1=¢l’
q)j=¢'l#"'#¢’i)'

Now, we consider the case for a general ». Then, repeating the above
method we can prove

Qo E) e%vas0
(2.22) = 0.~ [+ [ exp (S (v —9) i+ ®ural ", )
X (s 7, I, E)
for

(223) P:-&-l(x) ﬁv’ j’v’ E) = Pﬁl(x» Ev: 5’\', E)
with &=V y57) (=1 v & =4¢).

Here, pli(x, & 3, E) is defined by
Pl 8 5% &)
= O’_SS A At it )] 71‘(3)1:—1, g, yv’ ¢, E) dx*dg
(2.24) 'OS_SS gty 1OV LYV 0)
XPyy(¥772 874y, 07 E) da* T ae!

.........
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0~ ([ et ts9 5w, 8, 31, 0 ) dwiag’
.Pv+l(x) g‘v, xv’ E)
X Py By, U5 E) dni dE py(x, B, B, E)
O=x "=E).

Since (2.22) is nothing but (2.15), it remains to prove (2.6) for p{,, and (2.16).
From (2.19), (2.5) for p,,, and (2.24) we can prove

(2.25) I,/ j=1, v,
on the support of the integrand of pl, .

This property and (2.3)-a) in [17] implies (2.16). For the proof of (2.6) for
i+ we set for a while
B, £, 87 5%, 3 ) = T O,— [ et
j=1
XTI By, £ E) AR dE puyy(x, B, B E) (9" = %)
and we estimate this under
(2.26) || =<4, 187 —E|=<ED/4
noting (2.25). Then, applying Lemma 2.3 to each oscillatory integral
OS—SS PRGNS Py By, )
X Py, EY, XY, E) dx' dE
regarding y"/7Y, y'/, ¢/, 7 and £/ as parameters, we get for {7 and ¢/ satis-
fying (2.26)
|9% 03y 0% 08 08y 08 Bll(x, B, €7, 3% 3™, B)|
< Co A MBIV I+ E Y 14181+ BY1+1B7)

X(al@ta™ gl g B )
X<§>m—lw|-|5”|—|5”'|

with constants 4, and M, independent of ». This implies (2.6) for pJ,, since
we have (223) and .p\,;-,l-l(x, E‘v’ 5"‘, E)=ﬁ$il(x, Cv’ Ev’ 5,1,’ 5}”’ g)-
(ITI) Take the change of variables

¥ =y+4x,

2.27 i ARy,
( ) E =0+ V. @yp(x, x%; §)
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in the integral of the right hand side of (2.15). Then, since we have

,2:1( ._l—‘xj).gj_i_q)\'ﬂ(xv» E)—q:'vﬂ(x, ‘f)

— S () (3= 37) - 0 D, 5, £)

=1

— 31 (W1 —xl) - (E— ¥, Dy, 4% £))

ji=1

= =N (Y —yi)em (=, °=0),

j=1

-

gvii(%, £) in (2.15) is written as

(2.28) Gona(®s ©) = 0, -+ [ exp (=i 23 (=37 )
Xﬁv+1(x; 7, ¥, E)dy'dy’,

where B, (x, 7, 3, £) is defined from pJ,(x, £, %*, £) by the change of vari-
ables (2.27). Since pj,, satisfies (2.6) (with C, replaced by C,4") and (2.16)
we may use only the step (II) in the proof of Proposition 5.1 in [18] if we con-
sider (2.28) instead of (5.2) in [18]. In fact, if 7° in (A-1) is small enough,
we have ¢ KED>SCE+9>=c'<E> on supp P, (with ¢’ independent of ») on
account of (2.16) above and (2.3)-a) in [17]. Thus the proof is completed.
Q.E.D.

The proof of Lemma 2.2 is carried out by the same way as in that of

Lemma 2.1 if we note ¢ gD <<E><c<E> on supp py.1.
In the rest of this section we shall give another fundamental lemma by

means of Lemma 2.2. Let {X{, Ei}i_(x, &) denote the solution of
{ = Vfﬁbj(xj‘l’ E’) ’
Ej - Vx¢j+1(xj’ EH-I) ) ]= 1’ AP 4 (x = X, EV.H E)

We remark that {XJj, E{/<€>},, are bounded in S%) (see Proposition 2.4 in
[18] and its proof). For a 6>0 and k=1, -+, » we set

Xs,kExs,k(xk, g x, E)
= X((Xi(x, £)—a*)[8) X ((Ei(x, &)—E)/(3<ED))

for X y®(R}) satisfying (1.10). Set

(2.29) Drara(x, EY, 2, E)
= ;[[:1 Xa,j(xj) Ej; X, E)pv+1(x’ gv’ j;v’ E)

and set for k=1, -, »
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(2-30) Pf+1,s(x, gv’ X, 5) = Xs,l'“xs,k—l(l—xs,k)Pwl .
v

Then, we get Pv+1:P3+1,a+l§_lP5+1,s-

Lemma 24. Let p,y\(x, £, &, £) satisfy (2.5) and (2.6). Let 1,4, 5(x, &)
denote the symbol defined by (2.2) with p,., replaced by py,;—py.1s. Then, for
any 8 there exist positive constants €, A, and M, independent of v such that for

any a and (8 we have
(2.31) [ 850%rys1,8(x, E)| < Cody" My (*1H1EOQI B CEX 1! exp (—ECEM) .

RemARK. As in the remark of Lemma 1.3 the estimate (2.31) holds even
if we replace @,,(x, &) by x-£ in (2.2).

Proof. Let gy 54(%, £, &%, £) denote a symbol defined by (2.9) with p,.,
replaced by pi,, s and set

45+1,s(x, &) =0,— SS PUCHRINCT LR Rl )

X q’M+1,8,lz(x, §k> xk, E)dxk d&k .

(2.32)

Then we have 7,4 5(%, e:‘)z‘g1 gt15(x, ). So, it suffices to estimate each
¢¢i(x, E). Since (X%, EE) (x, £) is the solution of the equation
{ xF = Vi(Ppulh---He)(x, £,
Ek = Vx(¢k+1#."#¢v+l)(xk’ E) ’
it follows from (2.8), (2.30) and Remark of Lemma 2.2 that
(2'33) <§>|VE”¢V+1 k(x) ‘Ek) 'x‘ky E) ' + vakq)‘v+l,k(x) Ek) xk’ E)I
=c<E> on  Supp Gviy,s,k

for a constant ¢, determined by 8 and 7° in (A-1). Set L=—i(<E)?| Ver®y,y ]2
4 | V e Dyy1 s Iz)—l(<§>zvé"q)v+1,k'vs" + Vb Dypy 50 V). Then, we get L[exp (¢
X (¢V+l,k(x) Ek» xk’ ‘S) - (Dv+1 (x) E)))] = €Xp (i(¢v+l.lz(x7 Ek; xk) g)— qD‘H—l(x, g)))’
Now, we integrate (2.32) by parts. Then, we have

ghi10(E, %) = OS—SS e @vra~ (L Ng, . o di* dE*

where L is the transposed operator of L. It follows from (2.10) and (2.33)
that there exist constants 4, and M, independent of » such that we have for
any N

| 020 020 (L)Y Qo) | S(Cody™ )Mz o+ 11PN
X (ala’|B1B' IN)gpm-1*1-1¥1-N (' = ot E = EY).
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Now, we apply Lemma 2.3 for the case {=£ by setting py;=(L")¥¢y41,5,4 and
Co and m in (2.6) as C,A3™'N'!* and m—N, respectively. Then, for any N
the estimate

(2.34) 183085418 < Co A3 Mz 1=IH1PII (@I BINT)*CEDm=1#1=H

holds with constants A4; and M; independent of N and ». Consequently, by
means of the remark after Definition 1.1 we obtain (2.31) from (2.34). Q.E.D.

We end this section by the following remark: In the following sections
we may assume that there exists a constant M, independent of » such that for a
multiple symbol p,.(x, £*, 2", £) satisfying (2.5) and (2.6) we have |x—x"| =M,
on supp pyy,. Indeed, it follows from (1.5) in [11] that |x—X(x, &)| =co
for a constant ¢, independent of » and the symbol g¢y4,(x, £) defined by (2.2)
satisfies (2.31) if py,,(x, E¥, X, E) vanishes when |x—«"| <M,. This result also
follows from Lemma 2.4.

3. Integration by parts with respect to time variables

Let ¢(¢, s; x, £) be a solution of an eiconal equation

{6t¢ = 7\'(tﬁ x) de)) )

¢|I=s = x‘g .

Proposition 3.1. Assume that \(t, x, £) is a real symbol in G“([0, T];
Séw). Then there exists a Ty>>0 such that the solution $(¢, s; x, E) of (3.1)
exists uniquely in {(t, s); 0=t, s<To} =[0, To)* and belongs to Pg(C,|t—s|)
for a constant ¢, independent of t and s. Furthermore, there exist constants C,
M, and M, such that ¢(t, s; x, £) satisfies for any a, B, v and v’
(3.2) |676Y 8202 p| < CM*I+IBO I 7 0+ ) (] Bloy Loy 1Y EDI 12

for t, s€[0, T,).

(3.1)

Proof. Assertions except the last one are the same as those of Proposition
3.1in [18]. Since it follows that 8,=»\(¢, ®, V,$) and 0,¢=—N(s, Vi, &)
we obtain (3.2) by the inductive method with respect to ¢ and ’. Q.E.D.

Let {\,(t, x, £)}7-1 be a bounded set of real symbols in G®([0, T']; Stw)
and let (2, s; x, £) denote the solution of the eiconal equation (3.1) with A=Xx;.
Let v and p be non-negative integers such that »=3 and 0=Su=<v—2. For
a fixed positive t{,< T, we set

(3-3) A= {i# = (tn ) tM)ER“; O§tuét#—1§"‘§t1§to}
when u=1. Let 3, be a subset of {2, -+, »} and denote it as
(3.4) Zu={Jp ) Jusrt
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with 2<j,<j,<-*<juy,=v. For convenience we use, in the following, the
notation (¢, £*)=t, when p=0. For a {*€A, (when p=1) and 3, we define
a set of phase functions {¢;(%, Z"; x, E)}ii1={¢,(ts, )} 71 by

{ bi(to, B3 %, E) = x-£ for jES,
(r,)i),(t()r ZF; X, E) == ‘l"ik(tk-ly tk; X, E) for jkezl"
(k:‘l’ N e e )

Then it follows from Proposition 3.1 that the set {¢,(f, ")} i1 satisfies the
assumption (A-1)in § 1 if 7 is small enough. Define Wk, ;. (t, I*; x, £*, 2, £)
by the formula (1.9) for the set {¢;(%, £*)}}:i. In the following we shorten
Wzt B %, B B, E) to Wiy (f, %) or Wiy, Then, we have

04, Uhs1 = (0, )(te-rs i3 a7l El)
H(0:j ) (B tarss a7be17Y, Elbrs)
(3.5) = — N, (t Ve, (Baosy Bas 29277, E8), Er)
F s #007 Vobiy (B Leas Ken™, E0)
(B=1, - p, by, = 0).
We note that (3.5) depends only on (3-+4n) variables (f;_y, i tyss, ¥7%7%, E%,
a'k+1, Evr), which is the key point of our discussions. Let p=1. For k

ked{l, -, p+1} and =, in (3.4) we denote zl-'-,k:'{jlv 0y Jh=1> Jh1s "'»ju+1}-
Noting rj,i;~s=x-, we have

—1 -1. & Fu, P
‘Pf:+l,2,.'k(t07 § l) X, Evy xv’ E) = ‘I’fﬂ,:“(to, t#7 X, Ev’ xy) E)"IF’/._l

by setting §'=(, «*, tioy, lasy, o0, 2u), Where Wi s 1-r,_, for kA= p4-1
means Wi, 5 ,1,-0. We denote this by Wi (s, s*1; x, £, 2*, E) or simply by
Bkt §7Y) or WETP* in what follows. From (3.5) it is easy to see
s,y Sk, 37 = (0¥ ) (Se-20 St-13 ar-17, Elaen)
(3.6) +(at‘l"ik+l)(3k—n Spy XlweT] Ej"“) ’
(k =2, By So = lo, Su = 0) ’

and
(3 7) 0 \Iﬂ'—lxk(t gl‘—l) — {81]-‘1,1,+1(t0, f”‘) for ]<k—1 ,
. syt v+l (3] a:j+1‘1’v+l(t0) 't"#) for ]Zk ,
(k = 1’ e, I-"‘I‘l) ,
with

(So, S1y "%y Sp-2y Sk—15 Sk-1> Sk *°"» sF-l)) (30: to) ’
(%o, " = for ke{l, -, u},
(%o> S15 Sz **5 Su-1, 0) for k=p+1.
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Let pi.i(t, 2°; %, £, &, £) be a multiple symbol with parameters #, and
i*e Ay satisfying (2.5). We say that pt,, satisfies the condition I(C, h, M, m)
for an integer £=0, a real m and constants C and M if we have for any «, 8,
@, B¥ and k

k! I a YAy
T
< CM - 0E+BYI+418100) (| @13 | B (k- ) ) CEDm =11~ 1
We consider the symbol ¢ .,,(%; %, £) defined by
A
XPfﬂ(to’ ZM) X, §v7 xv’ E)dxvdg‘l
Aw
ng'+l(t0) f“; X, gv, xv, g)df#)dxv dgv

(3.9)

when =1 and
(3.9)' 93+1(io; x, £) = 08__”ei(q»%ﬂ(to)—z-g)PgH(to; x, gv’ 2 E)di’v ag

v+1

for u=0. Let {Xi, Ei}(t, £*; x, &) be a solution of (1.7) with {¢;(f, F*)} 1.
First, we assume that there exist positive constants & and & such that

supp P4 N1 (1 {10, Wi | SECE[2)

NN AX{—s'| <3, |BI—F| <&E}) = ¢ -

(3.10)

In (3.10) the second factor is the whole space if u=0. Let p=1 and let
St (b 71 x, BY, B, E) denote ply (2, E; x, &, X, )11y, , for some kE

{1,2, -+, p+1} with 5“uﬂ:(l‘l» s lpen Ly 0y tl*), where P5+m,,=n,-1 for k=p+1
means pl, ueo Then p471** satisfies the condition I(C, h, M, m) if p., so does.

By setting t,=t,_, for a k with 1=<k<pu or t,.=0 for k=u-+1 we can define a
“child” {py3i, Wit ={pystt, WiniH (k=1, -, p+1) of {p},,, ¥i}, and
moreover can define descendent sequences of {p},;, ¥y} successively until
#=0. We finally assume that (3.10) holds for {p%,,, ¥%.,} and all children of
all its descendent sequences. In what follows we denote this assumption by
B(s, 9).

Lemma 3.2. Let pi,(t, t*; x, E*, 2*, £) be a multiple symbol satisfying
(2.5) and the condition <I(C,, 0, M, m). Assume that {p%.,, Vi..} satisfies
B(g, 8). Then there exist comstants C, &'>0, A, and M, independent of v, u
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such that for any o and 3
1/x

(B11)  [8202gt (s x, )| SCCH(AY™ {u)Mr180(el glye®'

where ¢\, is the symbol defined by (3.9) or (3.9)". Furthermore, if we resolve
the constant C in (3.11) into CC?[m]\" when m>0, we can take constants C, C,,
A, and M, independent also of m and have

(B.11) (008 g an(to; %, £)| SCCoCTIm] (AL ) MT ™+ el B lye=t 0",
For the proof of this lemma it suffices to show
(3.12) | a(te; 3, E) S CCo(AT]m)KE"e™ O™

for constants C and 4, independent of v, x and m. In fact, differentiating with
respect to x and &, we get in view of ¢p;=¢p,,=x-&

2084, (1o} %, E) = g df"Os——SS ¢ Tyiad)
Au

! ! . ' AB (12 Y o’ Ao’ v 38V
X 30 ot g E— BB ()08 Pl B,
B/+8”=B

when p=1. It follows from the last remark in Section 2 that we may assume
|x*—x| <M, on supppb,;. Noting that |[&/—&|=<<E>/2 on supp pys; and
for N=|B'|+ [max(m, 0)] an estimate <ED¥ exp(—&'<ED/)< M VN!*X
exp (—&'CEXY%/2) holds for a sufficiently small M >0, we get the assertion by
means of the Leibniz formula. Similarly, we get the assertion for the case of
p=0.

For the proof of Lemma 3.2 we prepare the following lemma, which is
the direct consequence of Lemma 2.4,

Lemma 3.3. Let pk,, satisfy the same condition as in Lemma 3.2. Assume
that we have (3.10) and

I
(3.13) supp P5+1Chol{lat,,\l’5+1| =&&>|2}

when w=1. Then there exist constants & >0, A, and M, independent of v such
that
1/

(3.14) [g%41(to; %, E)| S Co(AYH p!)KEY e,
Proof. Set

5v+1(to, f#; X, E) = Os‘_SSei(w#“_x.g)Pgﬂdxv d? .

It follows from Lemma 2.4 and its remark that §,,, satisfies the estimate (2.31)
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with @¢=8=0 uniformly with respect to “& A,, since the term defined by (2.29)
for py,, vanishes from (3.10) and (3.13). Noting that the volume of A, is equal
to th/u! we get the desired estimate. Q.E.D.

Let X(t) be a function in y®(R}) satisfying

0=X<1, X=1([t|<1/4), X =0 (]t|=1/2).
We set |

{Xg(to, B x, £, XY, £) = X(0,, Win/(6<ED)) »

Xi=1-X2, ke {l, -, p}.
Setting
Hy= {B* = (b, =+, hu); By =0, 1},

we divide p¥,, into 2" terms:

Pr=_ 2 Py,
h*eHu

where pfﬂ,;u:ﬁ Xkept, .. In view of this division, for the proof of Lemma
k=1
3.2, that is, for the proof of (3.12), it suffices to show the following:

Lemma 3.4. Let p¥, \(t, t*; x, £, X*, ) be a multiple symbol satisfying
(2.5) and 9(Cy, by M, m). Assume that {pb.,, Ci.} satisfies the condition
B(&, 8). We assume furthermore that
for each k< {1, «--, u} it follows that either

10, Wi | SE&EX2 for all (t, T¥, x, &', %°, £) on supp pi1,
or
10, .| =€<ED/4 for all (%, t*, x, E*, X", E) on supp pi.,

(*)

when u=1. Then there exist constants A, A, and M, independent of v and p such
that for any N we have

(315 1gtate; %, E)| gsc“A*Mr~<s>m-~%“WT—fi;)’,’£Af-f ,
j=0 n—7]):

where N \ p=min(N, u).

Proof. We shall prove the lemma by induction on . When p==0 the
estimate (3.15) for any integer N =0 follows from Lemma 3.3. Suppose p=1
and that the lemma for any 4 is valid until p—1. If |9, ¥},,| =€<E)/2 on
supp p&y, for all k& then the estimate (3.15) follows also from Lemma 3.3.
Suppose that there exists a k€ {l, -+, u} such that |9, ¥y,,| =E<ED/4 on
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supp py+;.  Note that

.
S dt”’ S d 1 oo dtk-ldtk+l oo dty. S 1dtk,
Au au-1 fe1
where A)_, is defined by (3.3) with respect to #;, **+, f;_1, 41, ***, Lu. Integrat-
ing by parts with respect to #, we have
teor o b1 b . -
s‘ e¥veipl, dly = —S V10, ((10,, WY 41) T Py aa)dly

" thr1

(3.16) , e (18, W) T P ity
— &N [(18,, W) Pl -

Hence we get

gy (to; %, &) = giii(te; %, E)+qb31:0(t0; x, E)+4571:1(0s %, E)

where the multiple symbol of each term corresponds to the one of (3.16). In
order to apply the hypothesis of the induction, in view of (3.6) and (3.7) we
divide the multiple symbol of ¢531:}(%,; x, ), j=0, 1, into two terms by multi-
plying the partition of unity {¥X(3,, Wiri**7/(&<ED)), 1—X(8,, Wysi**[(ELED))}
with k'=k—1+j. Then we get the division

q'v+l(t0) X, E) _— qv-i-l(to; X, E)"I_E q#+} }(to; X, E) ’

where each term satisfies the assumptions of the lemma. Repeating the same
procedure as above for ¢i;} again and moreover repeating NN times, we finally
obtain

N
3.17) Qi1 = @i+ 203

Each term satisfies the assumptions of the lemma. More precisely, multiple
symbols of ¢iiY and gi71-* satisfy conditions I(CuM3z”, h+N, M, m—N) and
9I(CuM3¥%, h+K—1, M, m—K), respectively, if we take another constant M,
independent of », # and K. To prove this, taking another small M if necessary,
we may assume that 7(6,, 0, 05, ¥', 7', 3%, ) =((0, ¥y-+1)(01, Oz, 03, ', 7, 3% 7)™
satisfies

67,028,057 | < C(2M)F+F3°1 @21 B 1Ry p ™ a+1%

for a constant C. Then, noting that r depends only on 3+4n variables, we
get the desired properties for multiple symbols of ¢4y and ¢b+1-%.
Now, we use Lemma 2.1 by setting Co=C.M7"(h4N)!" and replacing

m by m—N. Then, from the fact that the multiple symbol of g&;] satisfies
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I(CuM3Y, h+N, M, m—N) we have
(3.18) @A | S CuMzVA* AL+ N)ICED"V !

for a constant A,. Similarly we have

(3.19) 31N S4C MY A4 AL k- N—1)IE (u—1))
For gi71'%, K=1, .-, N—1 we use the hypothesis of the induction with N
replaced by N—K. Then we have

4

(3200 I » Iq’tif,"l<42(SCuMz"‘A“M1 W=D im0~ V=)

K=1 j=1
- x%‘_'/\m ”(N~—K— +h+K—1)' A=

X
i=o (p—1=j)!

SZOC,LA“MINZ‘,(MI/MZ)KQE)M -w TN =G AD I gu-ga
= (p—(+D)!

Summing up (3.17)-(3.20) we get (3.15) if M, is sufficiently smaller than M,
This concludes the proof. Q.E.D.

Finally, we give a simple proposition for the argument of the next section.

Proposition 3.5. Assume that

(3'21) lathq,“:+1(t0) il-" x; gv’ xv’ g)l §E<E>/2
for a ke {1, «--, p} and that
(3-22) IXs(tO: ii'l-'-, X, ‘E)—xll és, IE{a(tO: fIl'-) X, E)"‘E’l SS<E>

forany jeE{l, -, v}.
If & is sufficiently small, we have
(3.23) [Nt Y5 HY)—N;,, (4 Y HY) | SEES,
where {1Ym HL} is the solution of (1.7) with v=p and with {¢;}%%} replaced by
{ibii

Proof. The estimate (3.23) follows easily from (3.5) and (1.7) because
we have (X{, Bl)= (X, Bi¥)=(YE, HL) for j,<j<ji1, kEA{0, -, n+1},
where jo=1 and ju4,=v+1. Q.E.D.

4. Proof of Theorem 1

Before the proof we state the definition of &-admissible trajectories, fol-
lowing [4] and [5]. Let Xj(¢, , &), j {1, --+, I} be characteristic roots of L,
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given in Introduction. Namely, \;(?, », &) belong to G® ([0, T']; Séew) and
satisfy (¢, x, 0E)=On;(¢, x, £) for 6=1 and |[E|=1. We say that a curve
{(2, (), E(2))} [0, T]X T*(R%) is the bicharacteristic curve with respect to
A; through (s, y, ) if {x(¢), £(¢)} satisfies the equation

{dx/dt = —Vgh,(t, X, E) N dg/dt = V,hj(t, X, E) ,
(x) E)lt=s = (y9 77) .

We denote by X,(¢, 5) a transformation
THRNODp=(y, ) = X,(t, s)p = (x(t), E(1)) € T*RNO.

For an integer »=0, let II,,, denote a set of (v+1)-repeated permutations
s Jo» ***s Jusr) With j,e{1, -+, I} and let TIJ,, denote a subset of II,,, whose
elements J,=(j, ***, jy41) satisfy j,= j,4, for any k. Let #, be a fixed point in
(0, T] and let A; denote the interior of A, defined by (3.3). A continuous curve
{(t, =(t), £(2)); t=[0, #,)} is called a trajectory of step », issuing from p, if for
some J,=(j;, ***, jus1) EII24, and some F*E A} it is the bicharacteristic curve
with respect to A, when tE[t,, #;,] (k=1, -+, v+1, t,,,=0) and (x(0), £(0))=p.
We often denote the trajectory by C(J],, £*, p). A point

le(to, tl)xiz(tb tz) ot Xi\,ﬂ(tw O)P

is called the end point (at t=t,) of the trajectory. For an £€=0 we say that
the trajectory is &-admissible if

Ihik(lk, Plz)—)"ik+1(tk’ Pk)l §E<77> ’ k= 1, YU,

where p,=(x*, E)=X,,, (4 tp1) = Xj,, (¢4, 0)p. We remark that the bicharac-
teristic curve is also a trajectory of step 0 and it is always 0-admissible.

Since {\;} is bounded in the symbol class S* and each A(%, %, §) is homo-
geneous for [£] =1, it is easy to see

Proposition 4.1.  Let {(¢, p(t; p,)); t [0, t,]} denote a trajectory C(],, ", p,)
for JL€IIY,,, 'EAS and p, € T*(R")\0. Then, there exists a positive constant
¢>0 independent of J, and ¥ such that for p,=(x,, &,), ps=(x}, E})

[p(t; po)—p(t; pi)| = €*|p,—pil,

if |E,| and |E,| are large enough. Here |p—p'|=|x—x"|+ |E[|E|—E'[|E'|]
for p=(x, £), p'=(x', E"Y e T*R")\0.

By means of Proposition 4.1 we may replace the definition of T'(zy; V')
in Introduction by the following
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T(to; V) = the closure of GOP:(to; Vo)

I‘(to; V) = !Dol-‘!(to; V) .

In fact, for any £€>0 there exists an & (0 <& <€) such that Ty (4; V)C
ljol‘:(to; Ve). It follows from (4.1) that T'(#; V') is closed in T*(R")\0.

Let ¢,(2, s; x, £) be the solution of (3.1) with A=x; (j {1, -+, [}), where
A; are characteristic roots of L of (1). From Proposition 3.1 we can find a
small constant T, such that the following property holds: Let #, be a positive
constant smaller than T,. Then, for any fixed €A, and J,=(j, **, jy11) €
IT.+; the set of phase functions {;,(fs-1, ; %, E)}ifl (£,4,=0) satisfies the
assumption (A-1) in Section 1. As in the C*-case ([10], pp. 185-186) the
fundamental solution E(Z, s) of (1) is constructed in the form

(4.1)

! o tot (o
E¢ )= D hst )+S 5 g S*s Lo (4 1)
j=1 V=1 jRE(l,,0) Jsds s 71
(4..2) k=1,,V+1
X Wi2,¢j2(t1» 1) ++ WJV+1,¢,-,,+1(tw s)dt, -+ dt,

(to=1t) for 0=t,s<T,,

where I 4(t, s) is a matrix of Fourier integral operators with phase function
¢t s; x, ) and with symbol 1 ((j, j) element) or O (others), and W; 4%, 5)
is the one with symbol w;(t, s; x, £)=wi(¢, s; x, E)+w;(t, s; x, £). Here
wi(t, 53 %, £) G0, To]X[0, To]; Scw) and @z, s; x, £)eG™([0, Tyl X
[0, To); Rew), that is, w? satisfies

(4.3) |878Y 8208 wi(t, s; x, E)| SCM - +HBIHBD (| Bloy Loy ' 1Y CEDT 1
for constants C and M independent of &, B, v and ', and @; satisfies
(44) 18}'6}"8?8‘3127,-(1,‘, s; %, &) éC,M‘(””'*'B"(B!fy!fy'!)"e"<f>1/‘

for constants M and €>0 independent of &, B, ¥ and 7', and for a constant C,,
depending only on @. It follows from Theorem 2.1 in [18] that the right hand
side of (4.2) is transformed to that of (1.12) in [20] (cf. Theorem 3.2 in [18]).
Therefore, from Proposition 1.1 in [20] we can find a solution U(z) in B>([0, T}];
D) for the problem (7) as U(f)=E(t, 0)G. For the proof of the existence
of the solution U(t) for t &(T,, T1] it suffices to consider the product E(t, 0)
=E(t, RTo)E(kT,, (k—1)T,)---E(Ty, 0) of the fundamental solutions if & [kT,,
(k+1)T,). Finally, we note that E(%, s) of (1.12) in [20] maps B>([0, T,]; B}
to itself. So, the uniqueness of the solution also follows from the usual duality
method.
For the proof of the inclusion (8) we prepare
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Proposition 4.2. Let V be a closed conic set in T*(R}) and let Ty(ty; V')
be a set defined by (4.1) for an £>0 and 0<t,<T. Let a(x, E) and b(x, &) be
symbols in Sl satisfying

bCVy,,
45) {SUPP /2

lx—y| 262 or |E/IE1—n]lnl| ZE/2
if (v, E)esupp a and (y, )ET(t; V).

Then, for the fundamental solution E(t, s) of (4.2) the operator a(X, D,)E(t,, 0)
X b(X, D,) is a pseudo-differential operator with symbol in R¢ (.

Admitting this proposition for a moment, we first give the proof of (8)
by using this. Let U(t) be a solution of (7) and set V=WFg()(G) for x=
#;<1/o. Assume that (x°, £°) does not belong to I'(%,; V). Then there exists
an €>0 such that (x°, £°)&Ty(t; V). Since T (%; V') and V are closed conic
sets, taking another small £>0 if necessary, we can find symbols a(x, &) and
b(x, &) in S satisfying (4.5), b(x, £)=1 in a conic neighborhood of 7 and
a(x’, 0£°)=%0 for 6=1. Then we have

AU(t,) = AE(t,, 0)G
= AE(t, 0)BG+AE(t,, 0)(I—B)G Ey™ .

Here, we used Proposition 4.2 above and Lemma 2.1 in [20] for the proof of
AE(t,, 0)BGEvy™, and for the proof of AE(t, 0)(I—B)G &v*’ we used the
similar discussions as in the proof of Proposition 1.1 and Theorem 4 in [20].
Then, in view of Definition ,in Introduction we have (x°, £°)&EWF ¢, (U(%))-
This proves (8).

Now, we return to the proof of Proposition 4.2. First, we consider the
case T=T,. Regard AE(t, 0)B as a pseudo-differential operator. Then its
symbol is a sum of o(a(X, D,)I; 4, 0)b(X, D,)) and the terms of the form

(4-6) Gv+1(to; %, )
=S dz.’v—ZO ___SSet‘(Wy.H(to,;"_z H x.?“.x“,f)—x'f)
Ay-2 ¢

XPv+1(to, fv-—z; X, g”s x, ‘E)dxdgv ’

With (jl’ "',]'V_I)EH\,_I, 1)23. Hel‘e Wv+1 iS deﬁl’led by (1.9) With ¢1=¢V+l
=ux+£ and ¢4, replaced by ¢;, (k=1, -+, v—1), and pyy;=pyni(ty, £ %, E,
XY, £) is a multiple symbol defined by

P'H—l = a(x’ gl)(:].j; wi.(tk—]) tk; xk) Ek-H)) b(xva gy) (t\c—-l = 0) .

So, for the proof of Proposition 4.2 with T'=T, it suffices to show
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Proposition 4.3. Let p,,, be as above. Then the symbol gy.\(ty; %, E)
(v=2) defined by (4.6) belongs to Ry and it satisfies for positive constants &',
A and M independent of v

|08 02 quaa(to; %, E)| SC, A" M1PIBIp 1™ 1e=* <O

1/%

for a and B. Here C, is a constant independent of 3 and v.

Proof. In view of Lemma 1.3 and its remark we may assume that p,.,
satisfies (2.5). Hence it suffices to check the conditions 9(4p, 0, M, (v—2)o)
(for a constant A4, independent of v) and B(E, 8) in Lemma 3.2 by means of
(3.11)" with m=(v—2)o and the fact that we have [(v—2)c]!*=<A4"»!"* for a
constant A independent of ». The condition 9(4y, 0, M, (v—2)o) follows
from (4.3) clearly. If |0, W\y,(ty £¥7% %, £)| SEED/2 for all ke {1, -+, v—2}
and if (x, £, %", ) satisfies (3.22) for a sufficiently small §>>0 then it follows
from Proposition 3.5 that there exists an &-admissible trajectory of step p+1,
from (X, £), whose end point is (v, =;). Here p is a number of elements in
{k; jip =+ ji+:1b for a permutation (s, **+,jy—;) which determines ¥,,,. Since
(x, £) and (x, £') are contained in 8-conic neighborhoods of (X7, &) and (x, EY),
respectively, we see by means of the choice of a(x, £) and b(x, £) that
{pv+1, Uy} satisfies (3.10) if & also satisfies 8<&/2. Next, we consider a child
{P::?; ‘P:::l’} of {P‘V+b W¥y4ib. Then under Ial,‘y::?l §8<E>/2, ]21’ -, v—3,
we find the existence of an &-admissible trajectory of step, at most, w41
from (X3, &), whose end point is (¥, =;). Noting the choice of a(x, &) and
b(x, &) we also see that this child satisfies (3.10). Repeating this procedure, we
finally see that {py.,, W4} satisfies the condition B(E, §). Q.E.D.

We proceed to the proof of Proposition 4.2 for the general case. For
simplicity we assume To=T =37,/2. Then, from the uniqueness of the pro-
blem (7) it follows that for any s with Tp/2=s=<T,

4.7) E(ty, 0) = E(ty, )E(s, 0)  (To=<t,=T).
Let w(s) be a function in ¢®(R}) satisfying supp o C(7Ty/2, Tp) and
STO o(s)ds=1. Then, from (4.7) we have
Tol2
To To
E(ty, 0) = $ E(ty, 0)ox(s)ds = S E(ty, s)oo(s)E(s, 0)ds .
Tol2 Tol2
So, in order to show Proposition 4.2 it suffices to show
(+8) [7 Bty 9o(9EG, 0)Bdse Row
T,

with A=a(X, D,) and B=5b(X, D,) whose symbols a(x, &) and b(x, &) satisfy
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(4.5). Since t,—s=<T, and s<T,, we can apply the discussions of Section 1
to each term in E(z,, s) and E(s, 0), and we obtain

o( [0 AB(t 90()E(s, 0)Bds)(x, £

S 2 To fo(h hy-1
- 2 ij'!']{‘,-“ gTo/Z{ ss Ss “. gs
4.9 O :
( ) .gog ...So .{OS_S...S exp(z(‘\l}']v+l,]{‘/+l_x.£))
Xpl\,+l,/(,/+1(t0) f“’ S, fm,; X, E)) xov gw—y/-ﬂ» xv+v’+1, E)
-dx® dE ARV @B VAL AP Y s - 1(2,, )
with 7(2,, )€ Ry, where
va+1»1{c’+1 = x,gO__xO.EO
v
+ 33 (il 15 47, E)— ")
iyl 5 6% Bt
1‘/
_I_kgl (qu;(ti_l, t;,; xv+k’ £v+l¢+1)__xV+k+l.EV+k+l)
by, (B 05 2747, B4
— x*v+»’+1.£:»+v'+1 4 x““’“-E (th=75).

Here, 31, s;,, means the summation which is taken over all Jy,,=(jy, ***, fv+1)

s

and Jm=(jt, ++,j ) with ji ji=1, -, ; and in (49), {*{"" (resp.

4
Sv ') for the case »=0 (resp. »'=0) means that we do not integrate the in-
0

0

tegrand with respect to #'-variables (resp. #”-variables). In (4.9) the symbol
satisfies

{ IEJ._SV.HI §<Ev+l>/8 (] = Oy °0ty V) ’
[EF—E|=<E>8  (j=v+2, -, v+v'+1)

P-’vﬂ. T es

on su
pppjv+1'j\';’+1 ’
v =0 -1y =0
]v+1-](c’+1ls Tol2 ’ P]v+1,/(c’+1ls To
and the pair {p Tyor T I, 7y, b with ¥ Tywp Ty satisfies condition similar

to B(&, &) (we note that in this case we pose the condition (3.10) with X and
Ej replaced by the points Xj(ti_1, )Xy, (£, 0) (X, By (1<k=v'+1;
t{,:s, ta’/+1=0) or Xj,,(tk—v tk)"'x' (t,,, S)Xj;(S, tf)'“xj{,,ﬂ(t;', O)(xwv,ﬂ’ E) (Zé

Ty+1

k=v+1; t,;;=s) in the trajectories). Replacing 7(¢, s) in (4.9) by another
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symbol in R,y we may assume moreover that
V+1 v+2 V42
|EVH V| <82 on Supppy s, -

Then, we can prove (4.8) by the similar discussions as the case of T'=T, if
we use Lemma 2.1’ below instead of Lemma 2.1 and the fact that with W=

‘I’jv+1'];’+l and p=p]v+1']1,l'+l

(4.10) ST" {S“S'l... S’H' S"”’"‘asei(w—,-p
Tol2 s Js s 0Jo (]

x (10, %) pdt*dt"" }ds

— ST" {ﬂ{PS"...S"’“Sssq.,.S'g"lei(‘r—x-s)
Tol2 OS s Js s 0Jo 0

X (10,W) " pdF* dF™'} }ds

/ 4
_[_.ST" {S%S" va-stSfl St""‘e-‘(\r—,-e)
Tolz Js Js s 0Jo 0

X ((ias\y)_lp)“y=sdtl dt.,_ldf”',}ds

/ 7’
+ST° {St°S"...S'”“SSS'2...S'”"‘e;(w-x-s)
Tol2 Js Js s 0Jo 0

X (10, W) 7p) g dF* dt} -+ dil}ds

t _ s 4 /
+ST° {S%S’...S"’ IS S"...St""‘es‘(w—,-s)
Tol2 s Js s oJo 0

X 8,{(10, W) p}dt*dE "'} ds]

holds and that the first term in the right member of (4.10) is zero. Hence,
the proof of Proposition 4.2 for the case of T,<T <3T,/2 is reduced to the
proof of Lemma 2.1’ below.

Lemma 2.1'. Let p,.(x, &, X, £) satisfy (2.6) and consider q,.(x, )
defined by (2.2) with ®y.(x, &) replaced by x-E. Suppose that for a k the vari-
ables (&', +++, &) are divided into two groups (&', ---,&*) and (E**, .-, &) and
they satisfy

lgj—gkl §<Ek>/8 (] = 1) HRE) k—l) )
]E1—£|§<‘E>/8 (j:k_{—l, --',D),
|EF—EH | <CED2 on  SUpp Pyy; -
Moreover, let ¢;E Pg(t;) and assume é-r,.gq—" cmdv_VX‘,Jr1 T;=7° with v° in

(A-1). Then, there exist constants A and C,, and for any & (>0) there exists a
constant M= M, such that

(4.11) |gy®(®, E)| < CoC, AM ~PIBI*CEY™ exp (ECEV)
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hold.
v+1
ReMARK. In the above lemma we need not assume > 7;=7°.
i=1

Proof. Let gy, 4(, &, %, £) be the symbol defined by (2.9). Then, since
é-r,éf" and %1} 7;=7° we can apply the discussions in Section 2 to the
j=1 i=k+1

integrals with respect to (xf, ««-, 2*7% £ --o) E¥°1) and (a**?, -o-, &, EFPY, oo EY)
individually and obtain (2.10) with

(4.12) Gvii(x, &) = OS_SS &' @y i1, p(nthah ) —s8) Gv1,4(%, B, of, E)dxt dE,
where @, ,(x, &, &%, £) is defined by (2.8). Write (4.12) as

Qv+1(x, E) = OS—SS ei(x—zk)-(g—sk)qv+l,k(x’ Eky xk’ E)dxkdgk )

where
g’u+1.k(x’ Ek’ xk’ ‘f) = eii\'“("gk”k's) %m,»(x, Ek’ xh» E)
and

]v+1(x, Ek’ xky E) = {(¢1# o #‘i)k)(x» Ek)_x'fk}
+{(¢k+1# #¢v+1)(xk’ E)'—xk'g} .

Then, together with the discussion (1.6)~(1.7) in [18] for Jy.i(x, &, «*, E), we
can easily prove (4.11) by using the factor exp (ECE)Y*) in the right member of
(4.11). Q.E.D.

5. Hyperbolic differential operators

Let L be a single hyperbolic operator of order m which has a form
(5.1) L=1LL,- L+A,L,+ L+A,Ly+- L,++-+A4,,L+A4,,

where L, (k=1, -+, 7) are regularly hyperbolic operators with coefficients in
v®([0, T]X R}) and 4, (k=1, :+-, 7) are differential operators with coefficients
in 9® ([0, T'] X R}) satisfying

(5.2) Ord 4,<0rd (I, -+ L,)—k/u

for a constant p=1. We assume «<<p/(x—1). The form (5.1)is a generaliza-
tion of (12) in Introduction. In fact, (12) is derived from (5.1) by setting
Ay=A4,=++-=4,,=0. We remark that any hyperbolic operator with charac-
teristic roots of constant multiplicity can be written in the form (5.1) if the
constant x4 is defined as the irregularity of the hyperbolic operator (cf. Theo-
rem 3.1 of [7], see also Lemma 4.1 of [3]).
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Let m, denote the order of L, and let , ;(¢, x, &), j=1, -+, m;, be char-
acteristic roots of L,, We may assume X, ;€G®([0, T]; Séw) by multiplying
a cut function with respect to ¢ if necessary. Since L, is a regularly hyper-
bolic operator, there exist A ;(2, x, £)€G®([0, T]; S&w) such that

(5'3) Lll = (Dt_hk,l (t! X) D,)—)»i.l(t, X’ -Dx)) oot
X (Dy—Npmylty X, D)—Mhomy(ts X, D)
my-1

+ 2=0 bh,j(t; Xv Dz)DJt'

with &, (¢, x, £)€G®([0, T1; S5{5). Here the equality (5.3) means that it
my—1
holds modulo regularizers of the form 20 ri(t, X, D,)D} with r;€ R4 for

any fixed ¢. Since we may disregard the contribution of such regularizers in
our discussion, till the end of this section the equality means that it holds
modulo regularizers. Set #y=0, M,=m,+ -+ +m, (M,=m) and

(54') 6j = Dt_xk,j—ﬁk_l(t’ X, D,)—Xi,j_;k_l(t, X’ Dz)
if My <j=M, .
Proposition 5.1. Let L be a hyperbolic operator of order m which has the
form (5.1). Assume (5.2). Then, L can be written as

L= 61 oo 6,,,

1

ml_
+ X > b}l---ipafl B ai,)aml+1 v0e O

P71 155, <<ipsmy
pe2
(5-:5) T 1:z=}1 15:1<2<1p§7"2b§""j’6j’ "+ 03,011+ O
oo
m-r
B..s,05, ++ 0y,

$=0 155, < <ipsm
where 8; are defined by (5.4) and b...;, is a pseudo-differential operator bf..;,
(t, X, D,) with symbol b ...;, (t, x, )€G([0, TT; S&&").
For the proof we prepare

Lemma 5.2. Let s be a positive integer and let 0; (j=1, --+, s) denote
D,—x\(t, X, D,) for some A (t, x, E)G™([0, T1; S¢w). Assume | N2, x, E)—
Aty %, §)| =coKE> for a constant ¢,™>0 if j=k and |E| is large. Let A be an
operator of the form

(5.6) A= 5141, X, DD}
for b2, x, E)EGW([0, T1; S&57) .
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Then, we can write A as

4 =1§i1<~~z-<"ik§s ajif(ty X, D) 0j, +++ 8j,+a(t, X, D)
k<s

Jor some a(t, x, ) and a;...; (t, x, E) in GO([0, T1; Sdw)-
The proof of this lemma easily follows from the induction on s.

Proof of Proposition 5.1. Let b(¢, x, £) be a symbol in G®([0, TT; S&5).
Then for any integer 0<k=m there exist a,(t, x, £)€G®([0, T]; Séw) (j=0,

-+, k) such that bD’f:ao—l—é 4;0pm—jt1°**Om-10, On the other hand, from (5.3)
i=
we can write L;L,-+-L, as

LL,--L,= (81 am)(aml+l aﬁz) (631,_1+1 65:,)

m—1

+33 L Lues( 33 b1ty X, D)DY) 05,00 -+ O,

and the second term of the right hand side can be rewritten as
St X, D)Di
=

for some b,(t, x, £)€G®([0, T']; S5%). Hence we may assume L,=05,
0z, and so Ly-+L,=85, .,***0,. Since Di'* can be written as Lk—zk} biDy¥I
i=1

for some b{eG®([0, T]; Séw), we may also assume that the order of 4, with
respect to D, is smaller than or equal to #,—k. Consequently, 4, can be
written as the finite sum of operators of the form A***4, A4, ,+A,,, where
A=<{D,> and A4, ; (j=1, -+, k) is the operator of the form (5.6) with s=m;.
Applying Lemma 5.2 to each 4, ; and {05,_ 41, ***, 85}, we have

-k

my
A,, = > bfr..jpajl 8,-p ,

P=1 157,<je<<jp=my

b},..;,€G([0, T1; S&&™),
and this gives (5.5). Q.E.D.

Theorem 2 (cf. Proposition 3.3 in [18]). Let L be a hyperbolic operator
of the form (5.1). Assume (5.2). Set o=1—1/u. Then there exists a hyper-
bolic system L of the form (1) with b; (¢, x, &) in G®([0, T]; SGw) such that
the Cauchy problem (10) for L can be reduced to the equivalent Cauchy problem
(7) for L.

Consequently we have (13) for «; satisfying «=<#,<l/o=p/(u—1) con-
cerning the propagation of wave front sets in Gevrey classes of solutions of (10).
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Proof. For 1= p<<m we set
G = A{J =0 s Jp)s 1< <jp=m}

and for JII; we denote the length p of J by | J|. Let II, be a subset of
IT5 whose element J=(jj, **,j,) satisfies the following: Set S;={j;, -, ],}-
If there exists a k€ {l, ---, 7} such that {m,_,-+1, -+, m,} DS; then the set

{m,+1, .-+, m} is also contained in S;. Set II={0} U(mL—Jl].'I,) and denote the
p=1
number of elements of IT by /. Let # be a solution of (10) and set

— Am=De
5.7) { o “

u; = A"1"90g, 4, J= (U = Jp €, 1sp=m,

where 8;=0;,+:0;,. 'Then, from (5.5) we can write Lu=0 as

(5.8) Lt = Bt -t S bs(t X, D,Jus = 0

for some b,(t, x, £)€G®([0, T]; Séw). For JEII we set j=max{j; I=j=
m, j & S}, where we denote S;=¢ for J=0. We shall show

bl A(m_1—|.ﬂ)°-a~ :. S _2 ,
(5.9) ajoA"”““"""a, _ {.7253 7 7 if |JIsm
0, 6m+..2 [,§ Am=1-1De g~

lf I.]l = m_l’.]*(z) ) m)
Jor bi(t, x, E)eG([0, T]; Séw) -

Then, together with (5.8) we have for any J =I1

2 b-;(’, X, D,)uy if |JISm—2,
6,-014] = { Jen
> b7(t, X, Dz)u7+__2 b§(t; X, D, uy
Jen

Jen
i 1Tl =m—1.

This shows that the /-dimensional vector U= (#;);en satisfies LU=0 for a
system _£ of the form (1). In this way we reduce the problem (10) for L to a
problem (7) for L. 'The fact that (10) and (7) are equivalent is verified by the
same way as in [13] and [8].

So, it remains to prove (5.9). To prove this it suffices to show

2aj(t, X, D)oy if |JI=m—2
(5.10) 0j,0;=q 7en
Oy Out Nay(t, X, D)oy if |J]|=m—1
JEI

for a3z, x, §)€G([0, T1; Séc) -
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Since (5.10) follows immediately for the case when J=0 or j,<j for any jES,,
we take J €II such that j,>>j holds for some j €S;. Note that J can be written
as (fy, ***, j5, My_y+1, ---, m) for some pand k. Let p'E{1, -+, p} be a maximal
integer such that j,<j, and write 9,,0; as

(5.11) 6ioa] == 6;‘1 eoe ajp/ajoajp,+l coe ajpaitk_l+1 e am
p/
+23 85, - 85, [8ip 05,105,,, "+ 01,05, 41" O -

The definition of IT, implies that for any j, there exists a j'&.S; such that
my_,+1=j <my, holds with k' satisfying #m,_,+1=j,<m,. Hence, by
means of the regular hyperbolicity of L, we have |\;,—\;/|=c,(E> for some
¢,>0if |£] is large enough. Consequently we have

[ai.p 61'4] = a16i4+a26i’+a3
for at, x, E)eG([0, T]; Séw) -

In view of this, each term with commutator [9;, 8;,] in (5.11) can be written
as the linear combination of 3;, 9,,, 8;, and their minor operators 3, with
coefficients in G®([0, T]; $8w), where J,E€I1,_, is defined by S;,=S,\{j;},
J' is the permutation (jy, ***, j,-1, J', Jg+1> ***> Jp» M=y +1, ==+, m) and the permu-
tation J” of the minor operator 9, is defined by S;»=S,\S or S;\S or S ,q\S‘
for a subset S of {j, -, Jq-11. For the operator 9;, or its minor operators
0y, if J'€EII or J” €11, we repeat the above discussions until 3;- and 9. are
represented as the linear combination of 8; with J in II. Then, we get (5.10)
and we can complete the proof of the theorem. Q.E.D.

As another application of Theorem 1 we consider an operator L of the form
(5.12) L= L,L,Ly+P L+ P,L,+P;L;+P, .

Here, L;, j=1, 2, 3, are regularly hyperbolic differential operators of order
mj (my+my+mz=m) and P,, P,, P; and P, are differential operators of order, at
most, m—m,—1, m—m,—1, m—m;—1 and m—1, respectively, with coefficients
in y®([0, T]x R%). If we admit L; and P; in (5.12) to be pseudodifferential
operators with respect to x, a hyperbolic operator with characteristic roots of
the maximal multiplicity at most three always has the form (5.12), provided
that its characteristic roots belong to G®([0, T']; Séw). The assumption of
differential operators with respect to x is not necessary for the argument in
what follows.

Theorem 3. Let L be a hyperbolic operator of the form (5.12). Then,
the problem (10) for L can be reduced to the equivalent problem (7) for an operator
of the form (1) with _L satisfying the following:
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1) o=0 if Ord P,=m—m,—2, Ord P,<m—m,—3
Ord P;<m—m;—2 and Ord P,<m—3.

1)) o;=0 if Ord P;sm—m;—2 (j=1, 2, 3),
Ord P,<m—3 and [L,, L;]=B,L,+B;L;+B, with differential
operators B,, B, and B, of order my—1, my—1 and m,+m;—2,
respectively.

i) o=1/3 if OrdP;=m—m;—2 (j=1, 2, 3)
and Ord P,<m—2.

iii) o=1/2 i OrdP;=m—m;—1 (j=1, 2, 3)
and Ord P,=<m—2.

iv) o=2/3  otherwise.

ReEMARK. When the operator L is a differential operator whose maximal
multiplicity is at most three, it seems that the cases i)-iv) cover all the cases
which we can consider as the conditions on lower order terms for any given
constant ¢<<1. In the above we make a convention: the terms of the forms
A L,L;, A,L,L; and A,L,L, are absorbed in L,L,L, by modifying the lower
order terms of L;.

As in the proof of Proposition 5.1 we may assume L, =00y, L,=
Omy41°" Omytmy L3= Omyimys1*" Omy Where 8; (j=1, -+, m) are defined by (5.4).
Let II3 and IT, denote the same sets as in the proof of Theorem 2.

Proof of Case i) (cf. [16]). Since Ord(P,L,) and Ord [P,, L,] are smaller

than or equal to m—3 we can write
(5.13) L = LI(L2L3+P))+P3L3+P4 .
Let u be a solution of (10) and set Jy=(my+1, -+, m). For J €Il we set

Uy = 6_{1‘ if Sj:DSjo
Uy = 0j, =+ 0j,(LoLs+Py)u
lf j: (jl’ '"’jk) ml"l_l’ ) m)Gl’I ’

where 0;u=u if J=0. Using Lemma 5.2 as in the proof of Proposition 5.1
we have from (5.13)

(5.14)

811!(2,..._,,,) = "“P3L3u—P4u
(5.15) =2l a;0;u= 2} ajuy,
IDT,

IDT,

with a,EG(")([O, T]; Sg(x)) ’

where we denote JD J' if J, J'€Il satisfy S;DS;.. Let J be an element of
I1 for which the set .S; contains just po=m,+my;—1 elements of {m,1, -+, m}.



804 Y. MorimoTto AND K. TANIGUCHI

Then, denoting J=(jy, **, jo-5y» fo-sps1> ***»Jp) With fi, =+, jp-5,E {1, -+, m;} and
Js=m+1 for k>p—p,, we have from (5.10)

(5.16) 04,07 = 0j, *++ 8j, 5 L Ls+ 3 a5 07

Je
=0, = aip_;o(L2L3+P1)+~E a’767
JET
with a7 and a,€G®([0, T]; Séw). Here we used the fact that the order of
8,-1---6,-’_;0P1 is smaller than or equal to m—3. Hence, we can reduce the
problem (10) to (7) by (5.15), (5.10) and (5.16). This concludes the proof
of Case i).

Proof of Case i)’. We add to the set IT the set II'={J=(j,, ***, Jp»
m1+1’ M) mZ);jl<j2<'"<jp’: jl) '":jp'E{l) cec, My, mz‘!‘l, °ty m}) {la ""ml}q:
Sy, {m,+-1, -+, m}y &.S;} and we define u; as in (5.14). Then we have

(5.15)’ Bytiomy = — P, Lyu—PyLyti—P, u

= > ayuy
FEYR

fOT LZJEG(K)([O, T]; S((;)(x)) ’

where [ belong to IIUII’. Consequently, in view of the proof of Case i) it
suffices to derive equations for u; with J€II’. Let J=(j, ***, ji m+1, -,
my) €11’ and jo=max {j; 1<j<m, j& S;}. For the case where the number of
elements in {j, -*, ji} N {Mp+-1, --+, m} is smaller than mz;—1, from the same
discussion to prove (5.10) we bave

(5.17) 0;,0; = 21 ajdjutal,u

Jen’

for aj, acG®([0, T1; Slw) -

So, we assume the number of elements in {jy, -+, j;} N {@,+1, -+, m} is equal
to my—1. Then, we have from [L,, L;]=B,L,+B;L;+B,

0,0,u = 07, Ly Lou—+ 21 aj07utalu

Jen’

= 6/1 (L Ls+Py)u+- 6!, B, Lyu+ 311 ByL;u

(5.18) +0;,(Bi—P)u+ X ajdjutaL,u
Jen’
= 0;(LoLs+Plut+ 31 a%05u,
Jemun’

where J, € II;4y_,, Wwith Sy, = {1 oo, b \ {41, -+, m} and a3, a, a’7€
G"([0, T]; Séw). Here we used Lemma 5.2 to represent 87, B, L,+0;, B3 L+
08;,(B,—P)) as a linear combination of 87 (J&IIUII') with coefficients in
G®([0, T]; Séw).- Combining (5.15)', (5.17), (5.18) and the results in the
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proof of Case i), we obtain the systemization for Case i)’ and we can concludes
the proof of this case.

ReMARK. The condition that for any j& {m,+1, :--, #,} and j'€{m,+1,
-+, m} the equation
[6]-’ af’] = ajjlaj—l—bjj/aj/—l-l:jj/

holds with symbols a@;;, b;;» and ¢;;» in G®([0, T]; S&w) implies that [L,, Ls]=
B,L,+B;L;+ B, in the condition for the case i)’ if we admit B; to be pseudo-
differential operators with respect to x.

Proofs of Case ii) and iv). Proofs are the direct consequence of Theorem
2. Indeed, in the case ii) (resp. iv)) the operator L can be written as

LLLAPy P="3 a,Di, ¢,€GO(0, T]; Sta~), with g=2 (resp. g=1).

Proof of Case iii). Let {jj, ---,j,} be a subset of {1, ---, m}. By induction
on p it is easy to see

0jy *** 0y 405, jg., -+ i,
(5.19) = 0j, ** 8j,_,05,,,07,04,,, *** aiﬂ}%’ ALe=#"214,5,
. =
Vsp-2

with a,EG(")([O, T]; Sg(x))

because [0, 8;], [0y, [0;, 84]], -+ belong to G® ([0, T]; S&u). Set ﬁ___’”@lnz
(II3={0}). We shall prove =0

(5.20) L=008,0,+ 3 a8+ 3 Aln-»Rg,5,
Jem, . JEI,
psm-2

with a;eG"([0, T]; Séw) -

As in the beginning of the proof of Proposition 5.1 we may assume that the
order of P, (resp. P;, j=1, 2, 3) with respect to D, is smaller than or equal to
m—3 (resp. m—m;—2) by adding the second term of the right hand side of
(5.20). Next, we apply Lemma 5.2 for A™'P; (j=1, 2, 3, 4) and use (5.20) for
the terms of the form 9, :--8;;L, with k=1, 2 and p<m—m;—2. Then,
P,L,+P,L,+P;L;+ P, can be written as the linear combination of A™ ¢y,
(Jell,, p<m—2) with coefficients in G®([0, T]; Slw). Let Je&IIj
(0=p=m—1)andset jy=max {j; 1<j=m,j&S;}. By means of (5.19) we have
(5.21)  8;,Am M7y, — AT(APT1=HoH, ) 3T ATay A7 9;
Fem,,

with a3 G ([0, T]; Séw) -
Here J'€I1,,, satisfies S =S;U{jo}. The conjunction of (5.20) and (5.21)
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shows that the vector U=(u,);e5 defined by (5.7) with II, replaced by IIj
satisfies .LU=0 for a system _£ of the form (1). This proves the reduction
of (10) to (7) for Case iii). Q.E.D.

As shown in Theorem 3 it seems to be very difficult to find the conditions
on lower order terms of a hyperbolic operator which the problem (10) is
reduced to an equivalent problem (7) of a hyperbolic system (1) with a given
o (<1).

6. Equivalence of two estimates

In this section we assume that characteristic roots \(¢, x, &) of L belong
to B=([0, T]; S") instead of G®([0, T']; Séw) and are homogeneous for |£]| =1.
Set

p(%, E) =J§:} pi(% ),
P E)=T1—N;(t, %, &), j=1,-1,

where Z=(t, x) and E=(7, £). In what follows we write z=(%, £)& T*(R"*")=
R**? and 62=(8%, 8E) = T(T*(R"+"))=R**?,

For the case where p(2) has the form (6.1), we shall define the “flows”
K (zeT*R")\O following [22] and [21]: We first define the localization
$82) at 2 T*(R"*)\0 by

p(z+582) = s*(p,(82)+0(1)) as s—0,

where p,(82)%0 (in 82) is a homogeneous polynomial of 8z & T, (T*(R"*")).
Since p has the form (6.1) the localization p,(82) is simply given by

(62) £48) = (I1 pi() IT (Vp,(s)- 8%+ Vipy(2)-38)

iEEz(

(6.1)

where 3, is a maximal subset of {1, -.-,/} satisfying zE.ﬂz p7'(0). Here
I€Z;

27(0)={ze T*R"*")\0; p;j(2)=0}. Let T, denote the connected component
of {8ze& T(T*(R"")); p.82)= 0} which contains (0; 1, 0, ---,0). Then it
follows from (6.2) that

(6.3) T,= 0 {8 o(H),(), 83)>0},

where o(82', 82)=8%'-8£—8E'-8% and H,(2) denotes (Vzp,(2), —Vip;(2)).
Set

I'; = {6z; o(82, 62")=0  for any &2'€T,}.
Then by means of (6.3) we have
(6.4) IT=1{23 a;H,(2); a;20}.
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Now, we define K} as

(6.5) K} = {2(s5)eT*R**"); {2(2)} is Lipschitz continuous curve
satisfying (d/ds)z(s)ET5s (a.e. s) and 2(0)=z, s=0}

for z& T*(R**)\0.

Theorem 4. Let V be a closed conic set in T*(R*)\O and let t,=(0, T].
Then we have

(66)  T(ty; V) = {=(K! N {t=te}); s €= V)N {t=0} N p O},
where 7 is the natural projection from T*(RZ™) to T*(R%) and p"(O)z.L_IJ »7Y0).

An inclusion relation I'(f,; V)D{:} was proved in Theorem 4.4 of [22].
We remark that the assumption (L.2) of [21] is verified because A2, x, &) E
B=([0, T]; SY). So, in what follows we shall show another inclusion relation.
Suppose that §,&T'(%; V). Then for any €>0 there exists an &-admissible
trajectory linking 8, and p,&V. Taking a subsequence of {p.}.s,, if necessary,
we may assume that p, converges to a point p,&V because V is closed. It
follows from Proposition 4.1 that for any £>0 there exists an &-admissible
trajectory issuing from p, whose end point §, converges to &, From the
&-admissible trajectory {(z, x(2), &(2)); t<[0, t]} CR, X T*(R;) we make a lift
Co=A(t, +(1), 7(0), E1)); te[0, tl} C THRE™) by setting 7(t) = ny(t, x(2), £(1))
if {(¢, x(¢), &(¢))} is the bicharacteristic curve with respect to A;. It is clear
that C,C p~'(0). Taking a subsequence {C,},>o, if necessary, we may assume
that the initial point of C, for any €>0 equals a point *& T*(R**)\0 with
7(z°)=p,. Similarly we may assume that the end point 2, of C, converges to
a point 2, T*(R"M\0 with 7z(2,)=0,. Summing up, for the proof of (6.6)
it suffices to show

(6.7) e K.

In order to show this we need to define the set K, (k) for >0 which
approximates K o, following [22] and [21]. Let K be a compact neighborhood
of 2° in T*(R**'). We assume that K is large enough to contain all lifts of
&-admissible trajectories for €<1 from 2°. For A>0 and &K, there exists
a compact set M(z, k) in T', such that (0; 1, 0, -, O)EM(z, k) and

T;CM(z, By c(T9),,
where M denotes the interior of M and (T), is defined by
(T),={82; 82 =0 or ||8z|'82—|82'| 182" | <h for some 6z’ T} .
Here we take M(z, h)={0} if I';= {0}, that is, if 2¢£ p7'(0). By Theorem 2.3



808 Y. MorimoTo AND K. TANIGUCHI

of [22], for each #>0 and 2K there exists 7(2, #)>0 such that r(z, #)<<k and
(6.8) M(z, h)cTy  for €Uz, h)={'; |2'—z|<r(z, h)}.

(In our special case, this fact follows easily from (6.3)). Since K is compact,
there exists a finite number of 2/ € K (1= j <N(h)) such that K C f@:)U'(zk-I‘, k),

where U'(z, h)={2'; |2'—=2| <r(2, h)/2}. We remark that ze: p~'(0) for any
e U’ (2", h) if 2"/ & p~%(0). In fact, if 2*/¢ p~'(0) then we have M(2"/, h)°
= {0} and hence, it follows from (6.8) that for 2= U’(z"/, h) we have I';={0},
that is, z&p7'(0). Now, we define K}, (%) as follows: A point z€K N
{0=t <t,} belongs to Ko, (k) if there exist jo, -+, , and 2, ---, 2*~* such that
e U’ (2", h) (0<k=v) and

(6.9) ZH_zhe M(2"7x, B)° N {82; | 82| <p(h)} 0<=k=v—-1),

where 2°=2° 2=z and p(h)= min r(z*/, k)/2. We remark that Ko, (k) is

1SjSNCR)

well-defined because the assumption (L—-2) of [22] is valid (see pp. 1160 in [22]).

Proposition 6.1 (see Theorem 2.4 of [22] and Theorem 3.3 of [21]). It
follows that

(6.10) hQOK;ToI;(h_) = Kpn{0=t=t},
where K denotes the closure of K.
By means of this proposition, for the proof of (6.7) it suffices to show
for auy h>0 there exists an >0 such that the end
(6.11) poiut 2, of the lift C, belongs to K1, (h)  if €<&.

Lemma 6.2. Let {2(t)=(t, x(t), 7(¢), &()); t<[0, 2]} be a lLift of an &-
admissible trajectory. Then for amy two continuous points 2(s,) and 2(s;) on the
lift we have

(6.12) |5(5)— 3 | SC [ —sy +(— D,
where C it a positive constant and [ is the size of the system _L.

Proof. Let 7z, denote the natural projection from T*(R**!) to R,x T*(R?).
It is clear that
(6.13) |7o(2(81)) —o(2(52)) | = C [ s1—$] -

Assume 7(5;) =N, (mo(2(s5s)), k=1, 2. If j,=j, then (6.12) follows from the con-
tinuity of A;. Assume that j,==j,. For simplicity we consider the case for
/=2. By taking a discontinuous point 2(¢’) between 2(s;) and 2(s,) we estimate
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[7(s5)—7(s1) |
< Xy (5) =R () [ [ ()= X3y (8) |+ [ X)) — X (55) |
<C(lsi—t' |+ [£'—s])+¢
by using (6.13), where A;(s)=M;(mo(2(s)). In the general case for /=3 we

can also estimate the difference between 7(s;) and 7(s,) by taking /—1 discon-
tinuous points, at most, between z(s;) and 2(s;). Then, we get (6.12). Q.E.D.

Let 7, denote the natural projection from 7'*(R"*!) to R,. Set
1 7
A, =3 a;Hy(2); Sa; =1, a;=0} (cf. (6.4)).
j=1 i

Since the Hamilton field H,(z) depends only on z4(2) it follows that if z*
(k=1, 2) are two points of the lift C, of an &-admissible trajectory then for
any v,1E 4 1 there exists a v2& 4 2 such that

(6'14) I‘vzz_vzll éc l”l(zz_zl) I ’

where C is a constant independent of the lifts C, of €-admissible trajectories.

Lemma 6.3. For any h>0 there is an &(h, 1)>0 satisfying the following
property: Assume that * (k=1, 2) are two continuous points on a lift C, of an
&-admissible trajectory such that E<E(h, l) and

h=m(—2")<2h.
Then there exists a v E H 1 such that
(6.15) | (P—2") my(P—2")—va| =Ch,
where C is a constant independent of h and C,.

ReEMARK. Let = be a subset of {1, -+, I} such that the part of C, between

z' and 2 is composed of bicharacteristic curves with respect to A;, j€X. Then

we can replace 4t in the lemma by An={3 a;H,(2"); a;=0, 2 a;=1}.
JEZ JjEZ

Proof. We shall prove the lemma by the inductive method on I. The
case for /=1 is trivial. So, we assume /=2 and suppose that the conclusion
holds until /—1. Take continuous points 2, .-+, 2*"! on C, between 2! and
2% such that

P=m (2 —2H <21, k=1, v—1
B=z2'and =27 .

Setting k,=m,(2*—2") and hy=mn (2" —2*) (k=1, ---, v—1) we write

(6.16) (=), = 3 () (B —2") .
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Suppose that, for any k, the part of C, between 2* and 2**' is composed of
bicharacteristic curves with respect to, at most, /—1 elements of {A;}. Then
it follows from the hypothesis of the induction that if E<&(#°, [—1) we have

(B =24 h—v:e= OF®)  for vr€dize.

Here v=0(F’) means |v| =Ch® with a constant C independent of %4 and the
choice of the lift C, of &-admissible trajectory. By using (6.14) we have for
some v, €4

(24124 hy—ots = O(h) .

Consequently, using >3 #,/h,—1 we obtain (6.15) in this case.

Consider the case that the part of C, between 2* and 2**! for some & is
composed of bicharacteristic curves with respect to full elements of {\;}/.;.
We denote by &, the minimum of such & and by k, the integer k&, such that
k,—1 is the maximum of the &’s stated above. Now, we write (6.16) as

£y
(6.16)’ (=) hy = 25 (h/h,)(2* 7 —2") Iy
k=1
(@)t 3 ()2 — 2y
k=ky
Suppose that z,(2*—24)<h?. Then it follows from Lemma 6.2 that we have

|2}2—2" | =O0(K?) if &€ <min(&(#% [—1), #*). Hence, the second term of the
right hand side of (6.16)’ is estimated by the constant times of 2. So, we get
ky-1

(6.15) by using the discussions of the preceding paragraph and >} (A/h,)v=
k=k+1

O(h) for any veH .
Assume that 7z,(2*2—2%) =% and let E<min(§(#, [—1), #°). To complete
the proof it suffices to show

(6.17) (Zhe—2M)h—vze, = O(h)  for some vinEHsh,

where si=m,(2*2—2"). Since the bicharacteristic curves with respect to full
elements of {\;}}_, appear on the part of C, between 2 and 21*! (also between
Z*27! and 2*2), it follows from the continuity of A, that we have

(6.18) A2 Ay 2) = OUF),  i=1,2,
forany j,j'e{l, .- 1I}.

In order to simplify the notation below we denote 2*1 and 2*2 by 2' and 2%,
respectively, in what follows. Since z,C, is continuous in R, X T*(R?) we have

(6.19) m(#—2)/fi— 3 oy Hy (2) = O(F)
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for some a;=0 with 3] a;=1. Let =/ be the natural projection from T*(R**!)
to R,, where 7 is the dual variable of 2. We shall show

(6.20) ”;(zz—zl)/k'—g oui(H, (2)) = O(h) .
In view of 2= it follows from (6.18) that
(621)  wE—2E = 3 a0 m@) 0w 2)/ A+ OR)

Set s,=m(2*) (k=1, 2) and denote the &-admissible trajectory z,(C,) by
{(z, (), £(2))}. Then we have

31 0 (0ol @) — N )

(6.22) = ,;,1 (“i/ﬁ)S:@:M(t, x(2), E(t))dt

/) "3 (Ve (0), (@)l
+VenS(E, x(2), E(2))dE/dt)dt .
The second term of the right hand side is equal to
(B Ven(@), 3 aVen@)- (5 - (@x0), az)-+om.
It follows from (6.19) that
a0, d0) = @ —(@)

— 32 an(H,,(2))+0() .
Hence, we can estimate the second term of (6.22) by
133 @,0,(2)4-0(h), 3} an,(2)+0(h)} = O(h)

where { , } denotes the Poisson bracket in 7*(R}). Note that the first term
of the right hand side of (6.22) equals >} a;z{(H,,(2"))+O(k). Hence we
get (6.20) from (6.21). This concludes the proof of (6.17), and hence, the
proof of (6.15). Q.E.D.

Proof of (6.11). Let % be a fixed positive number. As in the proof of
Lemma 3.2 of [21], for any j {1, ---, N(h)} we can find an %(j)>0 such that

(6.23)  (TDwp SM(2*, b)”
for 2eU"(z", h)={z; |z—2"7| <2r(2"/, h)/3},
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if 27 p (0) (see (3.4) of [21]). Set A'=min {p(k), k(1), -+, A(N(k))} with
a convention A(j)=oco if 2"/ p'(0). Let A” be another positive number
sufficiently smaller than %', which is determined later on. For the moment we
take /" as the number for which we can find a constant &(A”")>0 satisfying the
following;

if two points 2* (k=1, 2) on the lift C, with E<ER")
satisfy my(2'—2%)<2h" then |2'—2*| <p(h)/3 holds
(and hence 2 U’ (2", h) implies 2 U" (2", h)) .

(6.24)

Here we used Lemma 6.2.
We shall apply Lemma 6.3 by setting z=h". Assume that E<min(&(h”, [),
&H")). Take continuous points 2, -+, 2*! on C, linking 2° and 2, such that

h//éﬂl(zk+l_zk)§2h// , kZO, .-, 11—1
(20= zo’ 2\: — 2:) .

Then it follows from Lemma 6.3 and its remark that for any k< {0, -+, v—1}
there exist {a;} with ;=0 and 3] ;=1 such that

v=(2—2)m(2—2)— 3 a;H, (2 = O(").
IEZ,

Here 3, is a subset of {1, .+, /} satisfying the following: The part of the
lift C, between 2* and 2**' is composed of bicharacteristic curves with respect
to A, for j €Z,. By means of (6.13), for any j €3, there exists a point 2/ on
C, between 2* and 2**! such that 2’ € p7(0) and

'Z)jEHpi(zk)—Hpj(zj) == O(h”) .

Note that H,(2)eT3;. It follows from (6.24) that 2/ U”(2"%, k) holds if
2*eU'(z"/+, h). Hence, using (6.24) and the convexity of M(z"/+, k) we have
(625)  |2t—zt| <p(h),

(626) (zk+l_zk)/ I Zht1__zk ,

= 3 a;(m(Z" =212 =2 )(H, (+')+ v;+v) EM (2", h)°
jE3,
because H,(27)+v;+v & (T74),y C M(2"+, k) if h” is sufficiently smaller than A4’.

Then, (6.25) and (6.26) show that the end point 2, of C, belongs to Ko+ (k)
if E<min(&(R”, 1), &(H”)), that is, we have proved the property (6.11). Q.E.D.
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