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Introduction. In the recent paper [18] the second author has constructed
the fundamental solution of the Cauchy problem for hyperbolic equations
in Gevrey classes, and investigated the propagation of wave front sets of their
solutions in Gevrey classes by assuming the constant multiplicities of their
characteristic roots. The purpose of the present paper is to study the propa-
gation of wave front sets in Gevrey classes for solutions of hyperbolic equa-
tions with characteristic roots of variable multiplicities and to give a similar
result to the one for the C°°-case obtained by Kumano-go and the second author
[10]. Main results of the present paper are announced in [15] and [19].

Let X be an /X / hyperbolic system of the form

(1)
0

+(bjk(t, x, zg)
\,(t, X, Dt) _

on [0, T]xR»x

with real symbols λ/ί, x, ξ) in Gw([0, T]; S1

GM) and symbols bj/t(t, x, ξ) in
Gw([0, T}; Sew) (0^o <l/ιc). Here, for *>1 and a real m we denote by
Gm([0, T]; SGM) a class of symbols p(t, x, ξ) of pseudo-differential operators
satisfying for any multi-indices a, β and non-negative integer <γ

(2) |8T 9? 8f ρ(t, x, ξ) I rgCM-<ι<"i+"3'-'-γ>(α! βl -

for (t,x,ξ}e[0,T]xKixRa

(,

with constants C and M (>0) independent of a, β and •/• Throughout the
present paper we assume the symbols λ, are positively homogeneous in ξ (for

I ^1), that is, \j satisfy

λ/ί, *, θξ) = θ\j(t, x,ξ) for θ^l and | ξ \ ̂  1 .

*) The first author was partially supported by Grant-in-Aid for Scientific Research (No. 5974004),
Ministry of Education.
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Let 3){*l denote a class of ultradistributions defined by [6], that is,

Stiy = proj lim 3){$ .
L uo L >β

Here, for £>0, 3fj2Λ is a dual space of the Hubert space

and ύ(ξ) is the Fourier transform of u(x) (see [20]). If u^3)[*2 and Λ^Λ; we

denote by WFG(/£ι)(tf) the wave front set of u in the Gevrey class of order /^

defined as follows:

DEFINITION. Let (x°, ξ°) be a point in T*(tf)\Q and let u<=3)(*ϊ . The

point (#,' £°) does not belong to WFG(/eί)(#) for K^K if there exists a symbol

a(xy ξ) in Sί to (see Definition 1.1-ii) in Section 1) with a(x°, θξ°)Φθ (0^1)

such thatf(x)==a(X, Dx)u belongs to γ^CRϊ), that is, it satisfies

\d«xf(x)\^CM-Wa\κι for all x<=ΞRn

x .

This definition is equivalent to that of Hϋrmander [2] if u^G' (see Theo-

rem 3 of [20]).
Consider the Cauchy problem

(7) -£I7(f) = 0 (ίe[0,Γ])f 17(0) = GεΞ^Ϊ ,

for ^ of the form (1) with λ,e=G«([0, Γ]; 5^w) and Ay4eG«([0, T]; Sσ

GW)

for 0^σ<l//c. Then we obtain the following:

Theorem 1 (cf. Theorem 3.4 of [10]). Assume λy(ί, x, ξ) are homogeneous

for | f | Ξ > l . Then, for any initial data G^Sty there exists a unique solution

U(t) of (7) in -®"([0, T]; ^2}/) and it satisfies

(8)

/or ^wy /cx satisfying /c^/c

The theorem of this type in the C°°-case was given in [10] and [11]. In

(8) the set Γ(f0; Π> for a fixed ^o^(0> τ] and a conic set V in T*(Rn

x)\0, is
defined as follows: First, we define Γϊ(ί0; Π (β>0, z^=0, 1, 2, •••) as the
conic hull of the set of end points (at t=t0) of all £ -admissible trajectories of,

at most, step v issuing from (y, η)^V for large \η\. Then, the set Γ(V> V)

is defined by

(9) Γ(ί0;F)= Π UΓ;(ί0;Fe),
8>0 V=0
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where Vζ denotes an 6 -conic neighborhood of V defined by

Roughly speaking, the £-admissible trajectory is an 6-appoximation of the
so-called broken null-bicharacteristic flow (see its precise definition in §4).
The estimate (8) seems to be loose apparently because the limiting curve of
^-admissible trajectories (6 j 0) is not always broken null-bicharacteristic flow
(see last sections in [4] and [5]). However, a result about the optimality of
(8) was shown by the first author [14].

Next, we consider an application of Theorem 1 to the Cauchy problem

(j = 0, .-., m-1)

for a single hyperbolic operator

(11) L = Z>Γ+Σ Σ ajia(t,x)D«xD{ on [0, T]xR»x
y = 0 \Λ\£m-j

with coefficients ajt0ύ(t, x) in a Gevrey class 7(ιc)([0, T]X-R?), that is, they satisfy

1 8T 85 aj..(t, x) I ^CM-^ι'%8! <y\γ on [0, T]xR»x .

As shown in [18] the problem (10) can be reduced to the equivalent Cauchy
problem (7) with σ=(r—q)/r and is 7 (ιc) -well -posed for l^/c<l/cr (cf. [12])
if there exist regularly hyperbolic differential operators Lly L2, •••, Lr with
coefficients in γ(J°([0, T] XR") such that L has a form

(12) L = L, L2 Lr+ Σ *j(t, X, Dx) D{

with α/ί, x, ξ) in G(κ)([0, T\\ S^'s) and 1^? .̂ From this reduction it
follows that for any £<Ξ(0, T]

(13) WFG(Kι)KO)cΓ(*; Uβ

lWFβ0ίl)(Λ)) /or «^^<r/(r-j) .

In the present paper, we shall consider the reduction to an equivalent problem
(7) from the problem (10) for a hyperbolic operator of more general form than
(12), which is inspired by the work of Komatsu [7] (see (5.1) and Theorem 2
in §5). In the case that the maximal multiplicity of characteristic roots of L
is at most three, we also clarify the conditions of lower order terms of (11) in
order that the problem (10) is reduced to an equivalent problem (7) of a hyper-

bolic system (1) with a given σ (<1) (see Theorem 3 in §5). We remark that
the hyperbolic operator L has always the form (12) with q=l if characteristic
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roots of L belong to G(κ)([0, Γ]; SGOO) and we admit Lj to be pseudo-differential
operators with respect to x.

For the hyperbolic operator L without any conditions on lower order terms
and without assuming the smoothness of characteristic roots, Wakabayashi [21]

has recently investigated the propagation of wave front sets for solutions of (10)

in Gevrey class of order κλ satisfying /c^K^r/fr— 1), where r is the maximal

multiplicity of characteristic roots. The method of [21] is based on the

construction of a parametrix of L, as in Bronshtein [1], and on the notion of

"flows" Kί in T*(R}χRn

x) emanating from a point 2£ΞT*(R}xRn

x). When
characteristic roots of hyperbolic operator L are smooth, that is, they belong

to G(κ)([0, Γ]; Skoo), for any f0e(0, T] and any closed set V in T*(Ri), it follows

that

(14) Γfo, V) = iπ(κι n {t = α); *<Ξπ-\v) n {* = o> n

Here p=p(t, x, r, ξ) is the principal symbol of L and π is the natural projec-

tion from T*(R}xRί) to T*(R£) (see Theorem 4 in §6, cf. Theorem 4.4 in
[22]). So, our result (8) is the same as the one in [21] in the case that charac-

teristic roots of L are smooth.
The plan of the present paper is as follows: In §§1-4 we prove Theo-

rem 1. §§1-3 are devoted to preparatory lemmas and in §4 we complete the

proof of Theorem 1 with the precise definition of Γ(V> V). In §5, we show
a method of the reduction of the form (1), and give, as an application of Theo-

rem 1, a result on the propagation of wave front sets for the Cauchy problem
(10). In §6 we show the equivalence of the estimate given by the flows K^

of Wakabayashi [21], [22] and the one given by the set Γ(V> V) of Kumano-go,

Taniguchi and Tozaki [10], [11].
More precisely, we shall state the main idea of §1-3. In §1 we separate

the symbol of the multi-product of Fourier integral operators to the sum of a
main symbol and a regularizer and give the precise estimate for the part of
the regularizer. To obtain this estimate we represent each factor of the multi-

product to the sum of symbols depending on a parameter ζ. Then, we can
use the similar discussions as in [17]. In §2 we estimate the part of the main

symbol of the multi-product of Fourier integral operators which is given by
the oscillatory integral of the multiple symbol. In [18], to estimate this we

transform the multi-product of Fourier integral operators to the multi-product

of pseudo-differential operators multiplied by a Fourier integral operator,

using the decomposition I^RIφ of the identity operator. In the present paper,

since we estimate main symbols represented by oscillatory integrals of multiple
symbols we use the transformation of oscillatory integrals which corresponds

to the one by means of the decomposition I=I^RI^. In §3, we give a method

of the integration by parts for the symbol represented by an iterated integral
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of Volterra type. To show the corresponding estimate for the C°°-case, in
[10] we have estimated the iterated integral after we have simplified the multi-
product of Fourier integral operators to one Fourier integral operator with
multi-phase. But in the Gevrey case we can not employ this method since
we use the equations of the critical points Xί=Vξφj(t^ί9 ts\ X(~l> Hi), Bί=
Vxφj+ι(tj, tj+1'y X{y Eί+1), O'=l, •••, *>) to obtain the simplified symbol of a
(z>-}-l)-multi-product and we have no uniform estimate in the Gevrey class for
the solutions of the equations of the critical points. Here the uniform estimate
means the estimate independent of v. So, we use the integration by parts
for the iterated integral of Volterra type before simplifying the multiple symbol.
It should be noted that to perform this method we must treat the oscillatory
integral of the multiple symbol instead of the multi-product of Fourier integral
operators and so we estimate in §2 the simplified symbol derived from the
multiple symbol.

1. Fourier integral operators in Gevrey classes

First we recall symbol classes introduced in [18] and [20], which are sub-
classes of a symbol class Sm studied in [9]. In what follows we tacitly use the
notation in [9] and [20] and assume that the constant K is always larger than 1.

DEFINITION 1.1. i) We say that a symbol p(x, ξ) (e*Sw) belongs to a
class Sec*,*,) if for any multi-index a there exists a constant CΛ such that

(i.i) I j>83(*. £)l ^ceM-"' 0i"<f>--' '

holds for a constant M independent of a and β.
ii) We say that a symbol p(x, ξ) (^Sm) belongs to a class S*M if

(1.2) \p$(x, ξ)\^CM-«*^β»(a\ β\γ<ξ>~-™

holds for constants C and M independent of a and β.
iii) We say that a symbol p(x, ξ) (e5"°°) belongs to a class *RGω if for

any a there exists a constant CΛ such that

(1.3) \M*> f

holds for positive constants M and 8 independent of a and β.

REMARK. The inequality (1.3) is equivalent to the condition that

I j>$(*. ξ)\ ^CaM-^+lf\β\ #!)•<£>-'"'-*

holds for any integer N with a constant M independent of N, a and β.

Following Definition 1.1 of [18], for a τe[0, 1) we define a class 9?G(κ
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of phase functions of Fourier integral operators as follows: We say that a

real valued function φ(xy ξ) is a phase function belonging to a class 5>

G(κ)(τ) if
J(x, ξ) = φ(x, ξ)—x ξ satisfieds

4)

for a constant M independent of a and β. We put 3>

G(K)= U S*GW(T)
0^τ<ι

Let φ(x, ξ) be a phase function in 9?G (κ). Then, a Fourier integral operator
Pφ=pφ(X, Dx) with phase function φ(#, ξ) and a symbol σ (Pφ)=p(xJ ξ) in

^GCK.OO) is defined by

(1.5) PX*) - O.- J J*«*<« 0-*' *>£ (*, f) κ(*') Λ'4ff /or t<e=<S ,

where dξ—(2π)~ndξ, <5 is the Schwartz space of rapidly decreasing functions
on RX and the right hand side of (1.5) is the oscillatory integral defined in Chap-
ter 1 of [9]. We denote the set of such Fourier integral operators by SG^^^Φ-
If φ=χ ξ, the set SGGC.OO),Φ is the one of pseudo- differential operators. In

this case we write it simply by SG(K,°°) Since SGM and 3iGω are subclasses of

^GOc.oo), we similarly denote by SGM.Φ and 5iGω,Φ the corresponding classes of
Fourier integral operators, which are represented by the formula (1.5). We can

identify SicM.Φ with the set &GM °f pseudo- differential operators because it
follows from (1.4) that if p(xy ξ) belongs to <R.GM then eij(* $ p(xy ξ) so does.

Here and in what follows, we use the same notation SlGw f°r the class of pseudo-
differential operators with symbols in 5£G(κ) because no confusion occurs be-

tween the class of symbols and the one of operators.
As proved in [20] we have

Proposition 1.2 (see Theorem 2 and Lemma 2.1 of [20]).
i) Let p(x, ξ) belong to 5S(κ>00) and let φ(x, ξ) belong to £PG(κ). Then the

Fourier integral operator Pφ=p<})(X, Dx) maps 3){*l' into itself.

ii) Let R be a pseudo-differential operator in tRGM
 ana let u belong to 3)^ .

Then we have Ru<=γw(Rn

x).

Following §2 of [18] we denote for φe£PG((C)

iP*(X, Dx] = p°Φ(X, Dx)+pφ(X, Dx)

that is, symbolically LS(κ)(φ) = SSu)>+-SiScιc)fΦ In what follows we often say
that p°(x, ξ) is a main symbol of pφ(X, Dx). If φ(x, ξ)=x ξ we denote

Lcω(Φ) simply by L%M.
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For a sequence {φ; } of phase functions φ/#, ξ)^3>

Gω(τj), we consider
multi-products

of Fourier integral operators Py>φy in L£(κ)(φy) with σiΞ>0. As in §2 of [18] we
assume the following:

(A-l) If we set Jj(x, ξ) = φj(χ9 ξ)—x ξ, {/y/τ;} is bounded in SG(K) and an
CO

inequality Σ τ; ̂ τ° holds for a small constant τ°.

(A-2) If we write PLΦj=pjtΦj(X9 Dx)=p°jfφ.(Xy Dx)+pj^(Xy Dx)(=Sσ

GMtΦj+

&GM.ΦJ the set {p°j(x, ξ)} is bounded in SGGO and the set {^X#, £)} is bounded
in

REMARK. Concerning the bounded set in SGM or 3iGw, see remarks
after Definition 1.1 in [18].

We assume τ° in (A-l) small enough so that Proposition 2.4 in [18] and

Lemmas 1.4—1.6 below hold. Then, a multi-product Φv+1 = Φv+ι(#, f?) = φιίf

φ2# "#Φv+ι(*, ξ) of phase functions φ^x, ξ), φ2(x, ξ), ••-, φv+ι(*> ?) is defined by

Φ,+ι(*, ?) - Σ (ΦX^Γ1, Ξί)- ί̂ -BO+φv+iW, ?) W=*)

and it belongs to &Gω, where {X(, Ξί}y=1Ξ {JY"ί, Ei}}=1(^, ?) is a solution of

( j = l , -,^; ^ = Λ , Γ+1 = f). (cf. [11]).

Recall that the multi-product (1.6) is a Fourier integral operator in L(G(t)
1)(Γ(Φv+ι)

with the above phase function Φv+1(#, ξ) and its symbol qv+ι(x, ζ}=^(PιtΦlP2tΦ2

•••Pv+i.φ ) is written as

(1.8) = O.-
v .

V TT /> (γ'~l £Λ d%v d¥" (v° — v £v+1 — P\A XX Pj\^ 9 ζ ) **"*' **ζ \'*' — **> b — ζ) >
J=ι

where oc ={x , x , •••, Λ? ), ς zz=(b > t > " * " > s )> ^*^ ===dx *"ux , ^fς =&ζ ***&ζ and.

^ V

y=ι '
/^o __ ^\ ^

In the above the right hand side of (1.8) is an oscillatory integral, whose well-
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definedness will be proved in the next section in a more general form. The
aim of this section is to find the main symbol of q*+ι(x, ξ) for (1.8).

Let %(ξ ) be a function in 7(κ}(Rς) satisfying

(1.10)

For a main symbol p'(x, ξ)^S°GM of Pjt<f>j and a parameter ζ eJRn, we set

(*, f; ζ) =(1.11)
v y <h~(γ £- f\ — <h°.(γ £\ />1Yr £• f\L P; \xy ς, t ^ — Pj\χy ζ) PJ \.X9 ζ > b

and consider Pr.Φj(ζ)—p7,Φj(X> Dx', ζ) Fourier integral operators with a parameter
ξ. Setfor£=i, —, H-l

and set

Then, for any fixed ζ we get the decomposition

(1.13)
* = 1

In (1.13) we set ξ=ξ, where ξ is the fiber variable of the simplified symbol of
(1.6). Then, we have

Lemma 1.3. The symbol rv+1(x9 ξ) = q*+ι(x, ξ)—qϊ+ι(Xy ζ\ ξ) belongs to
it satisfies for any a and β

(1.14) |rv+1$(*, f) I ̂

with positive constants 8 , A and M independent of a, β and v. Here, CΛ is a con-
ttant independent of β and v.

Together with Lemma 2.1 in the following section q^+l(xy ζ\ ξ) is a main
symbol of (1.6).

REMARK 1. The constants 6, A, M and CΛ in (1.14) are determined only
by the dimension ny σ, τ° and constants C, M, CΛ, 8 in (1.2), (1.3) and (1.4) for

P%x, f), $j(x, f) and φj(x, ξ).

REMARK 2. The estimate (1.14) still holds even if we replace Φv+ι(#, ?)
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by x ξ in the corresponding formula (1.8) for the multi-products (1.12). This
follows from (1.4) (see the discussion above Proposition 1.2).

We begin the proof of Lemma 1.3 with the estimation of the third term
of (1.13). By means of Theorem 2.1 and Proposition 2.2 (and its Remark 2)
in [18] it is clear that q*+ι(x, ζ) satisfies the same inequalities as (1.14) because
<?yv+1)°-exp(-6<?>1/'£)^^>!<r'cexp(-6<|>1/'c/2) for a suitable constant A,.
So, for the proof of the lemma it suffices to show

(1.15) \ 9f« 9? ύ+1(x, ξ ; ξ ) \ rgC^ΛT >"' /?!' v\™ exp(-£<D^) .

To this end, we prepare the following three lemmas which are versions
of propositions in §2 of [18]. Let p(x, ξ\ ζ) be a symbol in SGM with a para-
meter ζ^R" such that for any a, a' and β we have

(1.16) la^θfθξ^l^CM^^'+'^'+^^αlαΊ/?!)^^"1*1"1^1.

Lemma 1.4 (cf. Proposition 2.2 in [18]). Let P^ΞΞp^X, Dx\ ζ) be a
pseudo-differential operator with a symbol p^x, ξ ; ξ)^ScM satisfying (1.16) and
set P2,Φ=p2,φ(X> Dx) be a Fourier integral operator with phase junction φ(x, ξ) in
$*GM and symbol p2(x, ξ) in SG'M. Then, we have the following :

i) The product P1(ζ')P2>φ belongs to LG$"'(Φ) and has the form

(1.17) ΛGΓ) P2>φ = q°φ(X, ZV, ζ)+qφ(X, Dx y ζ)

with symbols q"(x, ξ; ζ) and cf(x, ξ; ζ) satisfying

(1.18) |9|9f

(1.19) 1 9| 9f 9? q(x, ξ; ζ) \ ίSCβ,α,Mf "" βl* exp(-£<?>1/κ)

for constants Cly M19 CΛtCύ' and a positive constant 8.
ii) Let the symbol p^x, ξ\ ζ) satisfy for a δ>0

(1.20) A(^ f ; f ) = 0 if |f-?|i£δ<£>.

Then, there exists a positive constant τ° = τ°(8) such that for φ(x, ξ)^3>

GM(τ°) the
decomposition (1.17) still holds with (1.18)-(1.19) and the main symbol q°(x, ξ\ ζ)
of (1.17) satisfies (1.20) with δ replaced by δ'>0 depending only on δ.

iii) For the product P2> Pι(ζ) we have the same statements as i) and ii).

REMARK. The constants Q, M1 and CΛ>α}/ are determined by the constants
T and Λf in (1.4) for φ(x, ξ), the constants C and M in (1.16) for p^x, ζ\ ζ)
and those in (1.2) for^2(^, ξ).

Proof. The first statement easily follows from the proof of Proposition
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2.2 in [18]. In order to show ii) we recall that the main symbol of the pro-
duct Pj(f) P2ιφ is defined by the first term of the right hand side of (4.4) in [18],
that is,

= ° - J fc* A(*> ?; ̂  *((*-* W»(1.21)

where ψ— x ξ— x' ξ-}-φ(x', ξ')—φ(x, ξ') and % is a function satisfying (1.10).
In (1.21) we replace χ(f) by X(ξ/θ) for a small 0>0, that is,

Then, we can prove (1.20) for q°(x, ξ\ ξ) if we take θ small enough. This ex-

change is harmless for the proof of (1.18) and (1.19) if we use 0>5τ/2 when
we prove (1.19). The proof of iii) is similar to those of i) and ii). Q.E.D.

Let Iφ (resp. 7Φ*) denote the Fourier (resp. the conjugate Fourier) integral
operator with symbol 1 .

Lemma 1.5. Assume that Pφ(ζ)=pφ(X, Dx\ ζ) is a Fourier integral operator

with a symbol p(x, ξ\ fJeScot) satisfying (1.16). Then, we have

(1.22) Pφ(ζ) /

and about the symbols of the product operators we have the corresponding results
to (1.17)-(1.19) with m+m' replaced by m in (1.18). If p(x, ξ\ ζ) satisfies (1.20),
then there exists a positive τ° = τ°(δ) satisfying the following property: If φ(x, ξ)
G&GM(τ°) then, adding to (1.17)-(1.19), the main symbols of Pφ(ζ) Iφ* and 7Φ*PΦ

(f) satisfy (1.10) with S replaced by δ' (0<δ'<δ).

REMARK. We have the similar statement as in the remark of Lemma 1 .4.

Proof. The formula (1.22) is the same as (2.10) in [18]. For the proof
of the last statement we replace X(|)eγ(ίC)(Λf) by %(£/#) with a sufficiently
small #>0 when we proceed the proof of Proposition 2.3 in [18]. Then, by
means of the inequality (2.3)-a) in [17] we obtain the desired main symbol
keeping the properties (1.17)-(1.19). Q.E.D.

Lemma 1.6. Let φj(x, ξ) belong \to SG(lί)(r^ j=l, 2, τl-\-τ2^τ° for a

sufficiently small τ°>0, and let Pφ2(ξ)^S1G(κ)tφ2 be the same as in Lemma 1.5.
Then there exists a pseudo-differential operator 'p'(ζ)=p'(X, Dx\ ζ)=p'°(X, Dx\ ζ)
+p'(X, Dx\ ξ) in Lζw such that

(1.23) I
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and p'°(x, ξ; ζ) and p'(x, ξ\ ζ) satisfy (1.18) (with m+m' replaced by nϊ) and
(1.19), respectively. Furthermore, if p(x, ξ\ ζ) satisfies (1.20) the main symbol p'°
(x, f ζ) also satisfies (1.20) with 8 replaced by δ' (0<δ'<δ), provided that we
take τ° sufficiently small corresponding to δ.

REMARK. We have the similar assertion as in the remark of Lemma 1.4.

Proof. The formula (1.23) follows from Propositions 2.2, 2.3, 2.5 and

Corollary 2.8 in [18], as in the proof of Lemma 2.10 in [17]. For the proof

of (1.20) for p'°(x> ξ ζ) we use Lemmas 1.4 and 1.5 repeatedly. Then, we
get the lemma. Q.E.D.

Now, we are prepared to prove (1.15).

Proof of (1.15). It follows from Lemma 1.6 that there exist pseudo-

differential operators P'^^p'^X, Dx; ζ) (/=!, -, A) and P'^pftX, D,) (/=
•••, v-\-l) in LOW such that

(1.24)

/ p — P'. T i— &4-1 ... v4-\^ JL φ Λ. j φ J. j JL φ . , I Γv j ^ i , , t' ̂  A .

As in the last paragraph of §2 in [18] it follows that

If we apply Theorem 2.6 of [18] to the multi-product £>C-n.*(?)=Pi(?)—P*_i(?)

P*(?) P*+Γ* PC+ι °f pseudo-differential operators we have

As in the proof of Lemmas 1.4-1.6 we exchange %(£) by %(?/#) for a sufficiently
small 0>0 in the proof of Proposition 5.1 in [18]. Then, in view of (1.16), the

symbols qt£ι(x, |; ζ) and ίίΓι(#, f 5 ?) satisfy

?'8SίίΛ(«, ζ\ ξ)\ ̂ A*M-^*'^(a\ a'\ β\)

(1.25)

' | 8 ? i

and, in addition, the main symbol q*'+ι(x, ζ\ ζ) satisfies (1.20) for a δ'>0

independent of v. Here, we used the main symbol of Pi(ζ) satisfies (1.20)
for a small δ>0. Finally we use Lemma 1.4. Then the main symbol of

?ίΛ(-XΓ, Dx\ £)4V+1 vanishes when ζ=ξ. Noting (2.7) of [18] and the remarks

of Proposition 2.2 of [18] we obtain (1.15) by (1.25). This concludes the proof
of Lemma 1.3. Q.E.D.
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2. Multiple symbols and lemmas

For *>, ξ*GRn (y=l, .-, v) we write &=(x\ -, *v) and Γ=(fS -> Π
We consider a multiple symbol pv+ί(x, |v, 3V, f) e C°° satisfying for any #, /3,

flMα1, -, α*) and p=(β\ -, /3V)

(2.1)

for positive constants C0 and M independent of v. We consider a simplified

symbol q^+l(x, ξ) defined by

ίv+1(*, ξ) = O.-J-J exp[ί(Ψv+1(*, |v, *», e)-Φv+1(*, I))]

(2.2) xivn-i^r.

where ΨV+I(Λ;, |v, ̂ v, |) is defined by (1.9) for a sequence {φy} of phase func-

tions φj(x, ξ) satisfying (A-l) in the preceding section. The integral of the
right hand side of (2.2) means the oscillatory integral, that is,

lim •

(2.3) S t ° J

x Π
y=ι

with %eC°° satisfying (1.10). We shall show this limit is well-defined. Set

:O-Λ:, fv+1=f) with/y(Λ?, ξ) = φj(x, ξ)—x ξ. Then, we have

(2.4) 19|v 9|» &+11 isCyXpyi Π ̂ T^""1

Set τz0=[w/2] + l and define integers 7y 0=1, 2, •••) inductively by /ι=[(w1-

2]+l, /,= [(mH hWy+w)/2]+/!H h/y-i Then, it follows from the integra-
tion by parts that the limit (2.3) equals

V

eχp[ί(Σ (χi~1—χi)

x Π {(l+l^'"1

•[Π(l+iey-
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which is well-defined by means of (2.4). Therefore, we can exchange the
order of integration and differentiate the right hand side of (2.2) under the
integral sign (that is, we obtain the Fubini theorem and Lebesgue's conver-
gence theorem for the oscillatory integral, see §6 of Chapter 1 of [9]).

Set Pv+1(X, fv, x\ ξ)= TΪPj(xj-\ ξj) (*°=*, e+1=ξ) for a sequence {p}}
j = ι

of symbols pj(x, ξ) satisfying (A-2) in the preceding section. Then, _pv+ι(#> f v>
#v, ξ) satisfies (2.1). Taking the decomposition (1.13) with ζ=ξ and Lemma
1.3 into account, we may investigate only ql+l(x, ξ\ ξ) in (1.13). So, in what
follows we may assume

(2.5) |f'-f|^<£>/8 on

Then, the condition (2.1) is reduced to

(26)
V|)(cd β\

v+i
with m= S wij. So, till the end of Section 3 we always assume (2.5) and (2.6).

Lemma 2.1. Assume (2.5), (2.6) and (A-l) in §1. Then, for qv+1(xy ξ)
defined by (2.2) we have

(2.7) lϊv+iSK*, f) I ̂ Co^Mf r(l-l+|β|)(αl β\γ<ξ>*-w

for any a and /3, where A and Ml are independent of v.

REMARK. For the multiple symbol satisfying only (2.1) we can obtain
the conclusion of the lemma modulo the regularizer satisfying (1.14). The
proof, however, is fairly long. So, in this paper we restrict ourselves to prove
the lemma in the above form.

For any &^{1, •••, v} we write *v»*=(ίc1, ••-, xk~\ xk+ί

y •••, #v) and set

ΦV+M(*> 5*. **, f) -
( ' J

Then, we have

Lemma 2.2. Assume (2.5), (2.6) αwrf (A-l). Then, the symbol ίv+ι.*(#>

Λ*, I), Λ=l, •••, z^, defined by

(2.9) ϊv+1>, r, *», «
- Of-
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satisfy

(2.10) ^C0A
v-1Mτm+lΛkl+lβl+lβk]\al c f l βl βkl)

for constants A and M1 independent of v and k.

REMARK. From the definition (2.9) it follows immediately that if the

support of />v+ι with respect to (#*, ξk) is contained in a subset Ω of Rfytf) then

the support of Jv+ι,* with respect to (#*, ξk) is also contained in the same subset Ω.

In the following we prove Lemma 2.1 and Lemma 2.2. For the proof

we employ the following, which is the case v=l in Lemma 2.1 if we set ζ=ξ.

Lemma 2.3. Let φy <Ξ5>G(κ)(τy), j= 1, 2 (Tl+τ2^ 1/4) αirf M* ψ(*> £' , x', ζ)

Φ2(*', 0-Φ2(*

9f 9? 9?/^ I ̂

' ^ x(α! αΊ αr/! /S! /8Ί

assume

(2.12) |f_£|^<£>/8, | f_f |^<f>/4 on supp/>.

Set

(2.13) ?K f; f) = Os

Then, there exist constants A and M1 depending only on M such that

(2.14) |a?8

/or αwy α, α' and β.

Proof. Consider (2.13) instead of (4.11) in [18]. Then, we can prove

(2.14) in the almost same way as in the proof of Proposition 2.5 in [18]. We

need not consider the part corresponding to the estimation of p^(Xy ξ') there

because of (2.12). We can begin with the step (II) of the proof of Proposition
2.5 in [18] by replacing %0(f , f) by p(x, £', x', f ξ). Hence, we get (2.14)

in view of (4.25) and (4.33) in [18]. Q.E.D.

Proof of Lemma 2.1. We divide the proof into two steps.
(I) In this step we shall show
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(2.15) = Os-[ \ Gψ(ί(Σ3 (*/-1-*Ή'+ΦvH(*v, ξ)))
J J j = l

where the symbol pί+ι(x, |v, £v, ξ) satisfies

(2.16) c-\ξy^Q^c<£> on

and (2.6) with C0 and M replaced by C0A" and Mλ. Here, the constants A

and MI are independent of v. For simplicity we consider the case v—2 for
a while. Since it follows that

for %(£)e7w(RJ) satisfying (1.10), we get

= O,— f { { { ̂ ^l^rt-2l ^1-ξ1)-*1 έ1

Next, we take changes of variables as follows: First we change the variable
zl to y1 as

(2.17) * = ΫίφΛ/; f1, a= Γ VeφM P+ί (f1-?)) dθ
Jo

and then the variable ζ1 to ̂  as

(2.i8) j = ?,<}>&, y n= Γ v,fc(y+0(*-y), r1) ̂  .
Jo

Then, we have

.i*, n-*1-^1-?1) = Φι(*. n-^Φiί^1; rs a α1-?1)
= φ ,̂ n-Φι(/, n+Φity, a

= (^-/H'+ΦiC/, a
and

r , y Vxφτx,

where f= V^φΓ1^, y\ -η) is the inverse function of η=Vxφι(x, y\ ζ) and
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Φ, ξ, y, ξ) = det - - ̂ φ^y ζ, f).(det, , .

In the above we denote - /(#)> for a vector f=*(fl9 ••-,/„) of functions /,(

Now, we set

(2.19) ?!(*, |'( y, ζ , £)=%(4(ίΓ-Π/<£>) r,(*, £', y, ζ)

and set

ϊSteΓ.y.P, *»,£;£')

(2.20) = Os— (ί eί(*ι(»1 *1>-*I *1+**(*1 rt-*2<'1 f'»

x fι(«, f1, y , ί1 5) Λ(*, I2, *2, f) Λ*1 !̂1

with Φ2=φιitφ2 Then, by the change of variables (2.17) and (2.18), we have

/ι(«, ξ2, J, ξ) = O,- \[ e'(^-Λ "1+*2(/.ί2))

χ«ί(*, v.ψΓ1^, y v), y, ι2 , χ2, ξ , a «w .
By the same way we can obtain

, y,
— Os—{{ e'^'^'***

, y, v.Φί'ίy, y; Λ, y, ι
where

(2.21) = Os— ( ( ̂

x r2(y\ ξ\ y\ ?2; « ?£(*, f1, /, f2, ,̂ f

Here, Φ3=Φ2#φ3(=φ1 #φ2 #φ3) and f2(^, ξ', y, ξ £) is defined by the same way
as f i with φl replaced by Φ2. Hence, we obtain

= Os~ J j I/*, I2, ίC2, f) β't- ' ί +Ψ
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= Os- J j e«*-Λ " IJx, Ϋ, φr'(*, y ,'), y, I) rfy*,1

where #(*, *72, j>2, £)=&(*, Ϋ,φr'(*, y, ,'), y, Ϋ/I^y, /; ,2), /, ξ; ξ). It
follows from (2.20) and (2.21) that

= #'(*, V.ΨΓH*. y, 91), y, v.Φ^y, y ; ̂ , y,
if we set

= Of-

•0.- Jj β'Ψi^.ί'^.Λ fl(^( |!, y, fl;

Here ψ / y, ?, *, ξ )=Φy(j» f)-* ?+Φy+ι(«, ?)~ Φy+iCx. 0 O'=1» —» v. Φι=Φι,

Now, we consider the case for a general v. Then, repeating the above

method we can prove

(2.22) = o,- (••• ( exP(Z (iι (y-'-
«/ v j = 1

for

(2.23) /»ζ+1(*, ^v, j»v, ξ) = ptίfc, ξ\ P, ξ)

e' = ?,Φ7ι(y-ι,y;*o α=ι, -, », Φι = ψι).
Here, p&fa ξ\ P, ξ) is defined by

ίίίifc Γ, 3>v, I)

= Os-j j e<Ψv<AίV*.

(2-24)

x fv-^
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•0,-J j β'+ι01 ίI «I.C > ffa ξ\ y\ ?;

ίw(*, Γ, *V, f)

Since (2.22) is nothing but (2.15), it remains to prove (2.6) for p(+l and (2.16).
From (2.19), (2.5) for/>v+1 and (2.24) we can prove

(2.25) l£y-

ow the support of the integrand of p"+ι .

This property and (2.3)-a) in [17] implies (2.16). For the proof of (2.6) for

v+i we set f°r a while

P'MX, ξ\ ξ'\ r, r\ ξ) =
x fXy''-1, fy, ̂ /y, ry;

and we estimate this under

(2.26) |£/_£|

noting (2.25). Then, applying Lemma 2.3 to each oscillatory integral

regarding y'' 1, y'', ξ'J, #v>' and fv ' as parameters, we get for ζi and ζ'' satis-
fying (2.26)

C £ y y

^CoA\M

with constants A1 and Λfj independent of v. This implies (2.6) for pζ+1 since

we have (2.23) and^*, Γ, ̂ , f)=ίίiι(^, ?v, Γ, ̂ , 5V, f).
(II) Take the change of variables
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in the integral of the right hand side of (2.15). Then, since we have

Σ (^-'-ΛΉ'+Φv+Λ*1', *)-Φv+ι(*. f)

' = Σ (»'-ι-«') ?-(*-**) ^Φw(«, *v, ε>

= Σ (a'-'-tfΉf'-Ϋ.ΦwΛ*. *»; I))

= -Σ (y-y-1) v (*° = *, / = o) ,
y=ι

?v+ι(#> £) in (2.15) is written as

(2.28) ίv+1(*, f) = Os-( ί exp(-;Σ (y-y-'HO
J J y=ι

where ^v+ι(*> ^v> 3*v> £) is defined from X+1(#, |v, ̂ v, ?) by the change of vari-
ables (2.27). Since #+1 satisfies (2.6) (with C0 replaced by C0A*) and (2.16)
we may use only the step (II) in the proof of Proposition 5.1 in [18] if we con-

sider (2.28) instead of (5.2) in [18]. In fact, if τ° in (A-l) is small enough,

we have c'~1<|>^<?+^y>^^'<l> on supp pv+1 (with c' independent of z/) on
account of (2.16) above and (2.3)-a) in [17]. Thus the proof is completed.

Q.E.D.

The proof of Lemma 2.2 is carried out by the same way as in that of

Lemma 2.1 if we note έ:"Xf >^<f*>^K?> on SUPP Pw
In the rest of this section we shall give another fundamental lemma by

means of Lemma 2.2. Let {XI y E£}ί=1(#, ξ) denote the solution of

x? = VfφX^-1, 50 >

We remark that {XJ

V, Bί/<f>}yfV are bounded in S°GM (see Proposition 2.4 in
[18] and its proof). For a δ>0 and Λ=l, •••, v we set

%β.*=κ«.*(^ f*; ̂  f)

for %eγ(κ)(Λ?) satisfying (1.10). Set

(2.29) #+liβ(*, fv, r, f )

- Π %δ,y(^, ?y; ΛT, £)ίv+ι(*, Γ, ̂ v,

and set for Λ=l, •••, v
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(2.30) />;«,.(*, f , %\ ξ) = X8,ι-X8,*-ι(l-XM) A+ι

V

Then, we get/^+1=#+lfβ+Σ/>ϊ+lfδ.

Lemma 2.4. Let pv+1(x, f v, #v, f) satisfy (2.5) tfwrf (2.6). Lei *Wi,8(*> ?)
denote the symbol defined by (2.2) eσώλ ^>v+1 replaced by pv+ι—p°+ιts Then, for
any S there exist positive constants £, A1 and M1 independent of v such that for
any a and β vϋe have

(2.31) I g?85rv+lfβ(*, ζ) I ̂ C0A?M^«^a\β\}\ξy-w exp (-

REMARK. As in the remark of Lemma 1.3 the estimate (2.31) holds even
if we replace Φv+ι(^, ζ) by x ξ in (2.2).

Proof. Let iv+i,8,*(#> ?*> χk> ?) denote a symbol defined by (2.9) with pv+1

replaced by^+1>δ and set

(2 32) ίί+1 β(*' R = °~ ί ί

V + l

Then we have fv+i fa(#» ?) = Σ ίί+i.δO*7* ?)• So, it suffices to estimate each

jί+ι(#, ?)• Since (Jίv> Sί) (̂ » ?) ig trιe solution of the equation

it follows from (2.8), (2.30) and Remark of Lemma 2.2 that

(2.33) <£> I V{*ΦV+1 »(*, I*, «», f) I + I V/ΦV+M(^ e*, «», ξ) \

OW SUpp ϊv+l.ί,*

for a constant ^ determined by δ and τ° in (A-l). Set L=— ί«f>2| V{*Φv+ι,tl2

+ |V^Φv+ι,*|2)-1«?>2V£*Φv+1,rV£* + VI*Φv+1A Vt*). Then, we get L[exp(ί
X (Φ»+ι.*(*, f*. **, f)-Φv+1(*, f)))] = exp (ί(Φϊ+1J(*, £*, «», f) -*»«(
Now, we integrate (2.32) by parts. Then, we have

where V is the transposed operator of L. It follows from (2.10) and (2.33)
that there exist constants A2 and M2 independent of v such that we have for

any N

O^
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Now, we apply Lemma 2.3 for the case ζ=ζ by setting ^>v+r
C0 and m in (2.6) as CoA^Nl* and m—N, respectively. Then, for any N
the estimate

(2.34) |9?9?</ i I ̂ C AlM3^Λ\+^+N\(xlβ\N\Yζξym~\(*\~N

holds with constants A3 and M3 independent of N and v. Consequently, by

means of the remark after Definition 1.1 we obtain (2.31) from (2.34). Q.E.D.
We end this section by the following remark: In the following sections

we may assume that there exists a constant M0 independent of v such that for a

multiple symbol p*+ι(x, |v, ̂ v, ξ) satisfying (2.5) and (2.6) we have \x—x"\ ^M0

on supp^>v+1. Indeed, it follows from (1.5) in [11] that | x—Xl(x, ξ) \ ̂  c0

for a constant c0 independent of v and the symbol qv+ι(x, £) defined by (2.2)
satisfies (2.31) if pv+1(x, Γ, #v, ξ) vanishes when \x—x*\^M0. This result also

follows from Lemma 2.4.

3. Integration by parts with respect to time variables

Let φ(t, s; x, ξ) be a solution of an eiconal equation

I wφ == λ»(^> X) » xΦ) >

Proposition 3.1. Assume that λ(ί, #, f) is # raz/ symbol in G(f£)([0, J1];

SGGO)- Γλew ίfer^ ^̂ ί5 ίz T"0>0 ί̂ cΛ ίAαί ίAe solution φ(t, s; x, ξ) of (3.1)
exists uniquely in {(ί, ί); O^ί, i^ro}=[0, Γ0]

2 and belongs to ^GM(c0\t—s\)

for a constant £0 independent of t and s. Furthermore, there exist constants C,

M1 and M2 such that φ(t, s; x, ξ) satisfies for any a, β, y and γ'

(3.2)

/or*,je=[0, T0].

Proof. Assertions except the last one are the same as those of Proposition

3.1 in [18]. Since it follows that dtφ=\(t, x, Vxφ) and dsφ = —\(s, V$φ, ξ)
we obtain (3.2) by the inductive method with respect to 7 and γ'. Q.E.D.

Let {λy(f, x, ξ)} 7=ι be a bounded set of real symbols in G(ίC)([0, Γ]; Sboo)
and let ι|ry(ί, ί; Λ?, §) denote the solution of the eiconal equation (3.1) with λ=Xy.

Let v and μ be non-negative integers such that z>^;3 and Q^μ^v — 2. For

a fixed positive £0fS T"0 we set

(3.3) Δμ - {P - (ί!, -,

when jLt^l. Let Σμ be a subset of {2, •••, v} and denote it as

(3.4) Σμ = { Ί, •• ,>+ι}
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with 2^jι<J2< "<jμ>+ι^*v F°Γ convenience we use, in the following, the
notation (£0, t

μ)= t0 when μ=0. For a ?μeΔμ (when μ^l) and Σμ we define

a set of phase functions {φ/ί0> *μ; #, £)}ylι = {φy(A» *μ)}yίί by

?μ; *,?)-*.? /or

I φy4(f0, ?μ; *, ξ) = Ψ y.(**-ι, V> *, 5) /or

(Λ=l, , M-l, fμ+i = 0) .

Then it follows from Proposition 3.1 that the set {φ/(£0> ?μ)}yίl satisfies the

assumption (A-l) in § 1 if T0 is small enough. Define Ψ?+lfϊμ(ί0, *μ*> *, Γ> *v> 5)
by the formula (1.9) for the set {φy(ί0, ?

μ)}yil In the following we shorten

Ψvμ+ι,v(*o> ?μ; *, Γ, *\ ξ) to Ψ?+1(ί0, P) or Ψf+1. Then, we have

(3.5) - -λyjfc(ί

+λy.+1(/Λ> ^ î-1, V^yA+1(ίA, /A+1; '̂̂ r1, f*+ι))

(Λ= 1, -, M, /μ+1 = 0) .

We note that (3.5) depends only on (3+4-ri) variables (tk-ι> tk, tk+l, xjk~l

y ξ'k,
xjk+ι9 ξjk+ι)t which is the key point of our discussions. Let μ^l. For k

k^{l, •••, μ+l} and Σμ in (3.4) we denote Σμ,* = {jl9 — ,;*_ι, Λ+i, •••,>

Noting ψyΛι/= s— Λ^ ?, we have

*&.»,>, s^-1; *, r, «v, f) = Ψί+1>2μ(ί0, ?
μ; *, r, *\ «!,.-,._,

by setting Sμ~1 = (ί1, — , ί*-ι, ί*+ι, —, <μ)» where Ψv+ι.sμ"*=«*-ι for ^ =
means ΨΪ+1>v/μH). We denote this by Ψζ^\ k(t0, ί"'

1; *, f , *", |) or simply by
Ψ£Γί *(/o, 5""1) or Ψ?+ί * in what follows. From (3.5) it is easy to see

V.ΨKi 'fe, s '̂1) - O.̂ .,)̂ .̂  *,.,; *"-<-1, 5^-0
(3.6) +(9^/t+1)(**-i. **; «'*+l"1. ?;'4+1) .

(ft = 2, •••, μ, S0 = tϋ, Sμ. — 0) ,

and

"Ψw(<fc P) for j<k~l '

(*=!,-,

with

for
1, s , s , •••, sμ_ , 0) /br
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Let pϊ+ι(t0, ?v x, f v, #v, ξ) be a multiple symbol with parameters tQ and

μ satisfying (2.5). We say that pζ+1 satisfies the condition £?(C, h> M, m)
for an integer A^O, a real m and constants C and M if we have for any a, β,
cί\ βv and k

(3.8)

We consider the symbol ίC+1(ί0; #> I) defined by

(3-9)

= OS— f f ( f

Δ

x/> ί+ι(fo, ?"; *, Γ.

when />t^l and

(3.9)' gv°+1(ί0; *, ξ) = O- J j «'< !«<'o>-* e>j>!.H(ίβ; *, fv,

for M=0. Let {̂ ί, Ξί}(ί0, t
μ; x, ξ) be a solution of (1.7) with {φ/<0) ϊμ)}}*

First, we assume that there exist positive constants 6 and δ such that

(3 suppX-HCXΓ) {|8<tΨΪ

π ( n {̂ ί-̂ ' I ̂
y=ι

In (3.10) the second factor is the whole space if μ,— 0. Let μ^l and let

ίϊϊί *(/b, ί"1; x, Γ> ^v, f) denote #+1(/0, P; Λ, fv, ,̂ ξ)^^ for some
{1, 2, -, /^+1} with ^- (̂ί!, ••-, tk_l9 tk+l, — , ίμ), where PΪ+nt^^ for *^/

means p$+ι\t =0. Then X+i'* satisfies the condition £Z(C, A, M, m) if pζ+ι so does.

By setting tk=tk_λ for a & with l^k^μ or ^=0 for k=μ+l we can define a

"child- {pfrl Ψfίί} = {pίϊ} *,Ψ^Ϊ *} (ft=l,-,^+l) of (py+1, Ψζ+1}, and
moreover can define descendent sequences of {pζ+ι, Ψϊ+J successively until
μ=Q. We finally assume that (3.10) holds for {pζ+1, Ψζ+i} and all children of
all its descendent sequences. In what follows we denote this assumption by
B(8, δ).

Lemma 3.2. Let p$+1(t0y ϊμ;.x, |v, £v, ξ) be a multiple symbol satisfying
(2.5) and the condition 2(C0, 0, M, m). Assume that {pζ+1, ΨΪ+]} satisfies
B(8y δ). TA^w there exist constants C, £'>0, Al and Mλ independent of v, μ
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such that for any a and β

(3.11) |8?8Sί?+1(*0; x, ξ)\

τύhere qζ+1 is the symbol defined by (3.9) or (3.9)'. Furthermore, if Me resolve
the constant C in (3.11) into CC?[m]\* when w>0, zϋe can take constants C, Cl9

A1 and Ml independent also of m and have

(3.11)'

For the proof of this lemma it suffices to show

(3.12)

for constants C and Al independent of v, μ and m. In fact, differentiating with
respect to x and ξ, we get in view of φ1=φ^l+1=x ξ

O,-\\

x * JL
when ^t^l. It follows from the last remark in Section 2 that we may assume
|#v— x\^M0 on supppί+1. Noting that | f y— f|<£<£>/2 on supρ^ί+1 and

for JV= |/9 / | + [max(m, 0)] an estimate <?y exp(-£'<£>1/κ) ^M~»N\* X
exρ(— ε'ζξy^β) holds for a sufficiently small M>0, we get the assertion by
means of the Leibniz formula. Similarly, we get the assertion for the case of
/*=o.

For the proof of Lemma 3.2 we prepare the following lemma, which is
the direct consequence of Lemma 2.4.

Lemma 3.3. Let p^ satisfy the same condition as in Lemma 3.2. Assume
that we have (3.10) and

(3.13) supp j>ζ+1c

when μ^l. Then there exist constants £'>0, A1 and M1 independent of v such
that

(3.14) ijkifc; ** f
Proof. Set

?μ; *, f) = o-

It follows from Lemma 2.4 and its remark that §v+1 satisfies the estimate (2.31)



PROPAGATION OF WAVE FRONT SETS 789

with a=β=0 uniformly with respect to ?μeΔμ, since the term defined by (2.29)

f°r pζ+i vanishes from (3.10) and (3.13). Noting that the volume of Δμ is equal
to to/μl wre get the desired estimate. Q.E.D.

Let %(£) be a function in γ(κ)(l?}) satisfying

O^X gl, X = 1 ( | f |^l/4), 2 = 0

We set

r

=. Σ

Setting

ffμ={

we divide />£+1 into 2μ terms:

where X+i v*=Π ^ί*ίf+ι In yiew of this division, for the proof of Lemma
k = l

3.2, that is, for the proof of (3.12), it suffices to show the following:

Lemma 3.4. Let pϊ+ι(t0, ?μ; x, |v, ^v, ξ) be a multiple symbol satisfying
(2.5) and 3(Cμ, A, M, m). Assume that {_pf.+1, Ψ?+ι} satisfies the condition
B(8, δ). W0 assume furthermore that

(*)

'for each Ae {1, •••, /^} it follows that either

18,, Ψ?+11 ^f<D/2 /or Λ// (f0, P, Λ, Γ, ^v, ξ) on supp A

or

/or a// (ί0, ?
μ, *, |v, %\ ξ) on

Then there exist constants A, Al and Mλ independent of v and μ such

that for any N we have

(3.15) |ί?+1(/b; *, f) | ^5CμA^MτN<ξ>-N*Σ@^^Aζ->,y=o (^-j)!

where N/\μ=min(N, μ).

Proof. We shall prove the lemma by induction on μ. When μ—0 the

estimate (3.15) for any integer N^O follows from Lemma 3.3. Suppose μ^l
and that the lemma for any h is valid until μ—l. If \dikΨ^+l\ ^£<|>/2 on
suPP^v+ι f°r a^ ^ ^en the estimate (3.15) follows also from Lemma 3.3.

Suppose that there exists a Ae {1, •••, μl sucn that |8/ AΨ£+ι| ^£<f>/4 on
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supp p*+l. Note that

dtμ=[ f dt1 ... dtk^
μ JΔμ-1

where ΔjLi is defined by (3.3) with respect to tly •••, ί̂ , ίΛ+1, •••, ίμ. Integrat-

ing by parts with respect to tk we have

Hence we get

where the multiple symbol of each term corresponds to the one of (3.16). In

order to apply the hypothesis of the induction, in view of (3.6) and (3.7) we

divide the multiple symbol of <7v + };}(V> #> ?)> j—0, 1, into two terms by multi-

plying the partition of unity {X(dSk, Ψ?;ΊM+y/(£<?»)> 1—3
with k'=k—1+y. Then we get the division

where each term satisfies the assumptions of the lemma. Repeating the same

procedure as above for qζ+\ again and moreover repeating N times, we finally
obtain

Jf 4
/ς |7\ Λμ /τ/*.N_ι_ yπ "SΓ1 Λ/*— 1 κ

\ / iV+l ιV+1 I ' . ' ^V ί" 1 J *

Each term satisfies the assumptions of the lemma. More precisely, multiple
symbols of g&ί and q^\'κ satisfy conditions 3(Cμ,MzNy h+N, M, m—N) and
3(Cμ,M'2"

κ

> h+K—l, M, m—K)y respectively, if we take another constant M2

independent of v, h and K. To prove this, taking another small M if necessary,

we may assume that r(θl9 Θ2, Θ3yy\ rj\y\ rf) = ((dtkΨ^+1)(θl9 Θ2, Θ3,y\ η\y\ r?)Yl

satisfies

for a constant C. Then, noting that r depends only on 3+4w variables, we

get the desired properties for multiple symbols of qζ+Nι and q*+ι'κ

Now, we use Lemma 2.1 by setting C0=Cμ,M^N(h+N)\κ and replacing

m by m—N. Then, from the fact that the multiple symbol of qffl satisfies
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3(CμMϊιr

l h+N, M, m-N) we have

(3.18) \qζ+ϊ\£Cl>M71

for a constant Av Similarly we have

(3.19)

For q%+ι'Ky K=l, « ,7V — 1 we use the hypothesis of the induction with N
replaced by N — K. Then we have

(3.20) "Σ Σ lafrίf I ̂ 4 Σ (5CμMrMvM
.κ=ι y=ι ' Jζ=ι

x ^
MΓ" ίl

*-ι

Summing up (3.17)-(3.20) we get (3.15) if Mt is sufficiently smaller than M2.
This concludes the proof. Q.E.D.

Finally, we give a simple proposition for the argument of the next section.

Proposition 3.5. Assume that

(3.21) 1 9/AΨ?+1(*0, ?", x, |v,

/or # &e {1, •••, μ} and that

(3.22) \X((t» t^ x, ξ)-χi\ ^δ,

for any j e {1, ••-, *}.

jf/ δ ώ sufficiently small, we have

(3.23) I λy.(ί4, F», ff*)-λy.+1(ί4, y», fl») I ̂ £<f > ,

{Yμy Hμ} is the solution of (1.7) αttϊλ z;— />t and with {φ; }yίί replaced by

Proof. The estimate (3.23) follows easily from (3.5) and (1.7) because
we have (X( , B{) = (Xί*> Bί*) - ( Fjl, ̂ ) for jk^j<jk+1, k<= {0, -,/.+!},
where^Ό— 1 andyμ+2— z^+1. Q.E.D.

4. Proof of Theorem 1

Before the proof we state the definition of £-admissible trajectories, fol-
lowing [4] and [5]. Let \j(t, x, ξ\ j ^{1, •••, /} be characteristic roots of Xy
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given in Introduction. Namely, \j(t, x, ξ) belong to G(ιc)([0, T]; SGM) and

satisfy λ, (f, x, θξ)=θ\j(t, x, ξ) for 0^1 and \ξ\ ̂ 1. We say that a curve

{(t, x(t), ξ(t))} C [0, T]xT*(Rn

x) is the bicharact eristic curve with respect to

λ; through (ί, 3;, 97) if {#(£), ξ(t)} satisfies the equation

dx/dt = - Veλy(ί, *, f ) , rff /Λ - VA/*, x, ξ) ,

(#, f )iί-s = (3>> 7)

We denote by Xy(ί, s) a transformation

For an integer z^^O, let Πv+1 denote a set of (z>+l)-reρeated permutations

(Jι>J2> " >jv+ι) with/aS-d, •••,/} and let ΠJ+i denote a subset of Πv+ι whose
elements /v = (/! •• ,yv+1) satisfy jk^jk+i f°r anY ^ Let ί0 be a fixed point in
(0, T] and let Δ£ denote the interior of Δv defined by (3.3). A continuous curve

{(£, x(t)j ζ(ί)}\ ίe[0, ί0]} is called a trajectory of step z>, issuing from p, if for

some /v— QΊ, •• ,yv+1)eΠί+1 and some ?veΔJ it is the bicharacteristic curve

with respect to \Jk when f e[fΛ, ίA.J (Λ=l, •••, ι/+l, ίv+ι=0) and (^(0), f(0))=p.
We often denote the trajectory by C(/v, ?

v, p). A point

is called the end point (at /= ί0) of the trajectory. For an £^0 we say that

the trajectory is ^-admissible if

iHfe P*)— H+1(f*, P*) I ̂ ^<^7> , * = 1, —i ^ ,

where ρk = (xk, ξk) = χjk+ί(tkj tk+1) ••• %yv+1(ίv> 0)p We remark that the bicharac-

teristic curve is also a trajectory of step 0 and it is always 0-admissible.

Since {λy} is bounded in the symbol class S1 and each λy(ί, Λ?, ξ) is homo-

geneous for || I ̂  1, it is easy to see

Proposition 4.1. Let {(ί, p(ί p0)); ίe [0, ίj} ώwote α trajectory C(/v, ?
v, p0)

/or/veπ;+1, ?veΔJ and p0<=T*(Rn)\Q. Then, there exists a positive constant

£>0 independent of Jv and tv such that for p0 = (x0, ξ0), p'0 = (x'09 ξ'0)

\p(f,p,)-p(t',p'o)\£ e«\Po-p'0\,

if \ξ0\ and \ξ'0\ are large enough. Here |p-p'| - \x-x'\ + I f / l f l -Γ/ l fΊ I
f o r p = (xy ξ),p' = (x', ξ')

By means of Proposition 4.1 we may replace the definition of Γ(ί0> V)

in Introduction by the following
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Γ,(ί0; V) = the closure of U T\(tQ; V,)
(4.1)

ε>o

In fact, for any £>0 there exists an 8' (0 <£'<£) such that IY(*0; F)c

UΓ,(*0; I7*). It follows from (4.1) that Γ(ί0; V) is closed in Γ*(Λ")\0.
v=o

Let φj(t, s', xy ξ) be the solution of (3.1) with λ— λy (/e{l, •••, /}), where
λy are characteristic roots of JC of (1). From Proposition 3.1 we can find a

small constant T0 such that the following property holds: Let tQ be a positive

constant smaller than T0. Then, for any fixed ?veΔv and /v— (jly « ,yv+1)e

Πv+i the set °f phase functions {φjk(tk-.ly tk\ x, ?)}Uι (*v+ι=0) satisfies the
assumption (A-l) in Section 1. As in the C°°-case ([10], pp. 185-186) the
fundamental solution E(t, s) of (1) is constructed in the form

E(t, *) = Σ Ij,Φj(t, *)+Σ Σ Γ P- p'X* . (ί, ί,)
y=ι v=ι yAe{i,-,/j J s J s Js ^i

(4.2) *=ι.-.v+ι

X ̂ W1' ̂  •" ^v+1>yv+1(^, ί)Λv - ΛI

(ί0=ί) /or O^ί, ί^Γ0,

where //,φy(ί, ί) is a matrix of Fourier integral operators with phase function

φj (ί, ί; x, ξ) and with symbol 1 ((j, j) element) or 0 (others), and Wj^t, s)

is the one with symbol «?y(ί, sm, x9 ζ) = w°j(t, s\ x, ξ) + Wj(t, sm, x, ξ). Here
wj(ί, ί; Λ, f)eG«([0, Γ0]x[0, Γ0j; 5G

σ

(ίc)) and .̂(ί, *; ,̂ f)eG«([0, T0]χ

[0, Γ0]; 5iG(κ)), that is, eαj satisfies

(4.3) \3ϊβΪ9iftιo j(t, s; x, ξ)\ ^

for constants C and M independent of α, /3, γ and γ', and tϋj satisfies

(4.4) \

for constants M and £>0 independent of α, β, j and γ', and for a constant CΛ

depending only on a. It follows from Theorem 2.1 in [18] that the right hand
side of (4.2) is transformed to that of (1.12) in [20] (cf. Theorem 3.2 in [18]).
Therefore, from Proposition 1.1 in [20] we can find a solution U(t) in -S°°([0, T0]\
3){i]f) for the problem (7) as U(t)=E(t, 0)G. For the proof of the existence

of the solution U(t) for *e(Γ0, T] it suffices to consider the product E(t, 0)

= E(t, kT0)E(kT0, (k—l)T0)—E(T09 0) of the fundamental solutions if t^[kT09

(k+l)T0]. Finally, we note that E(t, s) of (1.12) in [20] maps "̂([0, T0}\ ${*ϊ)
to itself. So, the uniqueness of the solution also follows from the usual duality

method.

For the proof of the inclusion (8) we prepare
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Proposition 4.2. Let V be a closed conic set in T*(Rϊ) and let Γe(V, V)
be a set defined by (4.1) for an £>0 and 0<tQ^T. Let a(xy ξ) and b(x, ξ) be
symbols in SGM satisfying

ΓsuppicF8 / 2,

\\x-y\^εl2 or \ξ/\ξ\ -7/|7| \ ^6/2

if (*, f)<Ξsupp a and (y, ^)eΓ8(ί0; V) .

Then, for the fundamental solution E(t, s) of (4.2) the operator a(X, Dx)E(t0, 0)

χb(Xy Dx) is a pseudo-differential operator with symbol in 51G(K)

Admitting this proposition for a moment, we first give the proof of (8)
by using this. Let U(t0) be a solution of (7) and set Γ=WFG(Kl)(G) for K^
/ί1<l/σ. Assume that (x°, ξ°) does not belong to Γ(ί0; V). Then there exists
an £>0 such that (x°, ξ°)^TQ(t^ V). Since Γε(ί0; V) and V are closed conic
sets, taking another small £ >0 if necessary, we can find symbols a(x, ξ) and

b(x, ξ) in SGM satisfying (4.5), b(x, ξ)=l in a conic neighborhood of V and
a(x\ θξ°) φ 0 f or θ ̂  1 . Then we have

AU(t0) = AE(tQ, 0)G

* 0)BG+AE(tQ,

Here, we used Proposition 4.2 above and Lemma 2.1 in [20] for the proof of
AEfa, Q)BGζΞ<γ(κι\ and for the proof of AE(tQ, 0)(I—B)G eγ^ we used the
similar discussions as in the proof of Proposition 1.1 and Theorem 4 in [20].
Then, in view of Definition , in Introduction we have (x\ ξ°)^WFG^(U(t0)).
This proves (8).

Now, we return to the proof of Proposition 4.2. First, we consider the
case T=T0. Regard AE(tQ, Q)B as a pseudo-differential operator. Then its
symbol is a sum of σ(a(X, Dx}ljtφj(t^ ®)b(X, Dx)) and the terms of the form

(4.6) ?V+1(V, x, ξ)

v"2; *, Γ, *v,
with (yx, •• ,yv-ι)^Πv-ι, z>5^3. Here Ψv+ι is defined by (1.9) with φ1=φv+l

=x ξ and φk+1 replaced by φjk (k=l, •••, v— 1), and Λ+i = Λ+ι(*o, t*~l\ x, Γ,
^v, f ) is a multiple symbol defined by

pw = β(*. F)( Π «ryi(ί4_,, ί,; *», r+1)) i(**, Γ) (ίv-i = 0).

So, for the proof of Proposition 4.2 with T=T0 it suffices to show
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Proposition 4.3. Let ρv+1 be as above. Then the symbol q^+ι(tQ y x, ξ)
(ι>^2) defined by (4.6) belongs to <RGω and it satisfies for positive constants 6',
A and M independent of v

(*o; x, ς)\ ̂ c

for a and β. Here CΛ is a constant independent of β and p.

Proof. In view of Lemma 1.3 and its remark we may assume that pv+1

satisfies (2.5). Hence it suffices to check the conditions 3(Ao, 0, M, (v— 2)σ)
(for a constant A0 independent of v) and B(6y δ) in Lemma 3.2 by means of
(3.11)' with m=(v—2)<r and the fact that we have [(v—2)σ]\*^A'v\ * for a
constant A independent of v. The condition 3(Ao, 0, M, (v— 2)σ) follows

from (4.3) clearly. If |8<AΨV+1(*0, *v~2; *, ξ)\^<ξ>/2 for all fte{l, -, v-2}
and if (x, Γ, £v, f) satisfies (3.22) for a sufficiently small δ>0 then it follows
from Proposition 3.5 that there exists an ^-admissible trajectory of step μ+1,
from (XI, ξ), whose end point is (x, Ξj). Here μ is a number of elements in

{k'y jk^jk+ά f°r a permutation (/i, •• ,/v-ι) which determines Ψv+ι Since
(xv

y ξ) and (x, ξ1) are contained in δ-conic neighborhoods of (Xϊ, ξ) and (xy Hϊ),
respectively, we see by means of the choice of a(x, ξ) and b(x, ξ) that
ipv+ι, Ψv+ι} satisfies (3.10) if δ also satisfies 8^6/2. Next, we consider a child

{#T?,ΨV

V7?} of {Λ+i, Ψv+ι} Then under |9/yΨ^? | ̂ £<?>/2, /=!, -, ̂ -3,
we find the existence of an ^-admissible trajectory of step, at most, μ +1
from (XI, ξ)y whose end point is (x, Hi). Noting the choice of a(x, ξ) and
b(x, ξ) we also see that this child satisfies (3.10). Repeating this procedure, we

finally see that { v̂+ι, Ψv+ι> satisfies the condition B(6 , δ). Q.E.D.

We proceed to the proof of Proposition 4.2 for the general case. For
simplicity we assume T0^T^3T0/2. Then, from the uniqueness of the pro-
blem (7) it follows that for any s with

(4.7) E(t* 0) = E(t* s)E(s, 0) (T0^t0^ T) .

Let ω(s) be a function in γ(κ)(jRJ) satisfying supp ω C (To/2, T0) and
τ

ω(s)ds=ί. Then, from (4.7) we have
JΓo/2

L

0, 0) = I E(t0, 0)ω(s)ds = \ E(t0> s)ω(s)E(s, 0)ds .
Jτo/2 JτoK v

So, in order to show Proposition 4.2 it suffices to show

(4.8) AE(t0, s)ω(s)E(s,
JTo/2

with A=a(X, Dx) and B=b(X, Dx) whose symbols a(xy ξ) and b(x9 ξ) satisfy
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(4.5). Since t0—s^T0 and s^T09 we can apply the discussions of Section 1
to each term in E(t0, s) and E(s, 0), and we obtain

σ(Γ° AE(t* s)ω(s)E(s, 0)Bds)(x, $
JΓo/2

fi ^ ̂  Γ° /Γ'f ' 1 Γ*-1

= 2j 2j 2J/v+lf/ί/+1 \ { I I — \
v = o v/ = 0

 v + 1 v^Jr0/2 Js Js Js

(4 9) £ "̂ «>•-!•••!•»«•'..,
,/ (f f v t / / v / v °̂ v°v+ι,/ί'+ 1l

ZΌ> * » •>, ί , Λ?, ζ^, Λ? ,

l'*}ds + r(t0y s)

with r(ί0, ί)e 51000, where

+Σ3 (Φ^ίί-i, «

Here, Σ/v+lf /{/+1 means the summation which is taken over all Jv+ι=(jι> 'm°>jv+ι)

J t0 fίv-ι f s

•••I (resp. \ •••
5 Js Jθ

J 'v'-i
) for the case v=0 (resp. z/'=0) means that we do not integrate the in-

o
tegrand with respect to ?v-varίables (resp. ?v/-variables). In (4.9) the symbol
p _ _ . satisfies
^/v + i ./C^+i

>/8 (y= 0, ...,„),

>/8 ( = ^+2, ..., v+v'+l)

on suppp ,
'v + i* y v / + ι

and the pair {ί>/ // . , Ψ/ //. } with Ψ/ //, satisfies condition similar
r <-r -/v + 1,

 / v / +ι > •/v + ι » y v / + ι j •'v + i 'v' + i

to B(£, δ) (we note that in this case we pose the condition (3.10) with Xζ and

Eί replaced by the points X^ U, ^)-^>+1W'> 0)(*v+v/+1, f) (1 ̂ f t^ι/+l;

«=ί, ίί/+1=0) or χ ί̂,̂ , tk) .Xjv+ι(tv, ήXj>(sy ίί)-%yC,+1(^, 0)(^v+v/+1, f) (2^

Λ^ι^+1; ίv+ι= y) in the trajectories). Replacing r(ί0, ί) in (4.9) by another
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symbol in 5iG(κ) we may assume moreover that

IΓ+1-lv+2l^<lv+2>/2 on βuppj>/v+ι.7ί,+1.

Then, we can prove (4.8) by the similar discussions as the case of T^T0 if
we use Lemma 2.1' below instead of Lemma 2.1 and the fact that with Ψ=

Ψ/ //. and p=pr j>,/ v + i ' y v / +ι r •* / v + ι y v / + ι

(4.10)

r<5/2 9ί Js Js Js JO Jo

To/2 Js Js Js Jθ Jθ

O J O

dt'2 - dt(}ds

ro/2 J s J s J s J o J o

x Qs

holds and that the first term in the right member of (4.10) is zero. Hence,
the proof of Proposition 4.2 for the case of T0^T^*3T0I2 is reduced to the
proof of Lemma 2.1' below.

Lemma 2.1'. Let p^+1(xy fv, #v, ξ) satisfy (2.6) and consider qv+1(x, ξ)
defined by (2.2) with Φv+1(#, ξ) replaced by x ξ. Suppose that for a k the vari-

ables (ξl

y » ,?v) are divided into two groups (f1, •••,?*) and (ξk+1, •••, ξv) and
they satisfy

Jir

Moreover, let φ>e5>

G(ίC)(τy) αwd/ assume ΣT. ̂ T°
j=ι = + ι

(A-l). Then, there exist constants A and CΛ, and for any 6 (>0) there exists a
constant M=Mζ such that

(4.11) lίvfiSK*, ξ) \ ̂ CoC^M-^β^ξy* exp(f<D1/lc)
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hold.
V + l

REMARK. In the above lemma we need not assume Σ
y=ι

Proof. Let ?v+ι,*(#> ζk> #*> 40 be the symbol defined by (2.9). Then, since
* t v+i φ

yjτ, <τ and 2] τ f :<τ0, we can apply the discussions in Section 2 to the
, = 1 '- ,' = * + ! /~ r r J

integrals with respect to (#*, •. ,Λ^~I, f1, •••, f*""1) and (xk+1, • *,Λ?V, ?*+1, " ,?v)
individually and obtain (2.10) with

f 4 Ί 2 ϊ a (K ^ — O — f \ ^ί(φv + ι,*(* ξ*»** έ)-* e)/7 (v Kk v* £\dx*d£k

\^T.LΔ,J ί/v+ιvΛ> by — *-/5 i I ^ " ^ A » κ ί/v+ι,Λ\Λ> b > Λ > ςjuΛ, uς ,

where ΦV-H,*(#, f*, Λ*, ξ) is defined by (2.8). Write (4.12) as

where

and

Then, together with the discussion (1.6)-(1.7) in [18] for /v+ι(#, £*, ΛJ*, I), we
can easily prove (4.11) by using the factor exp (β<?>1/κ) in the right member of
(4.11). Q.E.D.

5. Hyperbolic differential operators

Let L be a single hyperbolic operator of order m which has a form

(5.1) L = L,L2 .- Lr+AlL2 - Lr+A2L3 ... Lr+.

where LA (Λ— 1, •• ,r) are regularly hyperbolic operators with coefficients in
γ(f£)([0, T]xR") and Ak (k=l, β ,r) are differential operators with coefficients
in 7W ([0, T]xR"x) satisfying

(5.2) Ord Ak^Oτd (L, -•• Lk)-k/μ

for a constant μ^l. We assume /c<μl(μ—l). The form (5.1) is a generaliza-
tion of (12) in Introduction. In fact, (12) is derived from (5.1) by setting
A1=A2= =Ar-l=Q. We remark that any hyperbolic operator with charac-
teristic roots of constant multiplicity can be written in the form (5.1) if the
constant μ is defined as the irregularity of the hyperbolic operator (cf. Theo-
rem 3.1 of [7], see also Lemma 4.1 of [3]).
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Let mk denote the order of Lk and let λA>y(£, x, £), j=^9 "m>mk> be char-
acteristic roots of Lk. We may assume \kj^G(lί\[0, T1]; SGW) by multiplying
a cut function with respect to ξ if necessary. Since Lk is a regularly hyper-
bolic operator, there exist \ίj(t, x, £)eG(/c)([0, Γ]; SgM) such that

(5.3) Lk = (A-λw (t, X, D,)-\'kml(t, X, A,)) -

X(A- W*, X, Dx)-\'k,mk(ty X, D.))

with bkj(t, x, £)eG(lt)([0, Γ]; Sffi). Here the equality (5.3) means that it
mk-ι

holds modulo regularizers of the form Σ Tj(t, X, Dx)DJ

t with r^jR,^) for

any fixed t. Since we may disregard the contribution of such regularizers in
our discussion, till the end of this section the equality means that it holds
modulo regularizers. Set mQ=Oy mk=ml-}- ^-\~mk (mr=m) and

(5.4) 9y = A-λ ,̂,.̂ , X, Dx}-\'kJ_Έk_& X, Dx)

if ffik^j^ffik.

Proposition 5.1. Let L be a hyperbolic operator of order m which has the
form (5.1). Assume (5.2). Then, L can be written as

L=Q1 Qm
»rι

+ Σ Σ f t } . . . / Θ + ι 8.
P

(5.5) +

where dj are defined by (5.4) am/ ^yj--^ zί β pseudo-differential operator bkjr.j
(t, X, D,) with symbol b*i}...if (t, X> ξ) e GW([0, Γ] 5*G )̂.

For the proof we prepare

Lemma 5.2. L^ s be a positive integer and let Q} (j= 1, β ,ί) denote
Dt—\j(t, X, Dx) for some λ/f, Λ?, §)eG(fC)([0, Γ]; 5^(κ)). ^wifiβ Iλ/ί, ̂  ξ)—
\k(t, x, ξ)\ ^Co^ξy for a constant c0>0 if j =$=k and \ξ\ is large. Let A be an
operator of the form

(5.6) A = Σbk(t,X,Dx)Dk

t

for bk(t, x, £)eG«([0, Γ]; 5 '̂*) .
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Then, we can write A as

A=^. Σ aj^jfa Xy DJd^ ••• djk+a(ty Xy Dx)

k<s

for some a(ty xy ξ) and Λ/r., A(f, xy ξ) in G(κ)([0, T}\ SgM).

The proof of this lemma easily follows from the induction on s.

Proof of Proposition 5.1. Let b(ty x, ξ) be a symbol in G(fC)([0, Γj; S£$).
Then for any integer O^k^m there exist a fa xy £)<ΞG(f£)([0, T]y SgM) (/=0,

••-, K) such that bDk

t=a0+Σ aidm-j+i—dm-iQm. On the other hand, from (5.3)
j=2

we can write LjZ^ A as

ZqL2 ••• Lr = (9: ••• 9w)(9Wl+1 ••• 9^2) ••• (9^r_1+1 ••• 9^r)
"A-1

A = ι y=o '; *

and the second term of the right hand side can be rewritten as

y=o

for some bj(ty xy f)eG(κ)([0, ϊ1]; *Sc(?)) Hence we may assume i^=9«Λ_1+1

9^,, and so Lk Lr==d^. +1 8W. Since ZJj1* can be written as LΛ—Σ bJ

kD™k~J

k * y = 1

for some έ|eG(κ)([0, Γ]; S£ω), we may also assume that the order of Ak with
respect to Dt is smaller than or equal to mk—k. Consequently, Ak can be
written as the finite sum of operators of the form Λ.k~kfμAktίAkt2 Aktk, where
Λ=ζDxy and Akj (/=!, * > Λ ) is the operator of the form (5.6) with S=MJ.
Applying Lemma 5.2 to each Akj and {9^y_1+ι, •••, 9»y}, we have

and this gives (5.5). Q.E.D.

Theorem 2 (cf. Proposition 3.3 in [18]). Let L be a hyperbolic operator
of the form (5.1). Assume (5.2). Set σ=l — l / μ . Then there exists a hyper-
bolic system X of the form (1) with bLk(ty xy ξ) in G(fC)([0, T}\ Sσ

G(^ such that
the Cauchy problem (10) for L can be reduced to the equivalent Cauchy problem
(T)for£.

Consequently we have (13) for κλ satisfying κ^κ1<l/σ=μ/(μ—l) con-
cerning the propagation of wave front sets in Gevrey classes of solutions of (10).
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Proof. For ί^<m we set

and for J^Up we denote the length p of / by |/|. Let Π^ be a subset of

Πj whose element J=(j\, " ,jp) satisfies the following: Set Sj = iji9 •••yjp}.
If there exists a Λe{l, — ,r} such that {w*_i+l, •• ,mjfe}Z)5/ then the set

m-l

{mk+ly •••, w} is also contained in Sy. Set Π={0} U( U Π^) and denote the
ρ=ι

number of elements of Π by /. Let u be a solution of (10) and set

(5.7)
j = A^-^'θ/u, /= (J19 -,

where 9/=9yι 9Jy Then, from (5.5) we can write Lu=0 as

(5.8) Ltf - 9 (̂2,..,.)+ Σ 4/(ί, -SΓ, O>/ - 0
Jen

for some i/(ί, x, |)eG(κ)([0, T]; SGW). For/eΠ we set j0=max{;; l^J
, where we denote Sj~φ for J=0. We shall show

(5.9) g,V-.-8/

81 8

if
/or ftί(ί,

Then, together with (5.8) we have for

^(ί,*,A>7 */
9/0 «/ =

- Σ A?(ί, X, A>7+ Σ *^(ί, ̂ , 0,
Jen jeπ

*/ ι/ι=»-ι.
This shows that the /-dimensional vector t/— (w/)/eπ satisfies ^{7—0 for a

system _£ of the form (1). In this way we reduce the problem (10) for L to a
problem (7) for X The fact that (10) and (7) are equivalent is verified by the

same way as in [13] and [8],
So, it remains to prove (5.9). To prove this it suffices to show

ί ΣΛ7(ί,*,A,)97 if
(5.10) 8,097= ίβπ

U-8.+ Σβ7(f,*,β,)

/or
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Since (5.10) follows immediately for the case when/=0 or jQ<j for
we take J e Π such that j0>j holds for some j e Sj. Note that / can be written
as (/ι> '"yjp> *w*-ι+ 1> •••>#*) for some /> and A. Let/>'e{l, ••-,/>} be a maximal
integer such tha.tjp'<jQ and write 9/09/ as

(5.11)
Pf

+Σ

The definition of Π^ implies that for any jq there exists a j'$ΞSj such that
m^/.j+l^y^m^, holds with A' satisfying m^^+1 ^jq^mk^. Hence, by
means of the regular hyperbolicity of L# we have \\ Jq— λ/| jΞ>£β<£> for some
£0>0 if \ξ\ is large enough. Consequently we have

[9/0, 9/J - 0ι9

for

In view of this, each term with commutator [9y0, 9yJ in (5.11) can be written
as the linear combination of 9/, 9//, djq and their minor operators 9/// with
coefficients in G(fc)([0, Γ]; S^((c)), where /.eΠ^i is defined by S/β=Sj\{jq}9

]' is the permutation (jl9 -• ,;ί_ι, /, jq+l9 — ,̂ , w^+l, -- ,m) and the permu-
tation /" of the minor operator 9/// is defined by Sj»=Sj\S or Sf\S or Sf9\S
for a subset 5 of {^Ί, •• ,yβ-ι}. For the operator 9// or its minor operators
9///, if /'ΦΠ or /"$Π, we repeat the above discussions until 9// and 9/// are
represented as the linear combination of 9/ with / in Π. Then, we get (5.10)

and we can complete the proof of the theorem. Q.E.D.

As another application of Theorem 1 we consider an operator L of the form

(5.12) L = L1L2L3+P1L1+P2L2+P3£3+P4 -

Here, Z/y, y=l, 2, 3, are regularly hyperbolic differential operators of order
% (m1+m2-{-m3=m) and Ply P2, P3 and P4 are differential operators of order, at
most, m— ml— 1, m— m2— 1, m— m3— 1 and m— 1, respectively, with coefficients
in 7(>c)([0, Γ]χjR;). If we admit Ly and Py in (5.12) to be pseudodifferential
operators with respect to x, a hyperbolic operator with characteristic roots of
the maximal multiplicity at most three always has the form (5.12), provided
that its characteristic roots belong to G(κ)([0, 71]; SGM) The assumption of
differential operators with respect to x is not necessary for the argument in
what follows.

Theorem 3. Let L be a hyperbolic operator of the form (5.12). Then,
the problem (10) for L can be reduced to the equivalent problem (7) for an operator
of the form (1) with -C satisfying the following:
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if OrdP1^m—m1—2ίOτdP2^m—m2—3
OϊdP3^m—m3—2 and OrdP^m— 3.

i)' σ; =0 if OτdPj^m-mj-2 (j=l, 2, 3),
OrdP4^m— 3 and [L2, L3]=B2L2+B3L3+B4 with differential
operators B2, B^ and B4 of order m3—l, m2—l and m2-\-m3—2,
respectively.

ϋ) σ=l/3 if OrdPJ£m—mJ—2(j=l,2,3)
and Ord P4^m—2.

iii) σ=l/2 ι/ OrdPj^m-nij-l (/=!, 2, 3)
tfrcd Ord P^nι—2.

iv) σ=2/3 otherwise.

REMARK. When the operator L is a differential operator whose maximal
multiplicity is at most three, it seems that the cases i)-iv) cover all the cases
which we can consider as the conditions on lower order terms for any given
constant σ<l. In the above we make a convention: the terms of the forms
A1L2LZ> A2LλLz and AZL^L2 are absorbed in L1L2^3 by modifying the lower
order terms of Lj.

As in the proof of Proposition 5.1 we may assume L1 = d1 dntl, L2 =
9«,+ι — 9^+ ai 3̂ = 9^+^+1-9^ where 9y (j=l, — , in) are defined by (5.4).
Let Tip and Π^ denote the same sets as in the proof of Theorem 2.

Proof of Case i) (cf. [16]). Since Ord(P2L2) and Ord [P^ LJ are smaller
than or equal to m— 3 we can write

(5.13) L =

Let u be a solution of (10) and set/0=(m1+l, •••, m). For/eΠ we set

j = dju if

if J=(h> — »;

where dju=u if /— 0. Using Lemma 5.2 as in the proof of Proposition 5.1
we have from (5.13)

,m) = —P3L3u-P4u

(5.15)

where we denote J^>J' if /, /'eΠ satisfy SjΊ)Sj'. Let / be an element of
Π for which the set Sj contains just pQ = m2-\-m3— 1 elements of {Wi+1, •••, m}.
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Then, denoting /=(/ι, -Jp-p0,jP-p0+ι, —,./,) with j\, •• ,^-Joe{l, •••, m,} and
1 for k>p—p0, we have from (5.10)

(5.16) 8yβ87 - 8,, - 8V? L2L3+ Σ a j d j
0

> -

with 07 and αleG?(κ)([0, Γ]; SGOO). Here we used the fact that the order of
Qj1 djp_~P1 is smaller than or equal to m— 3. Hence, we can reduce the

problem (10) to (7) by (5.15), (5.10) and (5.16). This concludes the proof
of Case i).

Proof of Case i)'. We add to the set Π the set Π'={J=(jl9 •••tjp,
*»!+!, •• ,^2);;ι<y2< <y/,yι, •• ,y/e{i, •• ,m1, m2+ι, •••,/?*}, {i, •• ,m1}ct
^/> {^2+l> •••, m}ct*Sf/} and we define Uj as in (5.14). Then we have

(5.15)' 9ιK(2.....«> ̂  -P2L2u-P3L3u-P4 u

= Σ!

where /belong to ΠUΠ'. Consequently, in view of the proof of Case i) it
suffices to derive equations for uj with /elΓ. Let J=(jι, " ,jk> ^ι+l> •">
m2) elΓ and yo=max {j; 1 5jy ^my j φ 5/} . For the case where the number of
elements in {jly •••,;'*} (Ί {m2+l, •• ,m} is smaller than m3— 1, from the same
discussion to prove (5.10) we have

(5.17) 9/o9/= Σ ajdju+aL2u
'
/or a

So, we assume the number of elements in {jΊ, --- jyA,} Π {^W2+1> •-, w} is equal
to m3— 1. Then, we have from [L2, L3]=B2L2-\-B3L3+B4

ajdju+aL2u

= 9/ι(L2L3+P1)M+ _ Σ β'7 87 « ,
Jen u Πx

where /x e Π .̂̂  with 3^= {j\, —Jk}\{m2+l, •••, m} and aj, a, a'~<=Ξ
G?(κ)([0, Γ]; SίSoo). Here we used Lemma 5.2 to represent 87j B2L2+dfιB3 L3+
djl(B4—P1) as a linear combination of 87 (/e ΠUΠ') with coefficients in
G(κ)([0, Γ]; 5G°(K)). Combining (5.15)', (5.17), (5.18) and the results in the
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proof of Case i), we obtain the systemization for Case i)' and we can concludes
the proof of this case.

REMARK. The condition that for any j'e ̂ +l, •• ,m2} and y^{m2+l,
•••, m} the equation

[3y, 9y/] = Λjj'Qj + bjj'dj' + Cjj'

holds with symbols ajΊ', bj^ and cnt in G(ιc)([0, Γ]; SGOO) implies that [L2, L3] =
B2L2

JrB3Lz-{-Bι in the condition for the case i)' if we admit Bj to be pseudo-
differential operators with respect to x.

Proofs of Case ii) and iv). Proofs are the direct consequence of Theorem
2. Indeed, in the case ii) (resp. iv)) the operator L can be written as

L^L.+P., P4=:Σβ/Dί',βyeG«([0, Γ]; S^ΓO with q=2 (resp.j=l),
J = 0

Proof of Case iii). Let {jl9 •••yjp} be a subset of {1, •••, m}. By induction
on p it is easy to see

(5.19) ~ "Ί ">.-ιw>.+ι«".w>.«

cnώ a7e=G«([0, Γ]; 5SW)

because [8y> 8J, [9//, [9, , 3,]], - belong to G«([0, T]; 5G°W). Set Π="|JΠJ
(Πg={0». We shall prove *"°

/c OΛ\ 7" Λ f) ft [ v Λ ~ ft

with α7eGW([0, Γ];5G°(ίc)).

As in the beginning of the proof of Proposition 5.1 we may assume that the
order of P4 (resp. PJyj=l, 2, 3) with respect to Dt is smaller than or equal to
m—3 (resp. m—my—2) by adding the second term of the right hand side of
(5.20). Next, we apply Lemma 5.2 for A-1Py (j=l, 2, 3, 4) and use (5.20) for
the terms of the form Qj^~dj~Lk with k=l, 2 and p<^m—mk—2. Then,
P1L1

JτP2L2+P3L3-{-P4 can be written as the linear combination of h.(rn~p}*Qj
(/(ΞΠ,, p^m-2) with coefficients in G(f£)([0, T]\ S£M). Let J^U°P

(O^p^m—1) and setyo=max{7; l^j^m,j$ΞSj}. By means of (5.19) we have

with aj<=GV([Q,T];S°GM).

Here /'eΠί+1 satisfies 57/=57U {J0} The conjunction of (5.20) and (5.21)
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shows that the vector U=(UJ)J(EU defined by (5.7) with Π^ replaced by Π£
satisfies -£77—0 for a system X of the form (1). This proves the reduction
of (10) to (7) for Case iii). Q.E.D.

As shown in Theorem 3 it seems to be very difficult to find the conditions

on lower order terms of a hyperbolic operator which the problem (10) is

reduced to an equivalent problem (7) of a hyperbolic system (1) with a given

6. Equivalence of two estimates

In this section we assume that characteristic roots λ/£, oc, ξ ) of X belong
to $°°([Q, Γ]; S1) instead of G(κ)([0, T]\ S£M) and are homogeneous for \ξ\ ̂ 1.
Set

61) , I),

= τ-λΛf, *, f) , ./ = ι,-,/,
where X=(t, x) and f =(τ, ξ). In what follows we write *=(*, f )
Λ2B+2 and δ*=(δ*. δf)eΓ2(r*(Λ»-fl))^.R2»+2.

For the case where p(z) has the form (6.1), we shall define the "flows"
Kl(z<=T*(Rn+1)\Q following [22] and [21]: We first define the localization

where ^(δsr)ίθ (in δ^) is a homogeneous polynomial of δs

Since /> has the form (6.1) the localization />2(δ#) is simply given by

(6.2) p,(S) = ( Π PA*)) Π (V?ίy(a) δ*+ VfίX*) δf ) ,
y$^2 yes«

where Σz is a maximal subset of {!,•••,/} satisfying z^ Π PJ1^)- Here
yes*

^71(0)={^eT*(Λw+1)\0;^X^) = 0}. Let Γ, denote the connected component

of {8z G T,(T*(RH+1)) y pg(δz)*Q} which contains (0; 1, 0, — , 0). Then it
follows from (6.2) that

(6.3) Γ2 = Π {δ*; σ(Hp,(z

where σ(δar', δ5r)=δr δ|— Sf' δU and fiΓ^(ar) denotes (V?/>y(#), -V
Set

Π - {δ^ σ(δ^, δ^) ̂  0 /or αnj; δ^r e Γ2} .

Then by n eans of (6.3) we have

(6.4) ΓΓ = { Σ αy^y(») α, ̂  0} .
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Now, we define Kϊ as

(6.5) Kϊ = {z(s)<=T*(Rn+1)] {z(t)} is Lipschίtz continuous curve

satisfying (d/ds)z(s)^Γ*(S) (a.e. s) and #(0)=#, s^

Theorem 4. Let V be a closed conic set in T*(R")\Q and let t0(=(Q, T].

Then We have

(6.6) r(ί0; v) = {π(κt n {ί=/b»; *GK-\V) n {* =

where n is the natural projection from T*(R*~+l) to T*(Rn

x) and p~\0)= U ̂ (O).

An inclusion relation Γ(ί0; F)ZD{ } was proved in Theorem 4.4 of [22].

We remark that the assumption (L.2) of [21] is verified because X; (£, Λ?, £)€Ξ

-®°°([0, T1]; A?1). So, in what follows we shall show another inclusion relation.

Suppose that δ0eΓ(V, V). Then for any £>0 there exists an £-admissible

trajectory linking δ0 and ps£ΞV. Taking a subsequence of {pg}ε>0, if necessary,
we may assume that ρz converges to a point ρ0^V because V is closed. It
follows from Proposition 4.1 that for any £>0 there exists an ^-admissible
trajectory issuing from p0 whose end point δε converges to S0. From the
^-admissible trajectory {(ί, x(t)y ξ(t))\ t<^[Q, t0]} dRtX T*(Rn

x) we make a lift

CtΞ{(ί,Λ(ί),τ(ί),f(ί));ίe[0,ί0]}cΓ*(JZ;+1) by setting τ(t) - λ/f, x(t), ξ (t))
if {(ί, x(t), ξ(t))} is the bicharacteristic curve with respect to λy. It is clear

that Cί

εC^)~1(0). Taking a subsequence {C*e}8>o> if necessary, we may assume
that the initial point of C, for any £>0 equals a point #°e Γ*(ΛM+1)\0 with

π(%Q)=p0. Similarly we may assume that the end point zs of C9 converges to

a point 5r0eΓ*(Λn+1)\0 with 7r(^0)=δ0. Summing up, for the proof of (6.6)
it suffices to show

(6.7) *0elζr+o.

In order to show this we need to define the set K^tίQ(h) for A>0 which

approximates K^o, following [22] and [21]. Let 7^ be a compact neighborhood

of #° in T*(ΛM+1). We assume that X^ is large enough to contain all lifts of
£-admissible trajectories for £<1 from #°. For A>0 and zGΞK, there exists
a compact set Λf(#, A) in Γ2 such that (0; 1, 0, — , 0)e 71̂ (2, A) and

where M denotes the interior of M and (Γ)A is defined by

(Γ)A={δ^; δ#=: 0 or I |δ^|-1δ^-|δ^'Γ1δ^Ί<^/

Here we take M(z, h)={0} if Γί={0}, that is, if ^φ^-^O). By Theorem 2.3
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of [22], for each λ>0 and z^K there exists r(z, h)>0 such that r(z, h)<h and

(6.8) Mfa h) c IV for z1 (Ξ Ufa h}={zl; \ zl-z \ <rfa h)} .

(In our special case, this fact follows easily from (6.3)). Since K is compact,
-ZVCA)

there exists a finite number of zhJ^K(l^j ^N(h)) such that Kd U U'(zk'J, h),

where U'fa h)={*'\ |*'— #| ^r(ar, A)/2}. We remark that z^p~\0) for any
set/' (**•', A) if 5r* yφ/>"1(0). In fact, if **•''$ /Γ^O) then we have M(zhJ, h)σ

= {0} and hence, it follows from (6.8) that for *e £/'(**•', A) we have Π={0},
that is, sφ^Γ^O). Now, we define K^ttQ(h) as follows: A point ^e^ Π
{O^t 5j£0} belongs to K*0fto(K) if there exist /0, "-j^v and 21, •••, ̂ v-1 such that

3*eE7'(** '*, A) (O^A^i;) and

(6.9)

where ^0=^°, ^v=^ and p(A)= min r(** ', A)/2. We remark that Kϊ*ti(h) is
i^y^jvc*)

well-defined because the assumption (L-2) of [22] is valid (see pp. 1160 in [22]).

Proposition 6.1 (see Theorem 2.4 of [22] and Theorem 3.3 of [21]). It
follows that

(6.10) Π Kϊ*h(h)
Λ>0

inhere K denotes the closure of K.

By means of this proposition, for the proof of (6.7) it suffices to show

(for auy /?>0 there exists an £0>0 such that the end

(6>11) ( point zζ of the lift C, belongs to K^>tQ(h) if 8^80 .

Lemma 6.2. Let {z(t)=(t, x(t), τ(t), ξ(t)); fe[0, ί0]}
 be a Kfi °f an ε~

admissίble trajectory. Then for any two continuous points z(sλ) and z(s2) on the
lift we have

(6.12) I *(*)-*(*

where C it a positive constant and I is the size of the system -C.

Proof. Let πϋ denote the natural projection from T*(Rn+1) to RtX T*(Rn

x).
It is clear that

(6.13) koWίiM-ffoWίί))! £C\Sl-st\.

Assume τ(sk)=\jk(π0(2(sk))y k=l, 2. If jι=j2 then (6.12) follows from the con-
tinuity of \j. Assume that jι^FJ2- For simplicity we consider the case for
/=2. By taking a discontinuous point z(tr) between zfa) and z(s2) we estimate
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by using (6.13), where \.(s)— X;-(;TO(#(£)). In the general case for 7^3 we
can also estimate the difference between τ(^) and τ(s2) by taking 7—1 discon-
tinuous points, at most, between zfa) and z(s2). Then, we get (6.12). Q.E.D.

Let HI denote the natural projection from T*(Rn+1) to Rt. Set

r fj (~\. v1 n \ rv >ov frf ffi 4^,jJ.J.p \f&jj s i Cty — 1, f^Cj=i^Jf IvΊ. IU.T"H .
y=ι y

Since the Hamilton field Hp.(z) depends only on π^(z) it follows that if zk

(k=l, 2) are two points of the lift Ct of an ^-admissible trajectory then for
any vi^M* there exists a vp^SLp such that

(6.14) I vj-v

where C is a constant independent of the lifts Cε of ^-admissible trajectories.

Lemma 6.3. For any h>Q there is an 6(hy /)>0 satisfying the following
property. Assume that %k (Λ=l, 2) tzr^ two continuous points on a lift Cζ of an
£ -admissible trajectory such that £^£(Λ, /) and

Then there exists a viξΞM* such that

(6.15) K^-z^/π^-z^-v

where C is a constant independent of h and (?g.

REMARK. Let Σ be a subset of {1, •••, /} such that the part of Ct between
zl and z2 is composed of bicharacteristic curves with respect to λ; , j eΣ. Then

we can replace M* in the lemma by c#Jι={ Σ tfy Hj/*1); Qfy^0> Σ^y = l}.

Proof. We shall prove the lemma by the inductive method on /. The
case for 7=1 is trivial. So, we assume 7^2 and suppose that the conclusion
holds until 7 — 1. Take continuous points 21, •••, £v-1 on Cz between zl and
z2 such that

Setting h0=τfι(sf— s?) and Ajk=τr1(2*+1— 2*) (Λ=l, •••, ̂ — 1) we write

(6.16) (z2
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Suppose that, for any k, the part of Ce between 2* and Zk+1 is composed of

bicharacteristic curves with respect to, at most, I— I elements of {λ; }. Then

it follows from the hypothesis of the induction that if £5j£(A3, /—I) we have

(2k+1-Zk)/hk-v;* = O(h3) for vτ^SLτ* .

Here v=O(h3) means \v\ ̂ Ch3 with a constant C independent of h and the

choice of the lift Cz of 8 -admissible trajectory. By using (6.14) we have for

some v^i^M^

(#+ί-#)lhk-vk

βl = O(h) .

Consequently, using Σ hk/h0=l we obtain (6.15) in this case.

Consider the case that the part of C9 between Zk and Zk+1 for some k is

composed of bicharacteristic curves with respect to full elements of {Xy}y.i.
We denote by kλ the minimum of such k and by k2 the integer k2 such that

k2— 1 is the maximum of the &'s stated above. Now, we write (6.16) as

(6.16)' (J-z1)^ = Σ (

Suppose that πι(2k*—Zkl)^*t?. Then it follows from Lemma 6.2 that we have
|Λ— 2*ι|=O(A2) if ε^min(ε(h3, /-I), A2). Hence, the second term of the
right hand side of (6.16)' is estimated by the constant times of h. So, we get

k2-ι

(6.15) by using the discussions of the preceding paragraph and Σ (hk/h0)v=

O(A)forany
Assume that ^(Λ— 2*ι)^A2 and let 8 ̂ mm(6(h3, /—I), h3). To complete

the proof it suffices to show

(6.17) (2*2-£*ι)/A-ϋ2~*ι = O(h) for some vz^Jl^ ,

where h=πι(2**—Zkι). Since the bicharacteristic curves with respect to full

elements of {λ; }y= 1 appear on the part of Cζ between 2*ι and 2*ι+1 (also between
Zk2~l and 5f*2), it follows from the continuity of λy that we have

(6.18) λ,(7r0(^0)-λ/(^o(^0) ̂  <W , ί = 1, 2 ,

for any j,j'<={\, •••,/} .

In order to simplify the notation below we denote 2*ι and 2*2 by 21 and £2,
respectively, in what follows. Since π0Ce is continuous in RtX T*(Rn

x) we have

(6.19) 7r0(22-^)/A-Σ ctj^Hpffl) = 0(h)
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for some #y^0 with Σ ctj=l. Let π{ be the natural projection from T*(Rn+1)
to Rr, where r is the dual variable of t. We shall show

(6.20) ^-^/Λ-Σ apKHptf1)) = O(Λ) .
y=ι

In view of h^h2 it follows from (6.18) that

(6.21) π((?-?)lh

Set Sk = Ki(%k) (k=l, 2) and denote the £-admissible trajectory πQ(C9) by

{(*, *(*)> £(*))}• Then we have

(o.ZZj y=ι

i, «(ί), ξ(t))dξldt)dt .

The second term of the right hand side is equal to

(Σ «, V,λXn Σ α, Vέλy(^)).(^ fV*(0, dζ(t))}+0(h) .
j=ί y=ι \ ft Js] /

It follows from (6.19) that

1- \\dX(t), dξ(t)) = I-(β(#)_ff(2i))

Hence, we can estimate the second term of (6.22) by

), Σ aj\j(^)+O(h)} = O(h),

where { , } denotes the Poisson bracket in T*(Rn

x). Note that the first term
of the right hand side of (6.22) equals Σ ajπ^Hp.^+O^). Hence we
get (6.20) from (6.21). This concludes the proof of (6.17), and hence, the
proof of (6.15). Q.E.D.

Proof of (6.11). Let A be a fixed positive number. As in the proof of
Lemma 3.2 of [21], for any j e{l, •••, N(h)} we can find an h(j)>0 such that

(6.23) (

for z e I7"(** ', h) Ξ {* | *-«*•> | <2r(«* •', A)/3} ,
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if **•>€= ̂ (O) (see (3.4) of [21]). Set λ'=min{p(λ), A(l), -, h(N(K))} with
a convention h(j) = oo if ^^^^"^O). Let A" be another positive number
sufficiently smaller than A', which is determined later on. For the moment we
take h" as the number for which we can find a constant £(&")> 0 satisfying the
following;

( if Mo points zk (k= 1, 2) on the lift Ce with e^B(h")

\ satisfy π^-z2)^" then \zl-z2\<p(h)β holds

[ (and hence z^U'^, h) implies *2 EΞ [/"(**'>, h]) .

Here we used Lemma 6.2.
We shall apply Lemma 6.3 by setting h=h". Assume that 6 igmin(£(A", /),

£(#"))• Take continuous points 21, •••, 2V-1 on Cζ linking #° and #β such that

Then it follows from Lemma 6.3 and its remark that for any &e{0, •••, v— 1}
there exist {αy} with α; ̂ 0 and Σ α; =l such that

Here Σ* is a subset of {1, •••,/} satisfying the following: The part of the
lift <?ε between Zk and ^*+1 is composed of bicharacteristic curves with respect
to λy for j ^Σfc. By means of (6.13), for any j eΣΛ there exists a point #; on
Ce between 2* and 2*+1 such that j^e^J^O) and

Note that Hpj(z*)GΓσ,j. It follows from (6.24) that a'e £/"(**•'*, A) holds if
^*e U'(zhtik^ h). Hence, using (6.24) and the convexity of M(#A';*, h)σ we have

(6.25)

(6.26)

= Σ αX^^-^J/l^^-^IX^/^+^+i JeM^^

because .̂(^^-^^^^(Γ^^/cM^^ ,̂ A)σ if Ar/ is sufficiently smaller than h' .
Then, (6.25) and (6.26) show that the end point #ε of Cζ belongs to K*ottQ(h)

if £^min(£(/Λ /), 5(A/7)), that is, we have proved the property (6.11). Q.E.D.
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