Watanabe, T. Osaka J. Math. 23 (1986), 617-632

ADAMS OPERATIONS IN THE CONNECTIVE K-THEORY OF COMPACT LIE GROUPS

TAKASHI WATANABE

(Received May 25, 1985)

1. Introduction

Let *G* be a compact, 1-connected, simple Lie group of rank 2 or 3. That is, *G* is one of the following:

 $SU(3)$ *, Sp*(2), G_2 , $SU(4)$, Spin(7) and Sp(3).

In $[14]$, for these groups G , we have given a complete description of the Chern character ([7, §1])

$$
ch\colon K^*(G)\to H^*(G;Q).
$$

Using this, one can easily compute the Adams operations *ψ r* ([1]) on *K*(G)* for all $r \in Z$ (see (2.5)).

Throughout this paper *p* will denote an odd prime. Let us introduce some spectra ([4, Part III]). Let $\bm{\mathit{KZ}_{(\rho)}}$ denote the ring spectrum representing complex K-theory localized at p . Let $kZ_{(p)}$ be its (-1)-connected cover. So there is a map of ring spectra $\kappa \colon \bm{k}Z_{(\rho)}{\rightarrow} \bm{K}Z_{(\rho)}$ such that

$$
\kappa_* \colon \pi_*(\mathit{kZ}_{(\rho)}) = Z_{(\rho)}[u] \to \pi_*(\mathit{KZ}_{(\rho)}) = Z_{(\rho)}[u, u^{-1}]
$$

satisfies $\kappa_*(u) = u$ where $|u|=2$. As is well known, there is a ring spectrum $g(p)$ such that

$$
\pmb k Z_{(p)} \simeq \bigvee_{i=0}^{p-2} \Sigma^{2i} \pmb g(p)\ .
$$

Here the injection $\iota\colon \bm{g}(p){\rightarrow}\bm{k} Z_{(p)}$ is a map of ring spectra such that

$$
\iota_*\colon \pi_*(\textit{\textbf{g}}(p))=Z_{(\rho)}[v]\rightarrow \pi_*(\textit{\textbf{k}} Z_{(\rho)})=Z_{(\rho)}[u]
$$

satisfies $\iota_*(v) = u^{p-1}$ where $|v| = 2(p-1)$. For *r* prime to *p* there are maps of ring spectra

$$
\psi': KZ_{(p)} \to KZ_{(p)},
$$

\n
$$
\psi': kZ_{(p)} \to kZ_{(p)},
$$

\n
$$
\psi': g(p) \to g(p)
$$

which are called the stable Adams operations ([6], [5]). They commute with *k*, *i* and satisfy $\psi'(u) = ru$. Let

$$
\theta_r\colon \boldsymbol{g}(p) \to \Sigma^{2(p-1)}\boldsymbol{g}(p)
$$

be a unique map of spectra such that $(v\cdot)\theta_r{\simeq}\psi'-1$ where $v\cdot\colon \Sigma^{2(p-1)}\textbf{\textit{g}}(p)$ is multiplication by *v.* We denote by *j(p r)* the fibre spectrum of *θ^r .* If *r* or r' generates the group of units of Z/p^2 , then $j(p; r) \simeq j(p; r')$. In this case, we may write $j(p)$ for $j(p; r)$ and use a suitable r to discuss it. $j(p)$ is known to be a ring spectrum (see [13]).

Let $j(p)$ _i(G) (resp. $j(p)^{i}(G)$) be the *i*-th reduced $j(p)$ -homology (resp. cohomology) group of G. One of our targets is to compute the groups $\widetilde{i(b)}$ *i*(G) for all the above *G* and *p*. As will be mentioned in §3, the cases $(G, p) = (G_2, 3)$, $(Sp(3), 3)$ are most interesting. Then we obtain

Theorem 1.1. For $i \leq 21$ and $G = G_2$, $Sp(3)$ the groups $\widetilde{j(3)}_i(G)$ are listed *in the following table:*

where \oplus *indicates the direct sum of the groups.*

Since *G* is parallelizable, the Poincaré duality isomorphism

$$
E_i(G) \simeq E^{n-i}(G)
$$

holds for any spectrum E , where $n=$ dim G (see [4, Part III]). Therefore, to compute $j(p)$, (G) it suffices to compute $j(p)^{n-i}(G)$. Theorem 1.1 is a con sequence of Theorem 4.6, in which the cup-product ring structure of $\tilde{j}(p)^*(G)$ is described for $(G, p) = (G_2, 3)$, $(Sp(3), 3)$.

The remainder of this paper is organized as follows. In §2 we collect some results for later use. In §3 we describe the action of θ_r on $g(p)^*(G)$. In §4 we compute the rings $j(p)^*(G)$.

2. Preliminaries

This section is devoted to describe the rings $K^*(G; Z_{(p)})$, $k^*(G; Z_{(p)})$, $g(p)^*(G)$ and the homomorphism $ch: K^*(G) \rightarrow H^*(G;Q)$.

Notice that *G* is assumed to be as in §1 and *p* is assumed to be an odd prime. According to Borel [9], G has no p -torsion and we have

Lemma 2.1. There exist elements $x_{2m_i-1} \in H^{2m_i-1}(G; Z_{(p)})$, for $1 \leq i \leq l$ *{where 1=2 or* 3), *such that*

$$
H^*(G;Z_{(p)})=\Lambda(x_{2m_1-1},x_{2m_2-1},\cdots,x_{2m_l-1})
$$

 $where \ 2 = m_1 \leq m_2 \leq \cdots \leq m_l$ and Λ denotes an exterior algebra (over $Z_{(p)}$).

For this lemma and the values of m_i see [8]. We need the famous result of Hodgkin [11]:

Lemma 2.2. Let $\{\rho_1, \dots, \rho_l\}$ be a system of ring generators of the complex *representation ring R(G). Then there exist elemenis* $\beta(\rho_i) \in K^{-1}(G)$ *, for* $1 \le i \le l$ *, such that*

$$
K^*(G)=\Lambda(\beta(\rho_1),\,\cdots,\,\beta(\rho_l))\otimes Z[u,\,u^{-1}]\ .
$$

Therefore

$$
K^*(G;Z_{(p)})=\Lambda(\beta(\rho_1),\,\cdots,\,\beta(\rho_l))\otimes Z_{(p)}[u,\,u^{-1}]\ .
$$

The following proposition shows that

$$
\kappa: k^*(G; Z_{(p)}) \to K^*(G; Z_{(p)}),
$$

$$
\iota: g(p)^*(G) \to k^*(G; Z_{(p)})
$$

are injective.

Proposition 2.3. *One can choose elements*

$$
\xi_{2m_i-1}\in g(p)^{2m_i-1}(G)\,,\qquad for\quad 1\leq i\leq l\,,
$$

such that

(i) $g(p)^*(G) = \Lambda(\xi_{2m_1-1}, \ldots, \xi_{2m_l-1}) \otimes Z_{(p)}[v].$

(ii) $k^*(G; Z_{(p)}) = \Lambda(i(\xi_{2m_1-1}), \cdots, i(\xi_{2m_l-1})) \otimes Z_{(p)}[u].$

(iii) $K^*(G; Z_{(p)}) = \Lambda(\kappa(\xi_{2m_1-1}), \cdots, \kappa(\xi_{2m_l-1})) \otimes Z_{(p)}[u, u^{-1}].$

(iv) The CW-filtration degree ([7, §2]) of ξ_{2m_i-1} is $2m_i-1$; or equivalently, *™(%2mi-i) satisfies*

$$
ch(u^{m}i\kappa\iota(\xi_{2m_{i}-1}))=cx_{2m_{i}-1}+higher \ terms
$$

where c is a unit of $Z_{(p)}$ *.*

Proof. By [7, §2.4] the Atiyah-Hirzebruch spectral sequence for $K^*(G; Z_{(p)})$ collapses. Therefore it follows from the naturality with respect to κ (resp. *c*) that the Atiyah-Hirzebruch spectral sequence for $k^*(G;Z_{(\rho)})$ (resp. $g(p)^*(G))$ collapses. Thus Lemma 2.1 yields the result; in particular, for (iv) see [7, §2.5].

We quote from [14] the following

Lemma 2.4. *For our groups G, the Chern character*

$$
ch\colon K^{-1}(G)=\tilde{K}(\Sigma G)\to \tilde{H}^*(\Sigma G;Q)\simeq\tilde{H}^{*-1}(G;Q)
$$

is given by:

 (1) *If* $G = SU(3)$ *, we have*

$$
ch\beta(\lambda_1) = -x_3 + \frac{1}{2}x_5,
$$

$$
ch\beta(\lambda_2) = -x_3 - \frac{1}{2}x_5
$$

 $(where \{\lambda_1, \lambda_2\}$ generates $R(SU(3)))$.

(2) *IfG=Sp(2),wehavι<*

$$
ch\beta(\lambda_1) = x_3 - \frac{1}{6}x_7,
$$

$$
ch\beta(\lambda_2) = 2x_3 + \frac{2}{3}x_7.
$$

 (3) *If* $G=G_2$, we have

$$
ch\beta(\rho_1) = 2x_3 + \frac{1}{60}x_{11},
$$

$$
ch\beta(\Lambda^2 \rho_1) = 10x_3 - \frac{5}{12}x_{11}.
$$

(4) *IfG=SU(4),* , *we have*

$$
ch\beta(\lambda_1) = -x_3 + \frac{1}{2}x_5 - \frac{1}{6}x_7,
$$

\n
$$
ch\beta(\lambda_2) = -2x_3 + \frac{2}{3}x_7,
$$

\n
$$
ch\beta(\lambda_3) = -x_3 - \frac{1}{2}x_5 - \frac{1}{6}x_7.
$$

(5) If $G = Spin(7)$ *, we have*

$$
ch\beta(\lambda'_1) = 2x_3 - \frac{2}{3}x_7 + \frac{1}{60}x_{11},
$$

\n
$$
ch\beta(\lambda'_2) = 10x_3 + \frac{2}{3}x_7 - \frac{5}{12}x_{11},
$$

\n
$$
ch\beta(\Delta_7) = 2x_3 + \frac{1}{3}x_7 + \frac{1}{60}x_{11}.
$$

(6) *If* $G = Sp(3)$, we have

$$
ch\beta(\lambda_1) = x_3 - \frac{1}{6}x_7 + \frac{1}{120}x_1,
$$

\n
$$
ch\beta(\lambda_2) = 4x_3 + \frac{1}{3}x_7 - \frac{13}{60}x_1,
$$

\n
$$
ch\beta(\lambda_3) = 6x_3 + x_7 + \frac{11}{20}x_1.
$$

An application of this result is a quick calculation of the operation ψ' on $K^*(G)$. For example, in $K^{-1}(SU(3))$ we have

(2.5)
$$
\psi'(\beta(\lambda_1)) = \frac{r^2(r+1)}{2}\beta(\lambda_1) + \frac{r^2(-r+1)}{2}\beta(\lambda_2),
$$

$$
\psi'(\beta(\lambda_2)) = \frac{r^2(-r+1)}{2}\beta(\lambda_1) + \frac{r^2(r+1)}{2}\beta(\lambda_2)
$$

(cf. the proof of Proposition 3.3).

3. The operation θ_r on $g(p)^*(G)$

In this section we first recall the facts we need about the p -localization of G . With this as a background, we shall describe the action of θ , on

Let $B_n(p)$, for $n \geq 1$, be the S^{2n+1} -bundle over $S^{2n+2p-1}$ such that

$$
H^*(B_n(p); Z/p) = \Lambda(x_{2n+1} \mathcal{Q}^1 x_{2n+1}),
$$

It has a cell structure:

$$
(3.1) \t Bn(p) \simeq S^{2n+1} \cup e^{2n+1+2(p-1)} \cup e^{4n+2+2(p-1)}.
$$

Then G is called p -regular if and only if it is homotopy equivalent to a product of spheres when localized at p , and G is called quasi p -regular if and only if it is homotopy equivalent to a product of spaces *Bⁿ (p)* and spheres when loca lized at *p.*

The following result is due to Mimura and Toda [12].

Lemma 3.2. *We have*

- (1) $SU(3) \approx S^3 \times S^5$ *for* $p \geq 3$.
- (2) $Sp(2) \cong S^3 \times S^7$ for $p \geq 5$; $Sp(2) \cong B_1(3)$.
- (3) $G_2 \widetilde{\underset{\mathcal{P}}{\sim}} S^3 \times S^{11}$ for $p \geq 7$; $G_2 \cong B_1(5)$.

- (4) $SU(4) \approx S^3 \times S^5 \times S^7$ for $SU(4) \approx B_1(3) \times S^5$.
- (5) *Spin*(7) $\approx S^3 \times S^7 \times S^{11}$ *for* $Spin(7)$ \cong $B_1(5) \times S$
- (6) $Sp(3) \cong S^3 \times S^7 \times S^{11}$ for $Sp(3) \cong B_1(5) \times S^7$.

We first consider the cases in which G is p -regular.

Proposition 3.3. *In the following cases there are elements* $\xi_{2m_i-1} \in g(p)^{2m_i-1}(G)$, *for* $1 \le i \le l$, *as in Proposition* 2.3, which satisfy:

(1)
$$
G = SU(3), p \ge 3
$$
.
\n(a) $u^2 \kappa \iota(\xi_3) = -\frac{1}{2} \beta(\lambda_1) - \frac{1}{2} \beta(\lambda_2) \frac{ch}{\lambda_1} x_3$
\n $u^3 \kappa \iota(\xi_3) = \beta(\lambda_1) - \beta(\lambda_2)$
\n(b) $\theta_r(\xi_3) = 0, \theta_r(\xi_5) = 0$.
\n(2) $G = Sp(2), p \ge 5$.
\n(a) $u^2 \kappa \iota(\xi_3) = \frac{2}{3} \beta(\lambda_1) + \frac{1}{6} \beta(\lambda_2) \frac{ch}{\lambda_3} x_3$
\n $u^4 \kappa \iota(\xi_7) = -2\beta(\lambda_1) + \beta(\lambda_2) \xrightarrow{\lambda_7}$.
\n(b) $\theta_r(\xi_3) = 0, \theta_r(\xi_7) = 0$.
\n(3) $G = G_2, p \ge 7$.
\n(a) $u^2 \kappa \iota(\xi_3) = \frac{5}{6} \beta(\rho_1) + \frac{1}{30} \beta(\Lambda^2 \rho_1) \frac{ch}{\lambda_2} x_3$
\n $u^6 \kappa \iota(\xi_{11}) = 5\beta(\rho_1) - \beta(\Lambda^2 \rho_1) \xrightarrow{\lambda_7}$
\n(b) $\theta_r(\xi_3) = 0, \theta_r(\xi_{11}) = 0$.
\n(4) $G = SU(4), p \ge 5$.
\n(a) $u^2 \kappa \iota(\xi_3) = -\frac{1}{3} \beta(\lambda_1) - \frac{1}{6} \beta(\lambda_2) - \frac{1}{3} \beta(\lambda_3) \x_3$
\n $u^3 \kappa \iota(\xi_5) = \beta(\lambda_1) \x_3 - \beta(\lambda_3) \x_4$
\n $u^4 \kappa \iota(\xi_7) = -\beta(\lambda_1) + \beta(\lambda_2) - \beta(\lambda_3) \x_5$
\n(b) $\theta_r(\xi_3) = 0, \theta_r(\xi_5) = 0, \theta_r(\xi_7) = 0$.
\n

ADAMS OPERATIONS IN THE CONNECTIVE K-THEORY 623

(a)
$$
u^2 \kappa \iota(\xi_3) = \frac{3}{10} \beta(\lambda_1') + \frac{1}{30} \beta(\lambda_2') + \frac{8}{15} \beta(\Delta_7)
$$
 2x₃
\n $u^4 \kappa \iota(\xi_7) = -\beta(\lambda_1') + \beta(\Delta_7) \rightarrow \alpha_7$
\n $u^6 \kappa \iota(\xi_{11}) = \beta(\lambda_1') - \beta(\lambda_2') + 4\beta(\Delta_7)$ 1₂
\n(b) $\theta_r(\xi_3) = 0$, $\theta_r(\xi_7) = 0$, $\theta_r(\xi_{11}) = 0$.
\n(6) $G = Sp(3)$, $p \ge 7$.
\n(a) $u^2 \kappa \iota(\xi_3) = \frac{2}{5} \beta(\lambda_1) + \frac{1}{10} \beta(\lambda_2) + \frac{1}{30} \beta(\lambda_3)$ x₃
\n $u^4 \kappa \iota(\xi_7) = -\frac{7}{2} \beta(\lambda_1) + \frac{1}{2} \beta(\lambda_2) + \frac{1}{4} \beta(\lambda_3) \rightarrow \alpha_7$
\n $u^6 \kappa \iota(\xi_{11}) = \beta(\lambda_1) - 2\beta(\lambda_2) + \beta(\lambda_3)$ x₁₁.
\n(b) $\theta_r(\xi_3) = 0$, $\theta_r(\xi_7) = 0$, $\theta_r(\xi_{11}) = 0$.

Proof. We show (1) only, because the others can be shown quite similarly. Since $\{\beta(\lambda_1), \beta(\lambda_2)\}\$ forms a Z-basis for $K^{-1}(SU(3))$ by Lemma 2.2 (and [14, §2]), it is easy to see that $\{-\frac{1}{2}\beta(\lambda_1)- \frac{1}{2}\beta(\lambda_2), \beta(\lambda_1)-\beta(\lambda_2)\}$ forms a $Z_{(p)}$ -basis for $K^{-1}(SU(3); Z_{(p)})$; their images under *ch* are as required by Lemma 2.4. On the other hand, by Proposition 2.3 $\{u^2\kappa\iota(\xi_3), u^3\kappa\iota(\xi_5)\}\)$ is a $Z_{(p)}$ -basis for $K^{-1}(SU(3); Z_{(p)})$. These (together with (b)) permit us to conclude that there exist $\xi_i \in g(p)^i(SU(3))$ *, i*=3, 5, satisfying (a).

To prove (b) we compute $\psi'(u^2 \kappa \iota(\xi_3))$ and $\psi'(u^3 \kappa \iota(\xi_5))$ in $\bar{K}(\Sigma SU(3))$. By use of the formula $ch^q\psi = r^qch^q$ [1, Theorem 5.1 (vi)] where ch^q is the com position

$$
\tilde{K}(\Sigma G) \xrightarrow{ch} \tilde{H}^*(\Sigma G; Q) \xrightarrow{\pi_{2q}} \tilde{H}^{2q}(\Sigma G; Q)
$$

(where π_{2q} is the projection to the 2q-dimensional component), we have

$$
ch\psi'(u^2\kappa\iota(\xi_3))=r^2x_3=ch(r^2u^2\kappa\iota(\xi_3))\ .
$$

Since ch: $\tilde{K}(\Sigma G) \rightarrow \tilde{H}^*(\Sigma G; Q)$ is injective, it follows that

$$
\psi'(u^2\kappa\iota(\xi_3))=r^2u^2\kappa\iota(\xi_3)\,.
$$

Since $\psi'(u^2) = r^2 u^2$, it follows that

$$
\psi'(\kappa\iota(\xi_3))=\kappa\iota(\xi_3)\,.
$$

Since ψ^r commutes with κ , *ι* and κ , *ι* are injective, it follows that

$$
\psi'(\xi_3)=\xi_3.
$$

Similarly we have $\psi'(\xi_5) = \xi_5$. So (b) follows by the definition of θ_r .

In view of Lemma 3.2, all statements in Proposition 3.3 except (a) are clear. But, if one wants to discuss a homomorphism f^* : $g(p)^*(G') \rightarrow g(p)^*(G)$ which is induced by a homomorphism of compact Lie groups $f: G \rightarrow G'$, it seems to us that (a) is necessary.

Before considering the cases in which G is quasi p -regular, we describe $g(p)^*(B_1(p))$ and the θ_r -action on it. Since θ_r detects \mathcal{L}^1 (see [13, Lemma 1.1]), it follows from the Atiyah-Hirzebruch spectral sequence argument using (3.1) that

(3.4) There exist
$$
\xi_i \in g(p)^i(B_1(p))
$$
, for $i=3, 2p+1$, such that

 (i) $g(p)^*(B_1(p)) = \Lambda(\xi_3, \xi_{2p+1}) \otimes Z_{(p)}[v].$

(ϋ) *The operation θ^r is given by*

$$
\theta_{r}(\xi_3)=\xi_{2p+1},\,\theta_{r}(\xi_{2p+1})=0\ .
$$

Proposition 3.5. *In the following cases there* are *elements* (G) , for $1 \le i \le l$, as in Proposition 2.3, which satisfy:

(1)
$$
G = Sp(2), p=3.
$$

\n(a) $u^2 \kappa \iota(\xi_3) = \frac{1}{2} \beta(\lambda_2) \ c h \ x_3 + \frac{1}{3} x_7$
\n $u^4 \kappa \iota(\xi_7) = -2 \beta(\lambda_1) + \beta(\lambda_2) \longrightarrow x_7$.
\n(b) $\theta_2(\xi_3) = \xi_7, \ \theta_2(\xi_7) = 0$.
\n(2) $G = G_2, p=5$.
\n(a) $u^2 \kappa \iota(\xi_3) = \beta(\rho_1) \qquad \qquad 2x_3 + \frac{1}{60} x_{11}$
\n $u^6 \kappa \iota(\xi_{11}) = 5 \beta(\rho_1) - \beta(\Lambda^2 \rho_1) \longrightarrow \frac{1}{2} x_{11}$.
\n(b) $\theta_2(\xi_3) = \frac{1}{2} \xi_{11}, \ \theta_2(\xi_{11}) = 0$.
\n(3) $G = SU(4), p=3$.
\n(a) $u^2 \kappa \iota(\xi_3) = -\frac{1}{2} \beta(\lambda_1) \qquad -\frac{1}{2} \beta(\lambda_3) \qquad x_3 + \frac{1}{6} x_7$
\n $u^3 \kappa \iota(\xi_5) = \beta(\lambda_1) \qquad -\beta(\lambda_3) \longrightarrow x_5$
\n $u^4 \kappa \iota(\xi_7) = -\beta(\lambda_1) + \beta(\lambda_2) - \beta(\lambda_3) \qquad x_7$.
\n(b) $\theta_2(\xi_3) = \frac{1}{2} \xi_7, \ \theta_2(\xi_5) = 0, \ \theta_2(\xi_7) = 0$.
\n(4) $G = Spin(7), p=5$.
\n(a) $u^2 \kappa \iota(\xi_7) = -\beta(\lambda_1') \qquad +\frac{2}{3} \beta(\Delta_7) \qquad 2x_3 + \frac{1}{60} x_{11}$
\n $u^4 \kappa \iota(\xi_7) = -\beta(\lambda_1') \qquad +\beta(\Delta_7) \longrightarrow x_7$
\n $u^6 \kappa \iota(\xi$

ADAMS OPERATIONS IN THE CONNECTIVE K-THEORY 625

(b)
$$
\theta_2(\xi_3) = \frac{1}{2}\xi_{11}, \quad \theta_2(\xi_7) = 0, \quad \theta_2(\xi_{11}) = 0.
$$

(5)
$$
G = Sp(3)
$$
, $p=5$.
\n(a) $u^2 \kappa \iota(\xi_3) = \frac{5}{12} \beta(\lambda_1) + \frac{1}{12} \beta(\lambda_2) + \frac{1}{24} \beta(\lambda_3)$ $x_3 + \frac{1}{120} x_{11}$
\n $u^4 \kappa \iota(\xi_7) = -\frac{7}{2} \beta(\lambda_1) + \frac{1}{2} \beta(\lambda_2) + \frac{1}{4} \beta(\lambda_3) \xrightarrow{ch} x_7$
\n $u^6 \kappa \iota(\xi_{11}) = 2 \beta(\lambda_1) - 2 \beta(\lambda_2) + \beta(\lambda_3)$
\n(b) $\theta_2(\xi_3) = \frac{1}{8} \xi_{11}$, $\theta_2(\xi_7) = 0$, $\theta_2(\xi_{11}) = 0$.

Proof. We prove (1) only; the proof for the others is similar. First, (a) follows from Proposition 2.3 and Lemma 2.4 as in the proof of Proposition 3.3. To prove (b) we compute $\psi^2(u^2\kappa\iota(\xi_3))$. In $\tilde{K}(\Sigma Sp(2))$ we have

$$
ch\psi^2(u^2\kappa\iota(\xi_3)) = 2^2x_3 + \frac{2^4}{3}x_7
$$

= $2^2(x_3 + \frac{1}{3}x_7) + 2^2x_7$
= $2^2chu^2\kappa\iota(\xi_3) + 2^2chu^4\kappa\iota(\xi_7)$

Therefore

$$
\psi^2(u^2\kappa\iota(\xi_3))=2^2u^2\kappa\iota(\xi_3)+2^2u^4\kappa\iota(\xi_7).
$$

).

Since $\iota(v) {=} u^2$ (where $p{=}3$), it follows that

$$
\psi^2(\xi_3) = \xi_3 + v \xi_7.
$$

Similarly we have

$$
\psi^2(\xi_{11})=\xi_{11}.
$$

These imply the result.

There remain the cases in which G is neither p -regular nor quasi p -regular.

Proposition 3.6. In the following cases there are elements $\xi_{2m_i-1} \in g(p)^{2m_i-1}(G)$, *for* $1 \le i \le l$ *, as in Proposition* 2.3*, which satisfy*:

(1)
$$
G=G_2
$$
, $p=3$.
\n(a) $u^2 \kappa \iota(\xi_3) = \beta(\rho_1)$
\n $u^6 \kappa \iota(\xi_{11}) = 5\beta(\rho_1) - \beta(\Lambda^2 \rho_1)$
\n(b) $\theta_2(\xi_3) = \frac{1}{2}v\xi_{11}$, $\theta_2(\xi_{11}) = 0$.

(2)
$$
G = Spin(7), p=3.
$$

\n(a) $u^2 \kappa \iota(\xi_3) = \beta(\lambda_1)$
\n $u^4 \kappa \iota(\xi_7) = -\beta(\lambda_1)$
\n $u^4 \kappa \iota(\xi_1) = \beta(\lambda_1) + \beta(\Delta_7) \xrightarrow{ch} x_7$
\n $u^6 \kappa \iota(\xi_{11}) = \beta(\lambda_1) - \beta(\lambda_2) + 4\beta(\Delta_7)$
\n(b) $\theta_2(\xi_3) = -2\xi_7 + \frac{1}{2}v\xi_{11}, \theta_2(\xi_7) = 0, \theta_2(\xi_{11}) = 0.$
\n(3) $G = Sp(3), p=3.$
\n(a) $u^2 \kappa \iota(\xi_3) = \beta(\lambda_1)$
\n $u^4 \kappa \iota(\xi_7) = -4\beta(\lambda_1) + \beta(\lambda_2)$
\n $u^6 \kappa \iota(\xi_{11}) = 2\beta(\lambda_1) - 2\beta(\lambda_2) + \beta(\lambda_3)$
\n(b) $\theta_2(\xi_3) = -\frac{1}{2}\xi_7, \theta_2(\xi_7) = -\frac{3}{4}\xi_{11}, \theta_2(\xi_{11}) = 0.$

This proposition follows from the calculation similar to that in the proof of Proposition 3.3. We omit the details of the proof.

It is known [10] that

$$
Spin(7)\simeq Sp(3).
$$

Therefore $j(3)^*(Spin(7)) \approx j(3)^*(Sp(3))$. Henceforth we exclude to consider the former.

4. The $j(p)$ -cohomology of G

In Lemma 4.2 we present formulas on the multiplicative structure of $j(p)^*(X)$ (where X satisfies a certain condition). In the rest of this section we compute $j(p)^*(G)$ for all pairs (G, p) . Finally we comment on $j(p)_*(G)$.

Throughout this section, the letters *X* and *Y* will stand for finite con nected CW-complexes.

Consider the fibration sequence

$$
\Sigma^{2p-3}g(p) \stackrel{\delta}{\rightarrow} j(p) \stackrel{\eta}{\rightarrow} g(p) \stackrel{\theta}{\rightarrow} \Sigma^{2p-2}g(p).
$$

It leads to a short exact sequence

$$
(4.1) \quad 0 \to \text{Coker } (\theta: \widetilde{g(p)}^{i-1}(X) \to \widetilde{g(p)}^{i+2p-3}(X)) \xrightarrow{\delta} \n\widetilde{j(p)}^{i}(X) \xrightarrow{\eta} \text{Ker } (\theta: \widetilde{g(p)}^{i}(X) \to \widetilde{g(p)}^{i+2p-2}(X)) \to 0
$$

for any $i \in \mathbb{Z}$. In this situation we shall use the following notation. For any $x \in g(p)^*(X)$ we write \bar{x} for $\delta(x) \in j(p)^{*-2p+3}(X)$; therefore, if $x \in \text{Im}(\theta)$, we have $\bar{x}=0$. Suppose now that $x \in \text{Ker}(\theta)$. Then we denote by \tilde{x} an element such that $\eta(\tilde{x})=x$; it is unique if $g(p)^*(X)$ is (p-)torsion free. This condition is satisfied for *X=G* by Proposition 2.3.

Lemma 4.2. Suppose that $\widetilde{g(p)}*(X)$ is torsion free. Then, with the above *notations, for any x,* $y \in g(p)^*(X)$, the following formulas hold in $j(p)$

- (i) $\tilde{x} \cup \tilde{y} = \widetilde{x \cup y}$.
- (ii) $\tilde{x} \cup \bar{y} = \overline{x \cup y}$.
- (iii) $\bar{x} \cup \bar{y} = \overline{x \cup y}$.
- (iv) $\bar{x} \cup \bar{y} = 0$.

Proof. Parts (i), (ii) and (iii) are proved by using the same technique as in [13, §4]; we refer to it for the details. In this proof we will use the facts which are shown there, without specific reference.

It remains to prove part (iv). Since η is a map of ring spectra and $\eta \delta \approx 0$, we have

$$
\eta(\mathbf{\tilde{x}}\cup\tilde{y})=\eta(\delta(x)\cup\delta(y))=\eta\delta(x)\cup\eta\delta(y)=0\cup 0=0.
$$

Hence there exists a $z \in g(p)^*(X)$ such that $x \cup \overline{y} = \overline{z}$. This equality implies that, in the following diagram, the outer square is commutative:

where *d* is the diagonal map; $x \in g(p)^{m+2p-3}(X)$, $y \in g(p)^{n+2p-3}(X)$; $g=g(p)$, $j = j(p); \mu_g$ and μ_j are multiplications in $g(p)$ and $j(p)$ respectively. The commutativity of square I is obvious and that of square II was shown in [13, Lemma 4.4]. Thus we have

$$
\begin{aligned} \bar{z} &= \bar{x} \cup \bar{y} = \mu_j(\bar{x} \wedge \bar{y})d \\ &= \mu_j(\delta \wedge 1)(1 \wedge \delta)(x \wedge y)d \\ &= \delta \mu_j(1 \wedge \eta)(1 \wedge \delta)(x \wedge y)d \\ &= 0 \, .\end{aligned}
$$

By virtue of this lemma, if one computes $\widetilde{j(p)}*(X)$ by using (4.1), then its ring structure is automatically known.

We now record some basic data for $j(p)$. Since $\psi'(v)=r^{p-1}v$, the coefficient cient ring of $\mathbf{j}(p)$ is given by

(4.3)
$$
\pi_*(\mathbf{j}(p)) = Z_{(p)}\{\tilde{1}\} \oplus \bigoplus_{i \geq 1} Z/p^{1+\nu_p(i)}\{\overline{v}^{i-1}\}
$$

where the formula

$$
\nu_p(r^{i(p-1)}-1)=1+\nu_p(i)
$$

([2, Lemma (2.12)]) is essential. We also have the Cartan formula for θ_r : for any $x, y \in g(p)^*(X)$ *,*

(4.4)
$$
\theta_r(x \cup y) = \theta_r(x) \cup y + x \cup \theta_r(y) + v \cdot \theta_r(x) \cup \theta_r(y)
$$

(cf. [13, Lemma 4.1]).

Let us enter into a computation of $\widetilde{j(p)}*(G)$. As is well known, the cofibration

$$
X \vee Y \to X \times Y \to X \wedge Y
$$

leads to a split short exact sequence

$$
0 \to \widetilde{j(p)}^i(X \wedge Y) \to \widetilde{j(p)}^i(X \times Y) \to \widetilde{j(p)}^i(X) \oplus \widetilde{j(p)}^i(Y) \to 0
$$

for any $i \in \mathbb{Z}$. Therefore by Lemma 3.2, in order to compute $\widetilde{j(p)^*(G)}$ when *G* is *p*-regular or quasi *p*-regular, it suffices to determine $\widetilde{j(p)^*}(B_1(p))$. From (3.4) we deduce

Proposition 4.5. *The ring* $\widetilde{j(p)}*(B_1(p))$ *is given by*: $\widetilde{j(p)}*(B_1(p)) = \widetilde{j(p)}*(S^0) \widetilde{\{\xi_3 \xi_{2p+1}\}} \oplus Z_{(p)} \widetilde{\{\xi_{2p+1}\}}$ $\bigoplus Z_{(p)}\left\{ \widehat{(r^{p-1}-1)\xi _3-v\xi _{2p+1}}\right\}$ $\oplus \bigoplus_{i\geq 1} Z/p^{2+\nu_p(i)+\nu_p(i+1)} \overline{\{v^{i-1}\xi_3\}}$

where the relations

Proof.

$$
\overline{\xi_{2p+1}} = 0 ,
$$

$$
\overline{v^{i}\xi_{2p+1}} = (r^{-i(p-1)} - 1)\overline{v^{i-1}\xi_{3}}
$$
 (for $i \ge 1$)

hold.

By using (4.4), in
$$
g(p)^*(B_1(p))
$$
 we have
\n
$$
\theta_r(v^i\xi_3\xi_{2p+1}) = (r^{i(p-1)}-1)v^{i-1}\xi_3\xi_{2p+1},
$$
\n
$$
\theta_r(v^i\xi_{2p+1}) = (r^{i(p-1)}-1)v^{i-1}\xi_{2p+1},
$$
\n
$$
\theta_r(v^i\xi_3) = (r^{i(p-1)}-1)v^{i-1}\xi_3 + r^{i(p-1)}v^i\xi_{2p+1}.
$$

So the kernel and cokernel of θ_r are easily calculated and the result follows.

In this way, if *G* is *p*-regular or quasi *p*-regular, the ring $j(p)^*(G)$ can be described. For the remaining cases, from parts (1) and (3) of Proposition 3.6 we deduce

Theorem 4.6. With the notation as in Lemma 4.2, the ring $\widetilde{j(3)}*(G)$ for *G=G² , Sρ(3) is given by:*

 $\theta_2(v^i \xi_3 \xi_{11}) = (2^{2i}-1)v^{i-1} \xi_3 \xi_{11}$, $\theta_2(v^i\xi_{11}) = (2^{2i}-1)v^{i-1}\xi_{11},$
 $\theta_2(v^i\xi_3) = (2^{2i}-1)v^{i-1}\xi_3 + 2^{2i-1}v^{i+1}\xi_{11}.$

For (2) we have

$$
\theta_2(v^i\xi_3\xi_7\xi_1) = (2^{2i}-1)v^{i-1}\xi_3\xi_7\xi_1,
$$

\n
$$
\theta_2(v^i\xi_7\xi_1) = (2^{2i}-1)v^{i-1}\xi_7\xi_1,
$$

\n
$$
\theta_2(v^i\xi_3\xi_1) = (2^{2i}-1)v^{i-1}\xi_3\xi_1 - 2^{2i-1}v^i\xi_7\xi_1,
$$

\n
$$
\theta_2(v^i\xi_1) = (2^{2i}-1)v^{i-1}\xi_1,
$$

\n
$$
\theta_2(v^i\xi_3\xi_7) = (2^{2i}-1)v^{i-1}\xi_3\xi_7 - 2^{2i-2}3v^i\xi_3\xi_1 + 2^{2i-3}3v^{i+1}\xi_7\xi_1,
$$

\n
$$
\theta_2(v^i\xi_7) = (2^{2i}-1)v^{i-1}\xi_7 - 2^{2i-2}3v^i\xi_1,
$$

\n
$$
\theta_2(v^i\xi_3) = (2^{2i}-1)v^{i-1}\xi_3 - 2^{2i-1}v^i\xi_7.
$$

So the result follows from elementary calculations of the kernel and cokernel *oiθ² .*

Proof of Theorem 1.1.

By using the Poincare duality isomorphism

$$
j(p)_i(G) = j(p)_i(G) \oplus j(p)_i(S^0)
$$

\n
$$
\simeq j(p)^{n-i}(G) \oplus j(p)^{n-i}(S^0) = j(p)^{n-i}(G)
$$

where $n=\dim G$, Theorem 1.1 follows from Theorem 4.6 and (4.3).

Finally we talk about the Pontrjagin ring structure of $j(p)_*(G)$. Since in Lemma 2.2 each $\beta(\rho_i)$ is primitive (see [11]), the ring structure of $K_*(G)$ can be determined. Furthermore, the ψ^r -action on $K_*(G)$ can be determined by using the formula

$$
\psi'(a\cap\alpha)=\psi'(a)\cap\psi'(\alpha)
$$

where $a \in K^*(G)$, $\alpha \in K_*(G)$ and \cap denotes the cap product. Therefore the ring structure of $\widetilde{j(p)}*(G)$ will be obtained by using the homology instead of the cohomology and taking the same course as in this paper.

References

- [1] J.F. Adams: *Vector fields on spheres,* Ann. of Math. 75 (1962), 603-632.
- [2] J.F. Adams: *On the groups J(X)-U,* Topology 3 (1965), 137-171.
- [3] J.F. Adams: Lectures on generalised cohomology, Lecture Notes in Math. Vol. 99, Springer, 1969.
- [4] J.F. Adams: Stable homotopy and generalised homology, Chicago Lectures in Math., Univ. of Chicago Press, 1974.
- [5] J.F.Adams: Infinite loop spaces, Ann. of Math. Studies No. 90, Princeton Univ. Press, 1978.
- [6] J.F. Adams, A.S. Harris and R.M. Switzer: *Hopf algebras of cooperations for real and complex K-theory,* Proc. London Math. Soc. (3) 23 (1971), 385-408.

- [7] M.F. Atiyah and F. Hirzebruch: Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math. Vol. 3, Amer. Math. Soc, 1961.
- [8] A. Borel: *Topology of Lie groups and characteristic classes,* Bull. Amer. Math. Soc. 61 (1955), 397-432.
- [9] A. Borel: *Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes,* Tόhoku Math. J. (2) 13 (1961), 216-240.
- [10] B. Harris: *On the homotopy groups of the classical groups,* Ann. of Math. 74 (1961), 407-413.
- [11] L. Hodgkin: *On the K-theory of Lie groups,* Topology 6 (1967), 1-36.
- [12] M. Mimura and H. Toda: *Cohomology operations and the homotopy of compact Lie groups-l,* Topology 9 (1970), 317-336.
- [13] T. Watanabe: *On the spectrum representing algebraic K-theory for a finite field,* Osaka J. Math. 22 (1985), 447-462.
- [14] T. Watanabe: *Chern characters on compact Lie groups of low rank,* Osaka J. Math. 22 (1985), 463-488.

Department of Mathematics Osaka Women's University Daisen-cho, Sakai Osaka 590, Japan