Huppert, B. and Manz, O. Osaka J. Math. 23 (1986), 491-502

NON-SOLVABLE GROUPS, WHOSE CHARACTER DEGREES ARE PRODUCTS OF AT MOST TWO PRIME NUMBERS*¹

BERTRAM HUPPERT AND OLAF MANZ

(Received March 15, 1985)

1. Introduction

If $n \in N$ has the prime-number-decomposition $n = \prod_{i=1}^{k} p_i^{a_i}$, we define $\omega(n) = \sum_{i=1}^{k} a_i$. If $\operatorname{Irr}(G)$ is furthermore the set of irreducible complex characters of the finite group G, we define $\omega(G) = \max_{\substack{\chi \in \operatorname{Irr}(G)}} \omega(\chi(1))$.

Suppose first that $\omega(G)=1$, which means that all non-linear characters have prime-number-degrees. By a theorem of M. Isaacs and D. Passman (cf. Isaacs [6], 14.4), G must be solvable. But this conclusion does not hold, if $\omega(G)=2$; for example $cd(A_5)=\{1, 3, 4, 5\}$ and $cd(A_7)=\{1, 6, 10, 14, 15, 21, 35\}$ (cf. McKay [8]; cd=character degrees).

There seem to be many solvable groups G with $\omega(G)=2$. In a later paper we shall consider these; in particular we shall show that they have derived length at most 4^{**}

The class of non-solvable groups G with $\omega(G)=2$ is quite small. It is completely described by the following theorem.

Theorem. Suppose that G is non-solvable. Then $\omega(G)=2$ if and only if G is a direct product of an abelian group with a group H of the following type:

- (1) $H \simeq A_7$.
- $(2) \quad H \simeq A_5.$
- (3) H=NT, where N is a normal abelian 2-subgroup of H, $T \simeq A_5$, $N=N_0 \times A$, where A is a the natural module for $SL(2, 4) \simeq A_5$ and $[N, T] \leq A$.

^{*)} This paper is a contribution to the research project "Darstellungstheorie" of the DFG.

^{**)} Arch. Math. 46 (1986), 387-392.

(4) *H* has a normal subgroup $M=N\times K$ of index 2, where $K\cong A_5$ and N is an abelian 2-group. Further $H|N\cong S_5$ and H|K is abelian.

- (5) H is a central product of SL(2, 5) with an abelian 2-group.
- (6) H has a normal subgroup M of index 2. M is a central product of $K \cong$ SL(2, 5) with an abelian 2-group N, where $N \leq \mathbb{Z}(G)$ and H/K is abelian.

2. Proof of the Theorem

We start considering a simple group G, here we use the classification of all finite simple groups.

Lemma 1. If G is simple, non-abelian with $\omega(G)=2$, then

$$G \simeq A_5$$
 or $G \simeq A_7$.

Proof. (1) By [10], G isn't sporadic.

(2) Let $G \simeq A_n$ $(n \ge 5)$. We consider the Young-tableau, corresponding to the partition (n-3, 1, 1, 1).

As the hook-product $H_{(n-3,1,1,1)}$ is $n \cdot (n-4)! \cdot 3 \cdot 2$, the character $\chi_{(n-3,1,1,1)} \in \operatorname{Irr}(S_n)$ has degree

Non-solvable Groups

$(n!)/H_{(n-3,1,1,1)} = (n-1)(n-2)(n-3)/6$ (cf. Müller [9] 6.36).

But for $n \neq 7$ the partition (n-3, 1, 1, 1) isn't self-associated and we obtain (n-3) (n-2) $(n-1)/6 \in cd(A_n)$. The hypothesis $\omega(G)=2$ yields that one of n-1, n-2 and n-3 divides 6 and consequently $n \leq 9$. As $8 \in cd(A_6)$, $20 \in cd(A_8)$ and $8 \in cd(A_9)$ (cf. McKay [8]), we conclude $G \cong A_5$ or $G \cong A_7$.

(3) Suppose now that G is a Chevalley-group or a twisted type in characteristic p, say. Then G has the Steinberg-character σ of degree $\sigma(1)=p^a$, where p^a is the exact p-part of |G|. An inspection of those Chevalley-type groups, whose orders have p-parts at most p^2 , yields $G \cong PSL(2, p)$ or $G \cong PSL(2, p^2)$. We set q=p or $q=p^2$. Now PSL(2, q) has character degrees q-1 and q+1 and as $\omega(G)=2$ and q>3, there exists a prime r such that q-1=2r. Therefore q+1=2(r+1) and r+1 must also be a prime number, hence r=2. This yields q=5 and $G \cong PSL(2,5) \cong A_5$.

The composition structure of a group G, satisfying $\omega(G)=2$, is not too complicated, namely

Lemma 2. If G is a non-solvable group with $\omega(G)=2$, then G has a solvable normal subgroup N such that

$$G/N \simeq A_7$$
 or A_5 or S_5 .

Proof. Let M be the solvable residue of G and M/L a chief-factor of G. By lemma 1, $M/L \cong A_5$ or A_7 . We define $N/L = C_{G/L}(M/L)$. As $\operatorname{Aut}(A_5) \cong S_5$ and $\operatorname{Aut}(A_7) \cong S_7$, $G/N \cong A_5$, S_5 , A_7 or S_7 . But S_7 can be ruled out, because $20 \in \operatorname{cd}(S_7)$ (cf. Kerber-James [7] page 350). Suppose that N is non-solvable, then we obtain a chief-factor $S/R \cong A_5$ or A_7 with $S \leq N$. If $C/R = C_{G/R}(S/R)$, we have $C/R \times S/R \leq G/R$, where C/R involves a composition factor A_5 or A_7 . This, however, yields $\omega(C/R \times S/R) > 2$, a contradiction.

As lemma 2 indicates, there are two cases to consider, namely the case, where A_7 is involved and where A_5 is involved. We start with the first situation, which turns out to be the simplest one. We remind the reader that by Huppert-Manz [5] the group A_7 has the following subgroups $U < A_7$ with $\omega(|A_7; U|) \le 2$:

type	index
PSL (2, 7)	3.5
A_6	7
S_5	3•7
$(A_4 \times Z_3) \cdot Z_2$	5.7

Notice that A_7 has no subgroup of index 3^2 (cf. Huppert-Blackburn [4], XII

B. HUPPERT AND O. MANZ

10.12).

Lemma 3. Let
$$\omega(G)=2$$
, $N \leq G$, N solvable and $G|N \approx A_7$.
Then $G=N \times E$, where $N'=1$ and $E \approx A_7$.

Proof. By a trivial induction argument, we may suppose that N is an irreducible G-module.

(1) We may assume that N is faithful, because the Schur-extensions of A_7 by Z_2 and Z_3 have character degrees 20 and 24, respectively (cf. Humphreys [2]).

(2) Let $1 \neq \lambda \in Irr(N)$. Then $T(\lambda)/N$ must be one of those subgroups, listed above (Huppert [3] 17.11).

(3) Suppose that $T(\lambda)/N \cong PSL(2, 7)$, S_5 or $(A_4 \times Z_3) \cdot Z_2$. We consider $\lambda^{T(\lambda)} = \sum_i e_i \chi_i, \chi_i \in Irr(T(\lambda))$. Then $\chi_i^G \in Irr(G), \chi_i(1) = e_i$ and $\chi_i^G(1) = e_i \cdot 3 \cdot 5$ or $e_i \cdot 3 \cdot 7$ or $e_i \cdot 5 \cdot 7$. As $\omega(G) = 2$, we conclude that $e_i = 1$ and χ_1 is an extension of λ . By a theorem of Gallagher (cf. Isaacs [6] 6.17), we have $\{\chi_i\} = \{\chi_1 \varphi | \varphi \in Irr(T(\lambda)/N\}$. But this contradicts the fact that in each case $T(\lambda)/N$ has non-linear characters. (4) It remains to investigate the situation, where all $T(\lambda)/N \cong A_6$. As the subgroups of type A_6 are conjugate under the action of A_7 , we can define $p^s = |C_{Irr(M)}(U)|$, where $U \cong A_6$ and $|N| = p^n$. A double counting yields

 $7 \cdot (p^{s} - 1) = |\{(\lambda, U) | 1 \neq \lambda \in Irr(N), U \cong A_{6}, U = T(\lambda)/N\}| = p^{n} - 1$

and consequently $7=1+p^{s}+\cdots+p^{(n/s-1)s}$. This, however, yields a faithful A_{7} -module of type (2,2,2), a contradiction.

It remains to deal with the case that A_5 is involved. For this purpose we list the subgroups $U < A_5$ with $\omega(|A_5; U|) \le 2$:

type	index
A_{4}	5
D_{10}	2•3
D_6	2.5
$Z_2 \times Z_2$	3.5

Lemma 4. Let $\omega(G)=2$, $M \leq G$ and M an irreducible non-trivial module for G/M of type (p, \dots, p) . Furthermore let $G/M \simeq A_5$ or $G/M \simeq SL(2, 5)$, which means there is a central subgroup L/M of G/M of order at most 2. Then we have p=2 and n=4.

Proof. (1) Of course $\omega(|G: T(\lambda)|) \leq 2$ for all $1 \neq \lambda \in \operatorname{Irr}(M)$. In particular $2 \mid |T(\lambda)/M|$, if $G/M \cong SL(2, 5)$. As SL(2, 5) has only one involution, we have $L \leq T(\lambda)$. (2) $T(\lambda)/L \cong D_{10}$ and $\cong D_6$:

If not, λ would be extendible to $\widehat{\lambda} \in \operatorname{Irr}(T(\lambda))$, because the Sylow-subgroups of $T(\lambda)/M$ are cyclic (Isaacs [6] 11.31). This, however, means $\lambda^{T(\lambda)} = \widehat{\lambda}\varphi + \cdots$ with $\varphi \in \operatorname{Irr}(T(\lambda)/M)$, $\varphi(1)=2$ and $(\widehat{\lambda}\varphi)^{c}(1)=|G|$: $T(\lambda)|\cdot 2$, in both cases a contradiction.

(3) By (2), $T(\lambda)/L$ contains just one subgroup of type $Z_2 \times Z_2$, hence $T(\lambda)/M$ one Sylow-subgroup of G/M. Therefore

$$\begin{aligned} |\operatorname{Syl}_2(G/M)| \cdot (|C_{\operatorname{Irr}(M)}(Q)| - 1) &= \\ | \{(\lambda, Q)| 1 \neq \lambda \in \operatorname{Irr}(M), Q \in \operatorname{Syl}_2(G/M), Q \leq T(\lambda)/M \} | &= \\ |\operatorname{Irr}(M)| - 1 &= p^n - 1 . \end{aligned}$$

If we put $p^s = |C_{Irr(M)}(Q)|$, we obtain $5 \cdot (p^s - 1) = p^n - 1$. This yields $s | n, 5 = 1 + p^s + \dots + p^{(n/s-1)s}$ and consequently p = 2, s = 2 and n = 4.

The lemma above handles the case that A_5 acts on an irreducible module. We suppose now that A_5 acts on an arbitrary solvable group.

Lemma 5. Let $\omega(G)=2$, G=G' and $N \leq G$ with $G/N \simeq A_5$. Then there is an abelian 2-group A, such that $A \leq N$, $A \leq G$ and either N=A or $G/A \simeq SL(2, 5)$.

Proof. a) We first show that N is a 2-group. Put $L=O^2(N)$ and suppose $L \neq 1$. We choose a chief factor L/M; then L/M is of type (p, \dots, p) for an odd prime p. We can assume further on that M=1.

$$\begin{array}{c} \hline G \\ \hline N \\ \hline N \\ \hline \\ L \\ \hline \\ \end{bmatrix} \begin{array}{c} 2^{..} \\ 2^{..} \\ \hline \\ \end{array} \right\} 2^{..} \\ \begin{array}{c} p, \dots p \\ p \neq 2 \end{array} .$$

(1) As $\omega(N) \le 2$, we have $cd(N) \subseteq \{1, 2, 4\}$.

(2) $\operatorname{cd}(N) \subseteq \{1, 2\}$: Suppose there is $\tau \in \operatorname{Irr}(N)$ with $\tau(1) = 4$. Then τ is fixed under the action of G and consequently $\tau^{G} = \sum_{i} e_{i} \chi_{i}$, where $\chi_{i} \in \operatorname{Irr}(G)$ and $(\chi_{i})_{N}$

 $=e_i \tau$. Now $\omega(G)=2$ forces $e_i=1$ and τ is extendible to G. By Gallagher's theorem, $\tau(1) \cdot d \in cd(G)$ for all $d \in cd(A_5)$, a contradiction.

(3) $\operatorname{cd}(N) = \{1, 2\}$: Suppose N' = 1, which means $N = S \times L$ with $S \in \operatorname{Syl}_2(N)$. If we consider G/S, lemma 4 implies the trivial action of $G/N \cong A_5$ on L, a contradiction to G = G'.

(4) By Isaacs [6] 12.11, we have one of the following assertions:

(i) N has a characteristic abelian subgroup U of index 2. As G=G', we have $G/U \cong SL(2, 5)$ and we obtain the same contradiction as in (3), using lemma 4.

(ii) $|N|\mathbb{Z}(N)| = 2^2$ or 2^3 . But as A_5 has no irreducible GF(2)-module of dimension 2 or 3, $N/\mathbb{Z}(N)$ is central in $G/\mathbb{Z}(N)$, a contradiction to G=G', because the Schur-multiplier of A_5 has order 2.

Altogether we have shown that N is a 2-group.

b) It remains to show that N has a characteristic abelian subgroup A of index at most 2.

(1) $\operatorname{cd}(N) \subseteq \{1, 2\}$: Use the arguments of a) (1) and (2).

(2) By Isaacs [6] 12.11, we have to rule out $|N/\mathbb{Z}(N)| = 2^2$ or 2^3 . But this is done as in a) (4) (ii).

For our later arguments we need the knowledge of those extensions G of A_5 by an irreducible GF(2)-module which have $\omega(G)=2$.

EXAMPLE 6. The group A_5 has three irreducible modules over GF(2), namely the trivial module M_0 , the augmentated permutation module M_1 and the module M_2 , belonging to the representation $A_5 \cong SL(2, 4)$. Let $M \trianglelefteq G, G/M$ $\cong A_5$ and M an irreducible GF(2) A_5 -module.

a) $M \simeq M_0$: If the extension is non-splitting, we have $G \simeq SL(2, 5)$. As $cd(SL(2, 5)) = \{1, 2, 3, 4, 5, 6\}$ (cf. Dornhoff [1], page 228), $\omega(G) = 2$ holds.

b) $M \cong M_1$: In this case we have $M \cong \{\sum_{i=1}^5 k_i v_i | k_i \in GF(2), \sum_{i=1}^5 k_i = 0\}$, where $\bigoplus_{i=1}^5 GF(2)v_i$ is the permutation module for A_5 . Obviously, the stabilizer of $v_1 + v_2$ in A_5 is isomorphic to S_3 . As $M \cong M_1$ is self-dual, we have $M \cong Irr(M)$ and therefore there is $\lambda \in Irr(M)$, such that $T(\lambda)/M \cong S_3$. As in lemma 4 (2), λ is extendible to $T(\lambda)$ and we obtain $2 \cdot |G: T(\lambda)| = 2^2 \cdot 5 \in cd(G)$. This shows $\omega(G) > 2$.

c) $M \cong M_2$: Now SL(2, 4) acts transitively on $M \setminus 1$. Therefore $|G: \mathbf{T}(\lambda)| = 15$ for all $1 \neq \lambda \in \operatorname{Irr}(M)$, because $M \cong M_2$ is self-dual. Remark that $\mathbf{T}(\lambda)/M$ is a Kleinian four-group. By Prince [11], G must split over M; hence the linear characters λ are extendible to $\hat{\lambda} \in \operatorname{Irr}(\mathbf{T}(\lambda))$, So we have

 $\lambda^{T(\lambda)} = \sum_{\alpha \in \operatorname{Irr}(T(\lambda)/M)} \alpha(1) \alpha \widehat{\lambda}, \text{ where } (\alpha \widehat{\lambda})^G \in \operatorname{Irr}(G) \text{ has degree } (\alpha \widehat{\lambda})(1) \cdot |G: T(\lambda)| = 15.$ From this we conclude $\operatorname{cd}(G) = \{1, 3, 4, 5, 15\}, \text{ hence } \omega(G) = 2.$

The notation M_0 , M_1 , M_2 for the irreducible modules of A_5 over GF(2) will be used from now on.

Lemma 7. Suppose
$$\omega(G)=2$$
, $G=G'$ and $G|A\cong SL(2,5)$. Then $A=1$.

Proof. By lemma 5, A is an abelian 2-group. Suppose $A \neq 1$. Let A/B be a chief-factor of G. We can assume B=1. As SL(2,5) has trivial Schurmultiplier, $A \neq M_0$. Define $N/A = \mathbf{Z}(G/A)$, then N centralizes A, hence N is abelian. Moreover A, considered as an G/N-module, is one of the modules M_1 and M_2 .

NON-SOLVABLE GROUPS

(1) $A \simeq M_1$. A Sylow-5-subgroup S of A_5 has fixed points on N/A, but not on $A \simeq M_1$. Hence N is elementary abelian. As M_1 is of defect 0, $N \simeq A \oplus C$, where $C \simeq M_0$ as A_5 -modules. But by example 6 b), we have the contradiction $\omega(G/C) > 2$.

(2) Now we assume $A \cong M_2$. We proceed as in example 6 c). Again, A_5 operates transitively on $A \setminus 1$ and also on $\operatorname{Irr}(A) \setminus 1$. If $1 = \lambda \in \operatorname{Irr}(A)$, then $|G: \mathbf{T}(\lambda)| = 15$. As before $\lambda^{T(\lambda)} = \sum_i e_i \chi_i, \chi_i(1) = e_i, \chi_i^G \in \operatorname{Irr}(G)$ and $\chi_i^G(1) = 15 \cdot e_i$. As

 $\omega(G)=2$, all $e_i=1$. Hence χ_1 is an extension of λ to $T(\lambda)$ and $\lambda^{T(\lambda)}=\chi_1\sum_{\varphi\in Irr(T(\lambda)/4)}\varphi(1)\varphi$. But as $T(\lambda)/A$ now is a quaternion group of order 8, it has an irreducible character φ of degree 2. Then $(\chi_1\varphi)^c$ is irreducible and has degree 30.

Lemma 8. Let $\omega(G)=2$, G=G' and $G/N \cong A_5$. If $N \neq 1$, then either $G \cong SL(2,5)$ or G is the splitting extension of A_5 with M_2 .

Proof. If G has a factor group isomorphic SL(2,5), then by lemma 7 $G \simeq SL(2,5)$. Hence by lemma 5, we have $G/A \simeq A_5$, A an abelian 2-group, and every chief factor A/B is not isomorphic to M_0 . By example 6 b), also $A/B \cong M_1$, so $A/B \simeq M_2$. To prove B=1 we can assume that B is an irreducible A_5 -module.

We claim $T(\lambda) < G$ for all $1 \neq \lambda \in Irr(A)$: This follows from the fact that Irr(A) has no submodule isomorphic to M_0 , because A has no factor module isomorphic to M_0 .

Let $1 \neq \lambda \in Irr(A)$. As $\omega(|G: T(\lambda)|) \leq 2$, the arguments of lemma 4 show that $T(\lambda)/A$ contains exactly one Sylow-2-subgroup of G/A. Again, a double counting yields

$$5 \cdot (|\boldsymbol{C}_{\mathrm{Irr}(A)}(Q)| - 1) =$$

$$|\{(\lambda, Q)| \ 1 \neq \lambda \in \mathrm{Irr}(A), \ Q \in \mathrm{Syl}_2(G/A), \ Q \leq \boldsymbol{T}(\lambda)/A\}| =$$

$$|\mathrm{Irr}(A)| - 1. \quad \text{We put } 2^s = |\boldsymbol{C}_{\mathrm{Irr}(A)}(Q)|. \quad \text{Then}$$

$$5 \cdot (2^s - 1) = \begin{cases} 2^s - 1 & \text{if } B \cong M_0 \\ 2^s - 1 & \text{if } B \cong M_0 \end{cases}, \text{ a contradiction.}$$

Lemma 9. Let $\omega(G)=2$ and suppose that A_5 is involved. Then G has the following normal series:

where

- (i) $K|A \cong A_5$, $|G/M| \le 2$ and $G/N \cong S_5$ in case of |G/M| = 2.
- (*ii*) (N|A)'=1.
- (iii) A=1; or $A \simeq M_0$ and $K \simeq SL(2,5)$; or $A \simeq M_2$ and K splits over A.

Proof. Let K be the solvable residue of G. If K/A is a chief-factor, then $K|A \cong A_5$ (by lemma 2). We put $N|A = C_{G/A}(K|A)$. Then $M|A := N|A \times K|A$ is a normal subgroup of G/A of index at most 2, where in case of |G/M| = 2we have $G/N \approx S_5$. As $\omega(M/A) = 2$, we conclude that N/A is abelian. The application of lemma 8 to K finally yields (iii).

We shall use the notation of lemma 9.

Lemma 10. The case |G/M| = 2 and $A \cong M_2$ does not occur.

Proof. As $K/A \cong A_5$ acts transitively on M_2 , we have $|G: T(\lambda)| = 15$ for all $1 \neq \lambda \in Irr(A)$; in particular $T(\lambda)/A$ contains a Sylow-2-subgroup of G/A. As the Sylow-2-subgroups of S_5 are isomorphic to D_8 , $T(\lambda)/A$ is non-abelian. Let $\lambda^{T(\lambda)} = \sum_i e_i \chi_i$ with $\chi_i \in Irr(T(\lambda))$. Then $\chi_i^G \in Irr(G)$, $\chi_i^G(1) = 15 \cdot \chi_i(1)$; hence $\omega(G)=2$ does imply $\chi_i(1)=1$. Therefore χ_1 extends λ and $\{\chi_i\}=\{\chi_1\varphi \mid i \leq j \leq k\}$ $\varphi \in \operatorname{Irr} \mathbf{T}(\lambda)/A$. As $\mathbf{T}(\lambda)/A$ is non-abelian, we obtain a contradiction to $\chi_i(1)$ =1.

Lemma 11. Now we assume that $\omega(G)=2$ and that the solvable residue K of G is the splitting extension of $A \cong M_2$ by A_5 . We also assume that G = M.

Then N is abelian and $N=N_1\times A$. Neglecting abelian direct factors of G, we can assume that N is a 2-group.

Proof. a) Let T be a complement of A in K. Then obviously T also is a complement of N in G. Certainly, $\operatorname{Hom}_{T}(A, A) \cong \operatorname{GF}(4)$. Hence $N/C_{N}(A)$ has order 1 or 3. We assume at first that $|N/C_N(A)| = 3$. Suppose $S/A \in Syl_3$ (N|A) and $|S|A| = 3^m$. We consider the normal subgroup R = SK = ST of G. Obviously $\omega(R)=2$. As T operates transitively on the characters (± 1) of A, we have $|R: T_R(\lambda)| = 15$ for every $1 \neq \lambda \in Irr(A)$. $T_R(\lambda)$ splits over A, for the Sylow-2-subgroup of $T_R(\lambda)$ does so (Gaschütz's theorem). Hence there exists an extension $\widehat{\lambda}$ of λ to $T_R(\lambda)$, and we obtain $\lambda^R = (\sum_i \widehat{\lambda} \psi_j(1) \psi_j)^R (\psi_j \in \mathcal{X})$ $\operatorname{Irr}(\boldsymbol{T}_{R}(\lambda)/A)). \operatorname{Also}(\widehat{\lambda}\psi_{j})^{R} \in \operatorname{Irr}(R). \operatorname{As}\omega(R) = 2 \operatorname{and}(\widehat{\lambda}\psi_{j})^{R}(1) = |R: \boldsymbol{T}_{R}(\lambda)|\psi_{j}(1)$

NON-SOLVABLE GROUPS

=15 $\psi_j(1)$, this forces $\psi_j(1)=1$. Hence $T_R(\lambda)/A$ is abelian. We write $\overline{H}=HA/A$ for any $H \leq R$. Then $|\overline{T_R(\lambda)} \cap \overline{K}| = |\overline{T_K(\lambda)}| = 4$ and thus $|\overline{T_R(\lambda)} \cdot \overline{K}| = |\overline{T_R(\lambda)}|$ $\cdot |\overline{K}| / |\overline{T_R(\lambda)} \cap \overline{K}| = 3^m \cdot 60 = |\overline{R}|$. This shows $\overline{T_R(\lambda)} \notin \overline{C_R(A)} \cdot \overline{K} < \overline{R}$. Hence there exists an element $\overline{s} \cdot \overline{k} \in \overline{T_R(\lambda)}$, where $\overline{s} \in \overline{S} \setminus \overline{C_R(A)}$, $\overline{k} \in \overline{K}$ and the order of $\overline{s} \cdot \overline{k}$ a power of 3. As $S/C_s(A)$ operates fixed pointfreely on A (namely by multiplication with an element ± 1 of $GF(4)^{\times}$), \overline{s} does not stabilize any character ± 1 of A. Hence $\overline{k} \pm 1$, so $\overline{k}^3 = 1$ and \overline{k} does not centralize any Sylow-2-subgroup of \overline{K} . As $\overline{T_R(\lambda)}$ contains $\overline{s} \cdot \overline{k}$ and a Sylow-2-subgroup of \overline{K} , $\overline{T_R(\lambda)}$ is not abelian, a contradiction. This shows finally $C_N(A) = N$.

b) We can assume that N is an abelian 2-group and $N=N_1\times A$ for some subgroup N_1 of N:

As $N' \leq A \leq \mathbb{Z}(N)$ (a) and lemma 9), N is nilpotent. Neglecting abelian direct factors of G, we hence can assume that N is a 2-group. As $N \leq G$, we have $N' \leq G$ and $N' \leq A$. But N' = A is impossible, for then a 5-element of T would operate trivially on N/N', but non-trivially on N'. By the same argument, $A \not\equiv \Phi(N)$, hence $A \cap \Phi(N) = 1$. This implies $N = N_1 \times A$ for some N_1 .

Now we show that all the groups described in lemma 11 have indeed $\omega(G)=2$.

Lemma 12. Suppose G has the structure described in lemma 11, namely

with an abelian 2-group N. Then G has the character degrees 1, 3, 4, 5, 15, so $\omega(G)=2$.

Proof. a) Let S be a Sylow-2-subgroup of T. We can assume that S operates on $A \simeq GF(4)^{(2)}$ by matrices of the form

$$\begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix} \qquad (k \in \mathrm{GF}(4)) \ .$$

This shows that for any $1 \neq s \in S$

$$\boldsymbol{C}_A(S) = \boldsymbol{C}_A(S) = \langle a^{S^{-1}} | a \in A \rangle.$$

If $f \in \mathbf{Z}^1(T, A)$, then $f(s) \cdot f(s)^s = f(s^2) = f(1) = 1$. Hence $f(s) \in \mathbf{C}_A(s) = \mathbf{C}_A(S)$.

b) Let $\lambda \in Irr(N)$. As $N = N_1 \times A$, we can write $\lambda = \gamma \alpha$, where $\gamma \in Irr(N_1)$ and $\alpha \in Irr(A)$. As $T(\lambda)$ splits over N, there exists an extension $\hat{\lambda}$ of λ to $T(\lambda)$ and B. HUPPERT AND O. MANZ

$$\lambda^{c} = (\sum_{j} \widehat{\lambda} \psi_{j}(1) \psi_{j})^{c} \quad (\psi_{j} \in \operatorname{Irr}(T(\lambda)/N)).$$

If $\alpha = 1$, then $T(\lambda) = G$ and we obtain only irreducible characters $\widehat{\lambda} \psi_j$ of G of degrees 1, 3, 4, 5.

Suppose $\alpha \neq 1$. Then $|T(\alpha)/N| = 4$. We show that for any $s \in T(\alpha)$ also $\lambda^s = \lambda$: Obviously, for $a \in A$

$$\lambda^{s}(a) = \lambda(a^{s}) = \alpha^{s}(a) = \alpha(a) = \lambda(a)$$
.

If $n \in N_1$ and $n^s = n \cdot f(s)$ with $f(s) \in A$, then $\lambda^s(n) = \lambda(n^s) = \gamma(n) \alpha(f(s))$. But $\alpha^s = \alpha$ implies by a) that $f(s) \in C_A(S) = \langle a^{s-1} | a \in A \rangle = \text{Ker } \alpha$. So $\lambda^s(n) = \gamma(n) = \lambda(n)$. This shows $|T(\lambda)/N| = 4$. Then $(\lambda \psi_j)^c(1) = |G: T(\lambda)| = 15$.

The lemmas 10-12 complete our proof for the case $A \cong M_2$. There remain by lemma 9 the cases A=1 or $A \cong M_0$ (=trivial module).

Lemma 13. We suppose the conditions of lemma 9 with A=1 or $A \cong M_0$. Then G/K is abelian and $N \leq \mathbb{Z}(G)$.

Proof. a) We show that G/K is abelian: As N/A is abelian (lemma 9), we may assume that A=1 and |G/M|=2.

Let $1 \neq \lambda \in \operatorname{Irr}(N)$ and $\chi \in \operatorname{Irr}(K)$, such that $\chi(1) = 4$. If $T(\lambda) = M$, then $T(\lambda\chi) = M$, so $(\lambda\chi)^c \in \operatorname{Irr}(G)$ and $(\lambda\chi)^c(1) = 8$, a contradiction. Hence G fixes all characters of N, so also the elements of N. Therefore $N \leq \mathbb{Z}(G)$ and so G/K is abelian. From now on we may also assume $A \cong M_0$, hence $K \cong \operatorname{SL}(2,5)$.

b) We show at first that [N, K] = 1: If $x \in K$ and $n \in N$, then $n^x \cdot n^{-1} \in A$. Hence the automorphism induced by x on N has at most order 2. As $K \cong SL(2,5)$ has no non-trivial 2-factor-group, K centralizes N. Hence M = NK is an epimorphic image of $N \times K$.

c) Suppose now that N is non-abelian, hence N' = A. As $K \cong SL(2,5)$, K has an irreducible character χ with $\chi(1)=4$ and $\chi(a)=-4$ for $1 \pm a \in A$. On the other hand, N has an irreducible character φ with $\varphi(1) > 1$ and $\varphi(a)=-\varphi(1)$, because $A=N' \leq \mathbb{Z}(N)$. Now $\varphi \chi \in Irr(N \times K)$ and $\varphi \chi((a, a))=\varphi \chi(1)$. Hence the kernel $\langle (a, a) \rangle$ of the epimorphism of $N \times K$ onto NK lies in the kernel of $\varphi \chi$. So $\varphi \chi \in Irr(NK)$ and $\varphi \chi(1)=4 \cdot \varphi(1)$. This contradicts $\omega(NK) \leq \omega(G)=2$. d) Suppose $N \oplus \mathbb{Z}(G)$, hence |G/M|=2. Let $G=M \langle t \rangle$. There exists an $\lambda \in Irr(N)$ such that $\lambda^t \equiv \lambda$ and then $A \oplus \operatorname{Ker} \lambda$. Also, $K \cong SL(2,5)$ has an irreducible character χ with $\chi(1)=4$, $A \oplus \operatorname{Ker} \chi$. Hence $\lambda \chi$ is a character of

NK=M. As t permutes at most the two classes of elements of K of order 5 resp. 10 and χ takes on these classes the values 1, 1 resp. -1, -1, so $\chi^t = \chi$ (cf. Dornhoff [1] page 228). Also $(\lambda \chi)^t = \lambda^t \chi = \lambda \chi$. This shows that $T(\lambda \chi) = M$. Hence $(\lambda \chi)^c \in \operatorname{Irr}(G)$ and $(\lambda \chi)^c (1) = 8$, contradicting $\omega(G) = 2$.

Lemma 14. We again suppose the conditions of lemma 9 and A=1 or $A \cong M_0$. Neglecting abelian direct factors, we have one of the following cases:

- (1) A=1, |G/M|=1: Then $G\cong A_5$.
- (2) A=1, |G/M|=2: Then $G/N \simeq S_5$ and G/K is an abelian 2-group.
- (3) $A \cong M_0$, |G/M| = 1: Now G is a central product of $K \cong SL(2,5)$ with the abelian 2-group N.
- (4) $A \cong M_0$, |G/M| = 2: Now M is a central product of $K \cong SL(2,5)$ with an abelian 2-group N and G/K is abelian. Also $N \leq \mathbb{Z}(G)$.

Proof. (1) If A=1 and |G/M|=1, then $G=N\times K$, where N is abelian and $K\cong A_5$.

(2) Let A=1 and |G/M|=2. By lemma 13, N is central in G. Hence the 2-complement of N is a direct summand of G. As $N=C_G(K)$, G/N is a group of automorphisms of K, hence $G/N \simeq S_5$.

(3) Suppose $A \cong M_0$ and |G/M| = 1. Then G is a central product of $K \cong$ SL(2,5) (lemma 9) with the abelian group N (lemma 13). Obviously, we can assume that N is a 2-group.

(4) Finally suppose $A \cong M_0$ and |G/M| = 2. Then M = NK has the structure described in (3), and by lemma 13, G/K is abelian and $N \leq \mathbb{Z}(G)$.

Lemma 15. All the groups G described in lemma 14 have $\omega(G)=2$.

Proof. (1) Clearly, $\omega(A_5)=2$.

(2) Now N is central in G (lemma 13). Let $\lambda \chi \in Irr(N \times K)$, where $\lambda \in Irr(N)$ and $\chi \in Irr(K)$. The behaviour of the irreducible characters of $K \cong A_5$ under the automorphism induced by $G/N \cong S_5$ shows that $T(\chi) = G$, if $\chi(1) = 4$. In this case $\chi \lambda$ has an extension to G, as G/M is cyclic. In the other cases $\omega(\chi(1)) \le 1$, hence the irreducible components ψ of $(\lambda \chi)^G$ have $\omega(\psi(1)) \le 2$.

(3) As N is abelian and $K \cong SL(2,5)$, we have $\omega(N \times K) = \omega(K) = 2$. (By Dornhoff [1] page 228, the character degrees of SL(2,5) are 1, 2, 3, 4, 5, 6, without multiplicities.) As G = NK is an epimorphic image of $N \times K$, so also $\omega(G) = 2$.

(4) As M=NK is a central product, any character of M is of the form $\lambda \chi$, where $\lambda \in Irr(N)$ and $\chi \in Irr(K)$. As $N \leq \mathbb{Z}(G)$, so $T(\lambda)=G$. If $\chi(1)=4$ or 6, then inspection of the character table of SL(2,5) shows that χ is stable under any automorphism of SL(2,5). Hence $T(\lambda \chi)=G$ in this case and $\lambda \chi$ can be extended to G. Otherwise, $\chi(1) \in \{1, 2, 3, 5\}$ and then all irreducible components ψ of $(\lambda \chi)^G$ have $\omega(\psi(1)) \leq 2$.

B. HUPPERT AND O. MANZ

References

- [1] L. Dornhoff: Group representation theory, part A, Marcel Dekker, New York, 1971.
- [2] J. Humphreys: Projective character tables for the finite simple groups of order less than one million. Comm. Algebra 11 (1983), 725-751.
- [3] B. Huppert: Endliche Gruppen I, Springer, Berlin, 1979.
- [4] B. Huppert and N. Blackburn: Finite groups II, III, Springer, Berlin, 1982.
- [5] B. Huppert and O. Manz: Squarefree character degrees, Arch. Math. 45 (1985), 125-132.
- [6] M. Isaacs: Character theory of finite groups. Academic Press, New York, 1976.
- [7] G. James and A. Kerber: The representation theory of the symmetric group. Addison-Wesley, London, 1981.
- [8] J. McKay: The non-abelian simple groups G, $|G| < 10^6$, character tables, Comm. Algebra 7 (1979), 1407–1445.
- [9] W. Müller: Darstellungstheorie von endlichen Gruppen. Teubner, Stuttgart, 1980.
- [10] J. Neubüser: Character tables of sporadic simple groups. Aachen, 1983.
- [11] A. Prince: On 2-groups admitting A_5 or A_6 with an element of order 5 acting fixed point freely. J. Algebra **49** (1977), 374–386.

Fachbereich Mathematik Joh.-Gutenberg-Universität Saarstr. 21 D 6500 Mainz BR Deutschland