Okuyama, T. Osaka J. Math. 23 (1986), 461-465

ON BLOCKS OF FINITE GROUPS WITH RADICAL CUBE ZERO

TETSURO OKUYAMA

(Received January 24, 1985)

Let *G* be a finite group and *k* be an algebraically closed field of characteristic *p,* a prime number. Let *B* be a block algebra of the group algebra *kG* with defect group *D* and let *J(B)* denote the Jacobson radical of *B.* It is well known that $J(B)=0$ if and only if $D=1$. Furthermore it is true that $J(B)^2$ if and only if $p=2$ and $|D|=2$.

In this paper we shall prove the following theorem.

Theorem 1. $J(B)^3 = 0$ (but $J(B)^2 \neq 0$) if and only if one of the following *conditions holds *

(1) $p=2$, *D* is a four group and *B* is isomorphic to the matrix ring over kD *or is Morita equivalent to k* A_4 *where* A_4 *is the alternating group of degree* 4,

(2) p is odd, $|D| = p$, the number of simple kG-modules in B is $p-1$ or *p—1/2 and the Brauer tree of B is a straight line segment such that the exceptional vertex is in an end point (if it exists).*

For the prime 2 we have the following.

Theorem 2. Assume $p=2$. Let U be the projective indecomposable kG module with $U/Rad(U)=k_G$, the trivial kG-module. If Loewy length of U is 3, *then a 2-Sylow subgroup of G is dihedral.*

EXAMPLE.

(1) The principal p -block of the following groups satisfies the conditions in Theorem 1.

(a) G is a four group or A_4 and $p=2$.

(b) *G* is the symmetric group or the alternating group of degree *p* and *p* is odd.

(2) Erdmann [6] shows that for each prime power q with $q \equiv 3 \pmod{4}$ the group PSL (2, *q)* satisfies the assumption in Theorem 2.

1. Preliminaries

In this section we shall prove some lemmas which will be used to prove

Theorem 1. Throughout this section, *B* is an arbitrary block algebra of a finite group *G.* Let D be a defect group of *B.* For a positive integer *n* let n_p denote the p -part of *n*.

Lemma 1. *There exists a simple kG-module S in B such that a vertex of S is D and a source of S is p'-dimensional.*

Proof. There exists a simple kG-module S in B such that $(\dim_k S)_p =$ *\G:D\^P* (Theorem 4.5, Chap. IV [9]). This module *S* satisfies the conditions in the lemma.

Let Ω denote the Heller's syzygy functor. Then the following lemma follows from the fact that *kG* is a symmetric algebra.

Lemma 2. Let X be a kG-module with no nonzero projective direct sum*mand.* Then $Soc(\Omega^1(X)) \cong X/rad(X)$.

Lemma 3. *Let P be a nontrivial cyclic subgroup of D. The there exists a kG-module X in B such that*

(1) a vertex of each indecomposable direct summand of X is P and $(\dim_k X)_p =$ $|G:P|$ _p and

(2) $\Omega^1(X) \cong \Omega^{-1}(X)$.

Proof. Let $N=N_G(P)$ and $C=C_G(P)$. Then there exists a block *b* of *C* with $b^G = B$. Put $B_1 = b^N$. There exists an indecomposable kC -module Y in b such that Ker $Y \supset P$, Y is projective as a kC/P -module and $(\dim_k Y)_n = |C: P|_n$. We claim that $\Omega^1(Y) = \Omega^{-1}(Y)$. Let *U* be a projective cover of *Y*. Then $Y \cong$ $U/UJ(kP)$ and $\Omega^1(Y) \simeq UJ(kP)$, where $J(kP)$ denotes the Jacobson radical of kP . Furthermore U is an injective hull of Y, $Y \cong \text{Inv}_P(U)$ and $\Omega^{-1}(Y) = U/\text{Inv}_P(U)$. Since *P* is cyclic and central in *C*, we have $UJ(kP) \cong U/Inv_P(U)$ and therefore ¹(Y)=Ω⁻¹(Y). Thus our claim follows. Let $Y^N = Y_1 ⊕ \cdots ⊕ Y_n$, where each Y_i is an indecomposable kN -module. Then Y_i is in B_1 and has P as a vertex for each *i*. Put $X_i = f^{-1}(Y_i)$, where f denotes the Green correspondence with respect to (G, N, P) and set $X {=} X_1 { \oplus} \cdots {\oplus} X_s.$ By the properties of the Green correspondence (Theorem 7.8 [9], [11], [12]) X_i is in B , dim_k $X_i \equiv \dim_k Y_i^G$ (mod. $p\vert G:P\vert_p$ and $\Omega^m(X_i) \simeq f^{-1}(\Omega^m(Y_i))$ for every integer *m*. Thus $(\dim_k X)_p =$ $|G: P|_{p}$ and $\Omega^{1}(X) = \Omega^{-1}(X)$.

2. Proof of Theorem 1

If a block B satisfies one of the conditions (1) and (2) in Theorem 1, then it is easy to show that $J(B)^3 = 0$ and $J(B)^2 \neq 0$. In the rest of this section we assume that $J(B)^3=0$, $J(B)^2\neq0$ and we shall prove that *B* satisfies one of the conditions (1) and (2).

Step 1. *If X is a nonsimple nonprojective indecomposable kG-module in B, then* $Soc(X)=Rad(X)$.

Proof. Since X is nonprojective, $Rad(X) \subset Soc(X)$ ([14]). Then it follows that $Rad(X)=Soc(X)$ as X is nonsimple.

Step 2. If p is odd, then $|D| = p$.

Proof. Suppose $|D| + p$. Let *P* be a subgroup of *D* of order *p* and let *X* be a &G-module in *B* which satisfies the conditions in Lemma 3. Then by a result of Erdmann [5] X and $\Omega^1(X)$ have no simple direct summand. By Lemma 2 $Soc(\Omega^1(X)) \cong X/Rad(X)$ and $Soc(X) \cong \Omega^{-1}(X)/Rad \Omega^{-1}((X))$. As $\Omega^1(X) \cong \Omega^{-1}(X)$ it follows that $Soc(X) \cong \Omega^1(X)/Rad\Omega^1((X))$. Then by Step 1 we have $\dim_k X = \dim_k \Omega^1(X)$. On the other hand $\dim_k X + \dim_k \Omega^1(X)$ is divisible by the order of a Sylow p -subgroup of G . Thus we have a contradiction as p is odd and $(\dim_k X)_p = |G:P|_p$.

Step 3. If $p=2$, then D is elementary abelian.

Proof. By Proposition (6G) [2] and [15] *D* is not cyclic. Suppose that there exists a cyclic subgroup P of D of order 4. Then by a similar argument as in the proof of Step 2 it follows that there exists a &G-module *X* in *B* such that $(\dim_k X)_2 = |G:P|_2$ and $\dim_k X = \dim_k \Omega^1(X)$. Since $\dim_k X + \dim_k \Omega^1(X)$ is divisible by the order of a Sylow 2-subgroup of G, this is a contradiction. Thus every nontrivial element in *D* is of order 2 and therefore *D* is elementary abelian.

Step 4. If $p=2$, then D is a four group.

Proof. Suppose that *\D* >4 and let *P* be a four group contained in *D.* Then by a result of Knorr [13] and Step 3 any simple &G-module in *B* is not P-projective. Let $I = \{i \in \mathbf{Z}; \Omega^i(k_p) \text{ is a direct summand of } S_{\{P\}}\text{ for some simple }$ kG -module S in B}, where k_P denotes the trivial kP -module and \boldsymbol{Z} denotes the set of all integers. By a result of Conlon $\lceil 3 \rceil$ each indecomposable kP-module of odd dimension is isomorphic to $\Omega^{i}(k_{P})$ for some integer *i*. Thus by Lemma 1 we can conclude that / is not empty. Let *ί* be the largest integer in / and choose a simple kG -module *S* in *B* such that $\Omega^i(k_P)$ is a direct summand of $S_{\vert P}$. Let *U* be a projective cover of *S*. By the assumption that $J(B)^3 = 0$ and $J(B)^2 \neq 0$, $Rad(U)/Soc(U)$ is nonzero and completely reducible. $Rad(U)/Soc(U)$ appears in the Asulander-Reiten sequence; $0 \rightarrow \Omega^{1}(S) \rightarrow Rad(U)/Soc(U) \oplus U \rightarrow$ $\Omega^{-1}(S) \to 0$ (Proposition 4.11 [1]). Then by the result of Roggenkamp (Proposition 2.10 [17]) $\Omega^{i+1}(k_p)$ is a direct summand of $(Rad(U)/Soc(U))_{|P}$ which contradicts the maximality of *i.*

Step 5. *Conclusion.*

First assume $p=2$. Then by Step 4 *D* is a four group. By results of Erdmann [8] we have two cases (i) and (ii) in Theorem 4, [8]. In the case (i), it follows easily that the basic ring of *B* is isomorphic to *kD.* In the case (ii), *B* has three simple modules S_1 , S_2 and S_3 . Let e_i (i=1, 2 and 3) be pairwise orthogonal primitive idempotents with $e_i k G | e_i J(kG) = S_i$ and put $e = e_1 + e_2 + e_3$. By Theorem 4, [8] $\dim_k e kGe=12$ and $\dim_k e_i kGe_j=1+\delta_{ij}$. Then we can show that *ekGe* is isomorphic to *kA⁴ .* Next assume that *p* is odd. By the thoery of Brauer-Dade [4] and a result of Peacock [16], it follows that *Rad(U)/* $Soc(U)$ is simple or a sum of two non-isomorphic simple modules for every projective indecomposable &G-module *U* in *B.* Then the result follows easily.

3. Proof of Theorem 2

Put $S=Rad(U)/Soc(U)$. Suppose that a Sylow 2-subgroup of G is not dihedral. Then by the result of Webb (Theorem E [18]) and our assumption S is simple and self dual. Let V be a projective cover of S. Since V is also self dual, for any simple &G-module *T* the multiplicity of *T* in the composition factors of V is equal to that of its dual. By a result of Fong $[10]$ the dimension of a nontrivial self dual simple *kG-moάule* is even. Thus we have a con tradiction as the multiplicity of the trivial k G-module in the composition factors of *V* is 1 and $\dim_k V$ is even.

References

- [1] M. Auslander and I. Reiten: *Representation theory of artin algebras* IV; Comm. Algebra 5 (1977), 443-518.
- [2] R. Brauer: *Some applications of the theory of blocks of characters of finite groups* IV, J. Algebra 17 (1971), 489-521.
- [3] S.B. Conlon: *Certain representation algebras,* J. Austral. Math. Soc. 5 (1965), 83-99.
- [4] E.C. Dade: *Blocks with cyclic defect group,* Ann. of Math. (2) 84 (1966), 20-48.
- [5] K. Erdmann: *Blocks and simple modules with cyclic vertices,* Bull. London Math. Soc. 9 (1977), 216-218.
- [6] K. Erdmann: *Principal blocks of groups with dihedral Sylow 2-subgroups^y* Comm. Algebra 5 (1977), 665-694.
- [7] K. Erdmann: *Blocks whose defect groups are Klein four groups,* J. Algebra 59 (1979), 452-465.
- [8] K. Erdmann: *Blocks whose defect groups are Klein four groups: A correction,* J. Algebra 76 (1982), 505-518.
- [9] W. Feit: The representation theory of finite groups, North-Holland, Amster dam, New York, Oxford, 1982.
- [10] P. Fong: On decomposition numbers of J_1 and $R(q)$, Symposia Mathematica,

XIII (1974), 415-422.

- [11] J.A. Green: *A transfer theorem for modular representations,* J. Algebra 1 (1964), 73-84.
- [12] J.A. Green: *Walking around the Brauer tree,* J. Austral. Math. Soc. 17 (1974), 197-213.
- [13] R. Knδrr: *On the vertices of irreducible modules,* Ann. of Math. (2) **110** (1979), 487-499.
- [14] W. Mϋller: *Unzerlegbare Moduln uber artinschen Ringen,* Math. Z. **137** (1974), 197-226.
- [15] T. Okuyama and Y. Tsushima: *Local properties of p-block algebras of finite groups,* Osaka J. Math. 20 (1983), 33-41.
- [16] R.M. Peacock: *Blocks with a cyclic defect group,* J. Algebra 34 (1975), 232-259.
- [17] K.W. Roggenkamp: Integral representations and structure of finite group rings, Les Presses de l'Université de Montréal, Montréal, 1980.
- [18] PJ . Webb: *The Auslander-Reiten quiver of a finite group,* Math. Z. **179** (1982), 97-122.

Department of Mathematics, Osaka City University, Osaka 558, Japan.