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ON BLOCKS OF FINITE GROUPS W I T H
RADICAL CUBE ZERO
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Let G be a finite group and k be an algebraically closed field of charac-
teristic p, a prime number. Let B be a block algebra of the group algebra kG
with defect group D and let J(B) denote the Jacobson radical of B. It is well
known that J(B)=0 if and only if D=ί. Furthermore it is true that J(B)2=
if and only if p=2 and \D\ =2.

In this paper we shall prove the following theorem.

Theorem 1. J(B)3=0 (but J(B)2φ0) if and only if one of the following
conditions holds \

(1) p=2, D is a four group and B is ίsomorphic to the matrix ring over kD
or is Morίta equivalent to kA4 where A4 is the alternating group of degree 4,

(2) p is odd, \D\=p, the number of simple kG-modules in B is p — 1 or
p—1/2 and the Brauer tree of B is a straight line segment such that the excep-
tional vertex is in an end point (if it exists).

For the prime 2 we have the following.

Theorem 2. Assume p=2. Let U be the projective indecomposable kG-
module with UjRad(U)~kG, the trivial kG-module. If Loewy length of U is 3,
then a 2-Sylow subgroup of G is dihedral.

EXAMPLE.

(1) The principal ^>-block of the following groups satisfies the conditions
in Theorem 1.

(a) G is a four group or A4 and p=2.
(b) G is the symmetric group or the alternating group of degree p and

p is odd.
(2) Erdmann [6] shows that for each prime power q with q=3 (mod. 4)

the group PSL (2, q) satisfies the assumption in Theorem 2.

1. Preliminaries

In this section we shall prove some lemmas which will be used to prove
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Theorem 1. Throughout this section, B is an arbitrary block algebra of a
finite group G. Let D be a defect group of B. For a positive integer n let
rip denote the ̂ >-ρart of n.

Lemma 1. There exists a simple kG-module S in B such that a vertex of

S is D and a source of S is p'-dimensional.

Proof. There exists a simple &G-module S in B such that
\G:D\P (Theorem 4.5, Chap. IV [9]). This module S satisfies the conditions
in the lemma.

Let Ω denote the Heller's syzygy functor. Then the following lemma
follows from the fact that kG is a symmetric algebra.

Lemma 2. Let X be a kG-module with no nonzero protective direct sum-
mand. Then Soc(n\X))eχXlrad(X).

Lemma 3. Let P be a nontrivial cyclic subgroup of D. The there exists a
kG-module X in B such that

(1) a vertex of each indecomposable direct summand of X is P and {άimkX)p—
\G:P\pand

(2)

Proof. Let N=NG(P) and C=CG(P). Then there exists a block b of C
with bG=B. Put Bx^=bN. There exists an indecomposable &C-module Y in b
such that Ker YIDP, Y is projective as a AC/P-module and (dimΛ 30^= IC: P|^.
We claim that ίl\Y)=n"\Y). Let U be a projective cover of Y. Then Y ^
U/UJ(kP) and Ωx( Y)s* UJ(kP), where J(kP) denotes the Jacobson radical of kP.

Furthermore U is an injective hull of Y, Y^InvP(U) and Ω~1(Y)=C//InvF(C/).
Since P is cyclic and central in C, we have UJ(kP)^ C7/InvP(C/) and therefore
Ω1(Y)=Ω'1(Y). Thus our claim follows. Let YN= Yiθ θ Y», where each
Yf is an indecomposable £iV-module. Then Yf is in B1 and has P as a vertex
for each u Put J?'I =/"1(Y I ), where/ denotes the Green correspondence with
respect to (G, N, P) and set X=Xι® — ®Xn. By the properties of the Green
correspondence (Theorem 7.8 [9], [11], [12]) Xt is in JB, dimΛZf = dimΛ Y? (mod.
p\G:P\p) and Ω ^ X , ) - / " 1 ^ ^ ) ) for e v e r Y integer m. Thus (dimΛ-Y),=

2. Proof of Theorem 1

If a block 5 satisfies one of the conditions (1) and (2) in Theorem 1, then

it is easy to show that J(B)3=Q and /(J3)2φ0. In the rest of this section we

assume that J(B)3=0, J(B)2Φ0 and we shall prove that B satisfies one of the

conditions (1) and (2).
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Step 1. If X is a nonsimple nonprojective indecomposable kG-module in B,
then Soc{X)=Rad{X).

Proof. Since X is nonprojective, Rad(X)cSoc(X) ([14]). Then it follows
that Rad(X)=Soc(X) as X is nonsimple.

Step 2. If p is odd, then \D\=ρ.

Proof. Suppose | D | Φ >̂. Let P be a subgroup of D of order p and let X
be a &G-module in B which satisfies the conditions in Lemma 3. Then by a
result of Erdmann [5] X and Ω\X) have no simple direct summand. By
Lemma 2 Soc{Ω\X))^ X\Rad{X) and Soc{X)^Dr\X)jRada-\{X)). As
aχX)e*ΩΓ\X) it follows that Soc(X)^Ω\X)IRadΩ\{X)). Then by Step 1
we have dimkX=diτnkΩ}(X). On the other hand dim^X+dim^Ω^X) is divisi-
ble by the order of a Sylow ̂ -subgroup of G. Thus we have a contradiction as
p is odd and (dim* X)p= \G:P\P.

Step 3. Ifp=2, then D is elementary abelian.

Proof. By Proposition (6G) [2] and [15] D is not cyclic. Suppose that
there exists a cyclic subgroup P of D of order 4. Then by a similar argument
as in the proof of Step 2 it follows that there exists a &G-module X in B such
that (άίmkX)2=\G:P\2 and &mkX=atmka

l{X). Since a\mkX+a\mkCi\X)
is divisible by the order of a Sylow 2-subgroup of G, this is a contradiction.
Thus every nontrivial element in D is of order 2 and therefore D is elementary
abelian.

Step 4. If p=2, then D is a four group.

Proof. Suppose that \D\ > 4 and let P be a four group contained in D.
Then by a result of Knorr [13] and Step 3 any simple &G-module in B is not
P-projective. Let / = {i^Z\ CL\kP) is a direct summand of S\P for some simple
&G-module S in B}, where &P denotes the trivial &P-module and Z denotes the
set of all integers. By a result of Conlon [3] each indecomposable kP-module
of odd dimension is isomorphic to Ωι{kP) for some integer ί. Thus by Lemma
1 we can conclude that / is not empty. Let ί be the largest integer in / and
choose a simple &G-module S in B such that Ω\kP) is a direct summand of
S\P. Let U be a protective cover cf S. By the assumption that/(.β) 3=0 and
J(B)2ΦO, Rad(U)lSoc(U) is nonzero and completely reducible. Rad(U)/Soc(U)
appears in the Asulander-Reiten sequence; 0->Ω\S)-^Rad(U)ISoc(U)φU->
ΩI~\S)-^O (Proposition 4.11 [1]). Then by the result of Roggenkamp (Pro-
position 2.10 [17]) ni+1(/jp) is a direct summand of (Rad(U)ISoc(U))lP which
contradicts the maximality of i.
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Step 5. Conclusion.

First assume p=2. Then by Step 4 D is a four group. By results of
Erdmann [8] we have two cases (i) and (ii) in Theorem 4, [8]. In the case (i),
it follows easily that the basic ring of B is isomorphic to kD. In the case (ii),
B has three simple modules Sl9 S2 and S3. Let e{ ( i = l , 2 and 3) be pairwise
orthogonal primitive idempotents with eikGleiJ(kG)—Si and put e=eι-\-e2-\-ez.
By Theorem 4, [8] dimkekGe=\2 and άim.keikGej= l + δ ί ; . Then we can
show that ekGe is isomorphic to kA4. Next assume that p is odd. By the
thoery of Brauer-Dade [4] and a result of Peacock [16], it follows that Rad(U)/
Soc(U) is simple or a sum of two non-isomorphic simple modules for every
projective indecomposable &G-module U in B. Then the result follows easily.

3. Proof of Theorem 2

Put S=Rad(U)ISoc(U). Suppose that a Sylow 2-subgroup of G is not
dihedral. Then by the result of Webb (Theorem E [18]) and our assumption
S is simple and self dual. Let I7" be a projective cover of S. Since V is also
self dual, for any simple &G-module T the multiplicity of T in the composition
factors of V is equal to that of its dual. By a result of Fong [10] the dimen-
sion of a nontrivial self dual simple kG-moάule is even. Thus we have a con-
tradiction as the multiplicity of the trivial &G-module in the composition factors
of V is 1 and ά\mk V is even.

References

[1] M. Auslander and I. Reiten: Representation theory of artin algebras IV; Comm.
Algebra 5 (1977), 443-518.

[2] R. Brauer: Some applications of the theory of blocks of characters of finite groups
IV, J. Algebra 17 (1971), 489-521.

[3] S.B. Conlon: Certain representation algebras, J. Austral. Math. Soc. 5 (1965),
83-99.

[4] E.C. Dade: Blocks with cyclic defect group, Ann. of Math. (2) 84 (1966), 20-48.
[5] K. Erdmann: Blocks and simple modules with cyclic vertices, Bull. London Math.

Soc. 9 (1977), 216-218.
[6] K. Erdmann: Principal blocks of groups with dihedral Sylow 2-subgroupsy Comm.

Algebra 5 (1977), 665-694.
[7] K. Erdmann: Blocks whose defect groups are Klein four groups, J. Algebra 59

(1979), 452-465.
[8] K. Erdmann: Blocks whose defect groups are Klein four groups: A correction,

J. Algebra 76 (1982), 505-518.
[9] W. Feit: The representation theory of finite groups, North-Holland, Amster-

dam, New York, Oxford, 1982.
[10] P. Fong: On decomposition numbers of ]x and R(q)y Symposia Mathematica,



BLOCKS OF FINITE GROUPS 465

XIII (1974), 415-422.
[11] J.A. Green: A transfer theorem for modular representations, J. Algebra 1 (1964),

73-84.
[12] J.A. Green: Walking around the Brauer tree, J. Austral. Math. Soc. 17 (1974),

197-213.
[13] R. Knδrr: On the vertices of irreducible modules, Ann. of Math. (2) 110 (1979),

487^-99.
[14] W. Mϋller: Unzerlegbare Moduln uber artinschen Ringen, Math. Z. 137 (1974),

197-226.
[15] T. Okuyama and Y. Tsushima: Local properties of p-block algebras of finite

groups, Osaka J. Math. 20 (1983), 33-41.
[16] R.M. Peacock: Blocks with a cyclic defect group, J. Algebra 34 (1975), 232-259.
[17] K.W. Roggenkamp: Integral representations and structure of finite group

rings, Les Presses de ΓUniversite de Montreal, Montreal, 1980.
[18] P J . Webb: The Auslander-Reiten quiver of a finite group, Math. Z. 179 (1982),

97-122.

Department of Mathematics,
Osaka City University,
Osaka 558, Japan.






