Okuyama, T. Osaka J. Math. 23 (1986), 461-465

ON BLOCKS OF FINITE GROUPS WITH RADICAL CUBE ZERO

Tetsuro OKUYAMA

(Received January 24, 1985)

Let G be a finite group and k be an algebraically closed field of characteristic p, a prime number. Let B be a block algebra of the group algebra kGwith defect group D and let J(B) denote the Jacobson radical of B. It is well known that J(B)=0 if and only if D=1. Furthermore it is true that $J(B)^2=$ if and only if p=2 and |D|=2.

In this paper we shall prove the following theorem.

Theorem 1. $J(B)^3=0$ (but $J(B)^2 \neq 0$) if and only if one of the following conditions holds;

(1) p=2, D is a four group and B is isomorphic to the matrix ring over kD or is Morita equivalent to kA_4 where A_4 is the alternating group of degree 4,

(2) p is odd, |D|=p, the number of simple kG-modules in B is p-1 or p-1/2 and the Brauer tree of B is a straight line segment such that the exceptional vertex is in an end point (if it exists).

For the prime 2 we have the following.

Theorem 2. Assume p=2. Let U be the projective indecomposable kGmodule with $U/Rad(U)=k_{g}$, the trivial kG-module. If Loewy length of U is 3, then a 2-Sylow subgroup of G is dihedral.

Example.

(1) The principal p-block of the following groups satisfies the conditions in Theorem 1.

(a) G is a four group or A_4 and p=2.

(b) G is the symmetric group or the alternating group of degree p and p is odd.

(2) Erdmann [6] shows that for each prime power q with $q \equiv 3 \pmod{4}$ the group PSL (2, q) satisfies the assumption in Theorem 2.

1. Preliminaries

In this section we shall prove some lemmas which will be used to prove

Theorem 1. Throughout this section, B is an arbitrary block algebra of a finite group G. Let D be a defect group of B. For a positive integer n let n_p denote the p-part of n.

Lemma 1. There exists a simple kG-module S in B such that a vertex of S is D and a source of S is p'-dimensional.

Proof. There exists a simple kG-module S in B such that $(\dim_k S)_p = |G:D|_p$ (Theorem 4.5, Chap. IV [9]). This module S satisfies the conditions in the lemma.

Let Ω denote the Heller's syzygy functor. Then the following lemma follows from the fact that kG is a symmetric algebra.

Lemma 2. Let X be a kG-module with no nonzero projective direct summand. Then $Soc(\Omega^{1}(X)) \simeq X/rad(X)$.

Lemma 3. Let P be a nontrivial cyclic subgroup of D. The there exists a kG-module X in B such that

(1) a vertex of each indecomposable direct summand of X is P and $(\dim_k X)_p = |G:P|_p$ and

(2) $\Omega^{1}(X) \cong \Omega^{-1}(X).$

Proof. Let $N=N_G(P)$ and $C=C_G(P)$. Then there exists a block b of Cwith $b^G=B$. Put $B_1=b^N$. There exists an indecomposable kC-module Y in bsuch that Ker $Y \supset P$, Y is projective as a kC/P-module and $(\dim_k Y)_p = |C:P|_p$. We claim that $\Omega^1(Y) = \Omega^{-1}(Y)$. Let U be a projective cover of Y. Then $Y \cong U/UJ(kP)$ and $\Omega^1(Y) \cong UJ(kP)$, where J(kP) denotes the Jacobson radical of kP. Furthermore U is an injective hull of Y, $Y \cong \operatorname{Inv}_P(U)$ and $\Omega^{-1}(Y) = U/\operatorname{Inv}_P(U)$. Since P is cyclic and central in C, we have $UJ(kP) \cong U/\operatorname{Inv}_P(U)$ and therefore $\Omega^1(Y) = \Omega^{-1}(Y)$. Thus our claim follows. Let $Y^N = Y_1 \oplus \cdots \oplus Y_n$, where each Y_i is an indecomposable kN-module. Then Y_i is in B_1 and has P as a vertex for each i. Put $X_i = f^{-1}(Y_i)$, where f denotes the Green correspondence with respect to (G, N, P) and set $X = X_1 \oplus \cdots \oplus X_n$. By the properties of the Green correspondence (Theorem 7.8 [9], [11], [12]) X_i is in B, $\dim_k X_i \equiv \dim_k Y_i^c$ (mod. $p | G: P |_p$) and $\Omega^m(X_i) \cong f^{-1}(\Omega^m(Y_i))$ for every integer m. Thus $(\dim_k X)_p =$ $| G: P |_p$ and $\Omega^1(X) = \Omega^{-1}(X)$.

2. Proof of Theorem 1

If a block B satisfies one of the conditions (1) and (2) in Theorem 1, then it is easy to show that $J(B)^3=0$ and $J(B)^2 \neq 0$. In the rest of this section we assume that $J(B)^3=0$, $J(B)^2 \neq 0$ and we shall prove that B satisfies one of the conditions (1) and (2).

462

Step 1. If X is a nonsimple nonprojective indecomposable kG-module in B, then Soc(X) = Rad(X).

Proof. Since X is nonprojective, $Rad(X) \subset Soc(X)$ ([14]). Then it follows that Rad(X) = Soc(X) as X is nonsimple.

Step 2. If p is odd, then |D| = p.

Proof. Suppose $|D| \neq p$. Let *P* be a subgroup of *D* of order *p* and let *X* be a *kG*-module in *B* which satisfies the conditions in Lemma 3. Then by a result of Erdmann [5] *X* and $\Omega^1(X)$ have no simple direct summand. By Lemma 2 $Soc(\Omega^1(X)) \cong X/Rad(X)$ and $Soc(X) \cong \Omega^{-1}(X)/Rad\Omega^{-1}((X))$. As $\Omega^1(X) \cong \Omega^{-1}(X)$ it follows that $Soc(X) \cong \Omega^1(X)/Rad\Omega^1((X))$. Then by Step 1 we have $\dim_k X = \dim_k \Omega^1(X)$. On the other hand $\dim_k X + \dim_k \Omega^1(X)$ is divisible by the order of a Sylow *p*-subgroup of *G*. Thus we have a contradiction as *p* is odd and $(\dim_k X)_p = |G:P|_p$.

Step 3. If p=2, then D is elementary abelian.

Proof. By Proposition (6G) [2] and [15] D is not cyclic. Suppose that there exists a cyclic subgroup P of D of order 4. Then by a similar argument as in the proof of Step 2 it follows that there exists a kG-module X in B such that $(\dim_k X)_2 = |G:P|_2$ and $\dim_k X = \dim_k \Omega^1(X)$. Since $\dim_k X + \dim_k \Omega^1(X)$ is divisible by the order of a Sylow 2-subgroup of G, this is a contradiction. Thus every nontrivial element in D is of order 2 and therefore D is elementary abelian.

Step 4. If p=2, then D is a four group.

Proof. Suppose that |D| > 4 and let P be a four group contained in D. Then by a result of Knörr [13] and Step 3 any simple kG-module in B is not P-projective. Let $I = \{i \in \mathbb{Z}; \Omega^i(k_P) \text{ is a direct summand of } S_{1P} \text{ for some simple } kG$ -module S in $B\}$, where k_P denotes the trivial kP-module and \mathbb{Z} denotes the set of all integers. By a result of Conlon [3] each indecomposable kP-module of odd dimension is isomorphic to $\Omega^i(k_P)$ for some integer i. Thus by Lemma 1 we can conclude that I is not empty. Let i be the largest integer in I and choose a simple kG-module S in B such that $\Omega^i(k_P)$ is a direct summand of S_{1P} . Let U be a projective cover of S. By the assumption that $J(B)^3=0$ and $J(B)^2 \neq 0$, Rad(U)/Soc(U) is nonzero and completely reducible. $Rad(U)/Soc(U) \oplus U \rightarrow \Omega^{-1}(S) \rightarrow 0$ (Proposition 4.11 [1]). Then by the result of Roggenkamp (Proposition 2.10 [17]) $\Omega^{i+1}(k_P)$ is a direct summand of $(Rad(U)/Soc(U))_{1P}$ which contradicts the maximality of i. Step 5. Conclusion.

First assume p=2. Then by Step 4 D is a four group. By results of Erdmann [8] we have two cases (i) and (ii) in Theorem 4, [8]. In the case (i), it follows easily that the basic ring of B is isomorphic to kD. In the case (ii), B has three simple modules S_1 , S_2 and S_3 . Let e_i (i=1, 2 and 3) be pairwise orthogonal primitive idempotents with $e_ikG/e_iJ(kG)=S_i$ and put $e=e_1+e_2+e_3$. By Theorem 4, [8] dim_k ekGe = 12 and dim_k $e_ikGe_j = 1+\delta_{ij}$. Then we can show that ekGe is isomorphic to kA_4 . Next assume that p is odd. By the thoery of Brauer-Dade [4] and a result of Peacock [16], it follows that Rad(U)/Soc(U) is simple or a sum of two non-isomorphic simple modules for every projective indecomposable kG-module U in B. Then the result follows easily.

3. Proof of Theorem 2

Put S = Rad(U)/Soc(U). Suppose that a Sylow 2-subgroup of G is not dihedral. Then by the result of Webb (Theorem E [18]) and our assumption S is simple and self dual. Let V be a projective cover of S. Since V is also self dual, for any simple kG-module T the multiplicity of T in the composition factors of V is equal to that of its dual. By a result of Fong [10] the dimension of a nontrivial self dual simple kG-module is even. Thus we have a contradiction as the multiplicity of the trivial kG-module in the composition factors of V is 1 and dim_k V is even.

References

- M. Auslander and I. Reiten: Representation theory of artin algebras IV; Comm. Algebra 5 (1977), 443-518.
- [2] R. Brauer: Some applications of the theory of blocks of characters of finite groups IV, J. Algebra 17 (1971), 489-521.
- [3] S.B. Conlon: Certain representation algebras, J. Austral. Math. Soc. 5 (1965), 83–99.
- [4] E.C. Dade: Blocks with cyclic defect group, Ann. of Math. (2) 84 (1966), 20-48.
- [5] K. Erdmann: Blocks and simple modules with cyclic vertices, Bull. London Math. Soc. 9 (1977), 216-218.
- [6] K. Erdmann: Principal blocks of groups with dihedral Sylow 2-subgroups, Comm. Algebra 5 (1977), 665–694.
- [7] K. Erdmann: Blocks whose defect groups are Klein four groups, J. Algebra 59 (1979), 452–465.
- [8] K. Erdmann: Blocks whose defect groups are Klein four groups: A correction, J. Algebra 76 (1982), 505-518.
- [9] W. Feit: The representation theory of finite groups, North-Holland, Amsterdam, New York, Oxford, 1982.
- [10] P. Fong: On decomposition numbers of J_1 and R(q), Symposia Mathematica,

464

XIII (1974), 415–422.

- [11] J.A. Green: A transfer theorem for modular representations, J. Algebra 1 (1964), 73-84.
- [12] J.A. Green: Walking around the Brauer tree, J. Austral. Math. Soc. 17 (1974), 197–213.
- [13] R. Knörr: On the vertices of irreducible modules, Ann. of Math. (2) 110 (1979), 487-499.
- [14] W. Müller: Unzerlegbare Moduln über artinschen Ringen, Math. Z. 137 (1974), 197-226.
- [15] T. Okuyama and Y. Tsushima: Local properties of p-block algebras of finite groups, Osaka J. Math. 20 (1983), 33-41.
- [16] R.M. Peacock: Blocks with a cyclic defect group, J. Algebra 34 (1975), 232-259.
- [17] K.W. Roggenkamp: Integral representations and structure of finite group rings, Les Presses de l'Université de Montréal, Montréal, 1980.
- [18] P.J. Webb: The Auslander-Reiten quiver of a finite group, Math. Z. 179 (1982), 97-122.

Department of Mathematics, Osaka City University, Osaka 558, Japan.