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A module M is said to complement direct summands if every direct sum-
mand of M has the exchange property with respect to completely indecompos-
able modules, or in other words if for each direct summand B of M and for
each decomposition M=φAh where every A{ is completely indecomposable

(i.e. has local endomorphism ring), there exists a subset K oί I with M=
B@®Ak.

K

There are several characterisations by a theorem of Harada [3, 3.1.2].

Theorem. Let M=ξ&Ai be a c. indec. decomposition. Equivalent are

(1) M satisfies the take-out property.
(2) Every direct summand of M has the exchange property in M.
(3) M complements direct summands.
(4) (Ai'. I) is a locally-semi-T-nilpotent family.
(5) ]' ΓΊ End(M) is equal to the Jacobson radical of End(M).

One step of the proof, "(4)=^>(5)", does merit a certain attention. In an
earlier version of the theorem by Harada and Sai [2, Thm 9], the proof of that
step uses assumptions stronger than at hand [2, Lemma 12]. We would like
to present an alternative and elementary proof of that step. In particular one
does not need transfinite induction as in [3, Lemma 2.2.3]. All notation may
be found in [3]. For the proofs let perpetually be M = 0 i 4 , a completely

indec. decomposition and let (#,-: /) be a related set of orthogonal idempotents

By definition, for an element / of End(M) not contained in / ' , there exist some
elements i, je/ and g^Έnd(M) with gejfei=ei. Thus the Jacobson radical
of End(M) is always contained in / ' Π End(M), otherwise it would contain a
nonzero idempotent.

Lemma 1. For all t^Jr f]End(M) and for all i^I> e{t and te{ are ele-
ments of the Jacobson radical.
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Proof. Write ei=vp) where v is the inclusion of A{ in M and p is the

projection onto A{ induced by e{. ]' Π End(M) is an ideal, thus the composi-

tion pstv is not an isomorphism for all endomorphisms s. As End(^4t ) is local,

\A—pstv is an isomorphism. By Beck [1, Lemma 1.1], lM—stei is also an iso-

morphism and so te{ is an element of the radical. The other case works simi-

larly.

Corollaries.

(a) For all f^J'Π End(M), \—t is a monomorphism.

(b) ]' Π End(M) does not contain nonzero idempotents,

(c) Lemma 1 is also true for arbitrary local idempotents and for finite sums of

orthogonal local idempotents.

(d) Suppose J is a finite subset of /, take x^ξ&Aj and d: = ^Σej. Then x=(l —

dt) (1 -dtd)-\x). {Condition (§)). J J

Proofs. The definition of Jf does not depend on a particular decomposi-

tion of M and this implies the first statement of (c). The second statement

of (c) and (d) are obtained by a straightforward calculation. For (a), take

There exists a finite subset J of I with JcGffiiy. By (c), td is

in the radical and 1 — td is an isomorphism, where d=Σ^j- Thus (1 — t)(x)

= (1—&/)(#) Φθ. (b) follows from that, as 1—e is not monic for each nonzero

idempotent e.

Having (a) in mind, in order to complete the proof of "(4)=#>(5)" it is enough

to show 1 — t is an epimorphism for all t^J'Γ[Έnd(M). This is where (4)

turns up. The idea is to apply the Kϋnig-Graph-Lemma somehow.

Lemma 2. Let (̂ 4t : /) be a locally-semi-T-nϊlpotent family and take

t^J'Π End(M). Then ί—t is an epimorphism.

Proof. For an arbitrary j^I and xeβjM there is constructed a fxeEnd(M)

with (1—t)fx(x)=x. Then ^ t f c ( l - ί ) M for all i e / and 1—t is onto. Let

y e / and x^βjM be as above. Sequences (fn: N), (gn: N), (hn: N), (dn: N)

with elements in End(M) and (Kn: N), (In: N) with subsets of / are constructed

by induction, having the following properties:

(A) dn is an idempotent

(B) Kn Π /„-:= $ and {/} U Kx U - U Kn=In

(C) l-g.={l-t)fu

(D) gn(x)= Π Σ e^l
l<i<n ktΞK

n=ί Define dx:=eh I0: = ij}, / ^ ( l - i M Γ , /i:=*i, g1:=l-(l-t)f1.

(A) and (C) are valid per def. Now, (1-&) (*)=(l-ί)A1(*)=(l-£iιί)A1(*)

—(1— d^th^x). As by Condition (§), (\—d1t)tφc) = x, follows &(*) =
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(1—d^th^x) and so j $Ξsupp(g1(x))=: Kx (for 3/eikf, supρ(^) is the finite set
of ί e / with ei(y)Φ0). g1{x)= Σ e^l-djth^x). Take Ix: =K1ΌIO and get
(D) and (B).

n^n+l Define dM+1: = Σ * , , hn+1: =(l—dn+1tdn+1)'\ fn+ι:=fn+hΛ+1gU9 gn+ι'.=
i(=In

l—(l—t)fn+1, Kn+1:=s\ιpp(gH+1(x)), In+1:=Kn+1\JIn. Again, (A) and (C) are
valid per def. For the rest:

= gn{x) by Condition (§)

= 0

From gn+i(x)=(l—dn+1)thn+1gn one gets (D) by insertion. It is easy to see that
Kn+1 Π /„= 0, which gives (B).

The construction is now complete. All summands in (D) are nonisomorphisms
(as compositions with t) between certain Ah and none of these A{ occur twice.
Now by locally-semi-T-nilpotency and the Kϋnig-Graph-Lemma there exists
a natural number m with £«(#)=(). (C) implies x=(l—t)fm(x).
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