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A module M is said to complement direct summands if every direct sum-
mand of M has the exchange property with respect to completely indecompos-
able modules, or in other words if for each direct summand B of M and for
each decomposition M =619A,-, where every A; is completely indecomposable

(i-e. has local endomorphism ring), there exists a subset K of I with M=
B@?A,,.

There are several characterisations by a theorem of Harada [3, 3.1.2].
Theorem. Let M=@A; be a c. indec. decomposition. Equivdlent are
I

(1) M satisfies the take-out property.

(2) Every direct summand of M has the exchange property in M.
(3) M complements direct summands.

(4) (4;: I) is a locally-semi-T-nilpotent family.

(5) J'N End(M) is equal to the Jacobson radical of End(M).

One step of the proof, “(4)=>(5)", does merit a certain attention. In an
earlier version of the theorem by Harada and Sai [2, Thm 9], the proof of that
step uses assumptions stronger than at hand [2, Lemma 12]. We would like
to present an alternative and elementary proof of that step. In particular one
does not need transfinite induction as in [3, Lemma 2.2.3]. All notation may
be found in [3]. For the proofs let perpetually be M=€I3A,- a completely

indec. decomposition and let (¢;: I) be a related set of orthogonal idempotents
(i.e. e;,(M)=A4,).

By definition, for an element f of End(M) not contained in J’, there exist some
elements 7, j &I and geEnd(M) with ge;fe;—=e;. Thus the Jacobson radical
of End(M) is always contained in J'N End(M), otherwise it would contain a
nonzero idempotent.

Lemma 1. For all t€ J' N End(M) and for all i1, et and te; are ele-
ments of the Jacobson radical.
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Proof. Write ¢;=ovp, where v is the inclusion of 4; in M and p is the
projection onto 4; induced by e;. J'NEnd(M) is an ideal, thus the composi-
tion pstv is not an isomorphism for all endomorphisms s. As End(4;) is local,
1,—pstv is an isomorphism. By Beck [1, Lemma 1.1], 1,,—ste; is also an iso-
morphism and so te; is an element of the radical. The other case works simi-
larly.

Corollaries.

(a) Forall te J' N End(M), 1—t is a monomorphism.

(b) J'NEnd(M) does not contain nonzero idempotents.

(c¢) Lemma 1 is also true for arbitrary local idempotents and for finite sums of
orthogonal local idempotents.

(d) Suppose ] is a finite subset of I, take x€ D A; and d:=>e,. Then x=(1—
dfy(1—dtd)(x).  (Condition (§)). !

Proofs. The definition of J' does not depend on a particular decomposi-
tion of M and this implies the first statement of (c). The second statement
of (c) and (d) are obtained by a straightforward calculation. For (a), take
0f=x=M. There exists a finite subset J of I with x& G?Aj. By (c), td is

in the radical and 1—td is an isomorphism, where d=2>}e¢;. Thus (1—%)(x)
J

=(1—1td) (x)=0. (b) follows from that, as 1—e is not monic for each nonzero
idempotent e.

Having (a) in mind, in order to complete the proof of “(4)=(5)” it is enough
to show 1—¢ is an epimorphism for all € J'NEnd(M). This is where (4)
turns up. The idea is to apply the Konig-Graph-Lemma somehow.

Lemma 2. Let (A;: I) be a locally-semi-T-nilpotent family and take
te J'NEnd(M). Then 1—t is an epimorphism.

Proof. For an arbitrary j 1 and x =e;M there is constructed a f, € End(M)
with (1—2)f,(x)=x. Then eMc(1—t)M for all i€l and 1—¢ is onto. Let
j€I and x=e;,M be as above. Sequences (f,: N), (g,: N), (h,: N), (d,: N)
with elements in End(M) and (K,: N), (I,: N) with subsets of I are constructed
by induction, having the following properties:

(A) d, is an idempotent

(B) K,NI— ¢ and {j} UK,U - UK,—I,

(C) 1_gn=(1_t)fn

(D) g"(x)zlgl:[gn k%:{'_"k;(l_di)thi(x)

n=1 Define d,:=e;, I;:={j}, h:=(1—dtd)™", fi:=h, g:=1—(1-8)f.
(A) and (C) are valid per def. Now, (1—g)(x)=(1—t)h(x)=(1—dt)hy(x)
—(1—d,)th(x). As by Condition (§), (1—dit)h(x)=x, follows g(x)=
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(1—d)th(x) and so jesupp(g(x))=: K, (for y& M, supp(y) is the finite set
of i€l with e,(y)#0). g(x)= X ¢, (1—d\)th(x). Take I;: =K, U1, and get
(D) and (B). heh

n~n+1 Define d,;: Z,EEI €y Mys: =(1—dpintdy )™, fori: =fut-huir&n ot =
1—(1—28)fps1, Kyiy: =supp(g,+1(%)), L41:=K,1,UI,. Again, (A) and (C) are
valid per def. For the rest:
(1—gu+1) (¥) = (1—2) (fat-Pur18s) (%)
= x—gy(%)+(1—dp412)hp1184(%) — (1 —dy11)th 11 84(%)
i
= g,(») by Condition (8)

[
=0
From g,.,(x)=(1—d,,)th,, £, one gets (D) by insertion. It is easy to see that
K, NI,= &, which gives (B).
The construction is now complete. All summands in (D) are nonisomorphisms
(as compositions with #) between certain 4;, and none of these 4; occur twice.
Now by locally-semi-T-nilpotency and the Konig-Graph-Lemma there exists
a natural number m with g,(x)=0. (C) implies x=(1—t)f,,(x).
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