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1. Introduction

In the present paper we shall give some sufficient conditions for the bound-
edness of pseudo-differential operators in Lp=U{Rn) for 2<kp^k°°. We treat
the classes of non-regular symbols, which generalize the Hormander's class
S™8. There have already been many //-boundedness theorems of pseudo-
differential operators with symbols which belong to generalized classes of S™8

and are at least n+S differentiable in the covariables ξ=(ξi9 ••-,?«)• In the
present paper we study the boundedness for operators with symbols p(x, ζ)
which are only up to fc=[n/2]-\-l differentiable in ξ.

Recently in [16], Wang-Li showed an ZΛboundedness theorem for pseudo-
differential operators with symbols which belong to a generalized class of S^P,
where 0 < p < l and mp=n{\— p)\ 1/2— l/p|. Moreover in [12] and [13], the
author has obtained L^-boundedness theorems for the operators which have
symbols of generalized class of 5? > δ (0^δ<l). In these paper the L^-bounded-
ness theorems for p^2 are proved under the assumptions that the symbols are
only up to /c=[#/2]+l differentiable and satisfy some additional conditions.

The main theorem of the present paper is Theorem 4.5 in Section 4, which
is given for operators in the generalized class of Hormander's S^P. We note
that Theorem 4.5 is obtained under Λ=[W/2] + 1 differentiability in ξ and
Holder continuity condition in the space varaibles x=(xly •••, xn) when p is suf-
ficiently large or p is sufficiently near to 1..

As pointed out by Hϋrmander in [5], mp=n(l — p)\ 1/2— ί/p\ is the critical
decreasing order for the ZZ-boundedness of pseudo-differential operators with
symbols in S™tS. Furthermore we note that /e=[τz/2] + l differentiability of
symbols in ξ does not always imply the ZZ-boundedness of the operators when
l ^ ^ < 2 ( s e e [16] and [17]).

In Section 2 we give notation and preliminary lemmas. In Section 3, we
show ZZ-boundedness theorems for the operators with symbols which have
higher decreasing order than the critical decreasing order mpy as | ξ \ —> oo. In
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Section 4, we investigate the ZΛboundedness of operators with symbols which

have the critical decreasing order as |£|~*°° The main theorem is proved by

using an approximation (regularization) of symbols (see [8]).

2. Preliminaries

We use a standard notation which is used in the theory of pseudo-differential

operators (see [7] and [15]). Let p(xy ξ) be a function defined on Rn

x X R". Then

the pseudo-differential operator p(Xy Dx) associated with symbol p(xy ξ) is defined,

formally, by

p(Xy Dx) u(x) = j e^p(xy ξ) ύ(ξ) dξ ,

where ύ(ξ) denotes the Fourier transform of the function u(x)y that is, ύ(ξ)=/

έΓ1"*'* u(x) dxy and dξ=(2π)~n dξ. For p(xy ξ) we denote p{Λ

β](xy ξ)=dfDβ

xp(xy ξ)

=(—i)ιβι dζd^p(xy ξ) for any multi-indices a and β. Moreover we write <£>=

(1+ \ξ\2)ι/2. Then the Hormander's class S™δ of symbols is defined by S™δ=

ip(xy ξ)^C°°(Rn

xxRn

ξ); \p$(x, ξ)\ g C Λ > β < ? > w l p l Λ | + δ | β | for any a and β}. Here

and hereafter we denote by C, CΛ, CΛβy cn etc., the constants which are inde-

pendent of the variables (xy ξ) and are not always the same at each occurence.

We denote by ΛΓ, ΛΓ0, Nx etc., the semi-norms of symbols. Moreover we denote

*=[f!/2] + l.

Lemma 2.1. Let 0 ^ ρ < l and let ω(t) be a non-negative and non-decreas-

ing function defined on [0, oo) and satisfy

(2.1) \ °^-dt = M2<oo .

Suppose that a symbol p{x3 ξ) satisfies

iV*0 = sup I p(*\c

(2.2) A r

 W-Λ ' ("'°
Nx = sup I p{ }

Then p{Xy Dx) is L2-bounded and we have

(2.3) | | p(Xy Dx) uW^CiN^N, M2)\\u\\L2.

Lemma 2.1 is shown in [9] and [10] for δ = 0 and in [13] for

Lemma 2.2. Let 0^£p< 1. Suppose that a symbol p{x3 ξ) satisfies

(2.4) N=

M^l,xί}
p^{x'

Then p(Xy Dx) is 1}-bounded and we have
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(2.5) \\p(X,Dx)u\\L^CN\\u\\L*.

When p=0y the lemma is obtained by Cordes in [2]. In [6] Kato proved
the L2-boundedness for 0 < p < l when the semi-norm N in (2.4) is defined for
\a\^κ and \β\ ^ / c + 1 . In [1] Coifman-Meyer obtained the Lemma 2.2.

We use the following lemma in Section 4 in order to smooth the non-regular
symbols. The lemma is shown in [8] and [11].

Lemma 2.3. Let τ be a positive number. Then for any a there exists

{φ*,β(ζ)}\β\^\<*\ in -ST,1?1 such that for any C°° function function ψ we have

(2.6) d%{ψ{<ξy»)} = Σ Φ«Λξ)Kξy *}β Ψ(β)«ξy * ) ,
Iβl^l^l

where ψ{β) (y)=dβ

y

3. ZΛboundedness for operators with lower order symbols

In this section we treat pseudo-differential operators associated with symbols
which decrease as | ξ \ —> oo faster than the critical decreasing order for Lp-
boundedness. We denote the norm of Lp=Lp(Rn) by .|| ||^ and denote by
L(LP) the space of bounded linear operators on Lp. Let Hs=Hs(Rn) denote the
Sobolev space of order s with norm || |l#s defined by

and let || ||jy*(β) denote the equivalent norm with positive parameter a defined by

IMI/r ω =

Proposition 3.1. Let s^>n\2 and let 2^p^oo. We assume that a symbol
p(x, ξ) belongs to the Sobolev space Hs and satisfies

(3.1) supH^x, )ll* = i\Γo<~

Then the operator p(X, Dx) belongs to L(LP) and satisfies

(3.2) \\p{X, Dx) u\\p<LCa-»* sup \\p(x, )llί.ωll«ll,

for any α>0, where the constant C is independent of 2

Proof. We have only to prove L2- and L°°-boundedness of the operator
because of the Riesz-Thorin interpolation theorem (see [18]). First we show
L°°-boundedness. We can write

(3.3) p(X, Dx) u(x) = j K(x, x-y) u{y) dy ,



428 M. NAGASE

where the integral kernel K(xy z) is defined by

(3.4) K(x,z)

It follows from the Schwarz inequality that

J \K(x, *) |ώ?^{ j <azy-2sdz}^{^ <az>2s\K(x, s)\

= cna-n^\\p(xy -)\\H'(a)£cna-*'2 sup \\p(x, )ll^

and this implies that the operator p(Xy Dx) is L°°-bounded.

Next we show ZΛboundedness. By (3.3) we have

j \p(X, Dx) u(x) 12 dx£ j (j IK(x, x-y) u(y) \dy)2 dx

^ j {\<a(x~y)>2s I K(x, x-y) 12 dy} {^a(x-y)>-2s | u(y) \2 dy} dx

^cla-« (sup \\p(xy-)\\HS(a)γ\\u\\l.

This means that the operator p(Xy Dx) belongs to L(L2). Q.E.D.

We note that the symbol in Proposition 3.1 is uniformly bounded by the

Sobolev inequality, however, the derivatives of the symbols are not always

bounded. As a special case we have

Corollary 3.2. Let 2-^p^oo. If the support of a symbol p(x, ξ) is con-

tained in {ξ; \ξ\tS=r} for some positive constant r and if p(x, ζ) satisfies

(3.5) No= sup \ρ™(xyξ)\<°°,

then the operator p(X, Dx) is U-bounded and we have

(3.6) llί(*,0,)«II^CΛΓo||«||,,

where the constant C is independent of 2 5̂  p ^ °o.

By this corollary, hereafter we may assume that the support of the symbols

are contained in {ξ \ξ\ ^R} for some positive R.

Theorem 3.3. Let Oίgprgl and let ω(t) be a non-negative and non-

decreasing function which satisfies

(3.7)
Jo t

If a symbol p(xy ξ) satisfies
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(3.8) N= sup \fΛ\x,ξ)\

then p(X, Dx) belongs to L(LP) for 2^p^oo and we have

(3.9) \\p{X, Dx) u\\p^C(NMi+NJ \\u\\p,

where the constant C is independent of2^p^°°, and No is defined by

(3.10) 7 V 0 = s u p \p^{x,ξ)\.

Proof. By Corollary 3.2 we may assume that the support of p(x, ξ) is
contained in {£; | ? | *έ2}, because of (3.10). Then since ω(t) is non-de-
creasing, (3.8) can be replaced by

(3.8)' \p™(x,ξ)\^Nω(\ξ\-1)\ξ\-n^/2-pw \\ξ\^2)

for \a\^κ. We take a smooth function f(t) on R1 so that the support is con-
tained in the interval [1/2,1], f(t)^O and

(3.11)
Jo t

Then since

Γ / ( * l g D dt=\ for | f | 4 = 0 ,
Jo t

we can write

p(X, Dx) u(x) = \lβp{t, X, Dx) u(x) 4 " ,
Jo t

where p(t, xy ξ) = p{xy ξ)f(t\ξ\), since p(t, x, ξ)=0 for ί>l/2.

To estimate the norm of p(t, X, Dx) we make use of Proposition 3.1 with
s=κ and a=Γp. Since l/(2ί)^ \ξ\ ^ 1 / * on the support of/(ί|f | ) , we have

Therefore we have

lljrv > > / l l ^ ( ί ~ ) — ^ - i* ^ Cύ\£Ί>) l l/(2ί)^l^l^l/ί ^ ^

= C2 N2 rn" ω(2t)2.

Hence, by Proposition 3.1, we see that the norm of the operator p(t, X, Dx) is
not greater than CNω(2t), which gives

MII. . Q.E.D.
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REMARK 3.4. (i) In this theorem we did not assume the continuity of
symbols in the space variables x. In fact we needed only the uniform bound-
edness and measurability of symbols in the space variables x in the proof of this
theorem,
(ii) In the case p = l , Theorem 3.3 has already been proved in [12] and [13].

Now we give Z/-boundedness results in the case 0 ^ p < l as corollaries of
Theorem 3.3.

Corollary 3.5. Let 0 ^ p < l and 2^p^oo. We assume that a function
ω(t) on [0, oo) is the same as in Theorem 3.3 and assume that a symbol p(x,ξ)
satisfies

(3.12) iV = sup |f<-> (*, ς)\ω{<ξ>-

where mp is the critical decreasing order for U-boundedness, that is,

(3.13) mp = n(l-p) (1/2-1//.).

Then p(X, Dx) is Lp-bounded and we have

(3.14) Up^DJuW^CiNMt+NJWuW,,,

where the constant C is independent of 2^p ^oo and No is defined in (3.10).

Proof. When p=oo and p(x, ξ) satisfies (3.12) for p=oo, by Theorem
3.3, p(X, Dx) is L°°-bounded. Since ω«?>- 1) is a bounded function in ξ> if
p(x, ξ) satisfies (3.12) for p=29 then it follows from Lemma 2.2 that p(X, Dx)
is L2-bounded. Then by the interpolation theorem of analytic families of
operators (see, for example, [14]), we can get the corollary by defining the families
of operators in a similar way to Wang-Li in [16] (see also [3]). Q.E.D.

Corollary 3.6. Let O ^ p ^ l and m>n(l—ρ)β. If a symbolp(xy ξ) satisfies

(3.15) N= sup \pW(x,ξ)\<ξy>»+w<oo,

then p(X, Dx) belongs to L(Lp)for 2^p^°o, and we have

(3.16) \\ρ{X,Ds)u\\p^CN\\u\\p,

where we can take the constant C independently of 2^p^°°.

Corollary 3.7 Let 0 ^ p < l , 2^p^oo and m>mp. If a symbol p(x,ξ)
satisfies

(3.17) JV= sup β

then p(X, Dx) belongs to L(LP) and we have
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(3.18) \\p{X,Dx)u\\t^CN\\u\\p,

where the constant C is independent of 2-^

We can prove Corollary 3.6 directly from Theorem 3.3 by taking ω(t)=fy

r=m—n(\—p}β. Corollary 3.7 can be proved from Corollary 3.5 by taking

ω(t)=f, r=m—mp.

If ω(t) satisfies (3.7) then we have

(3.7)' Γ ω ( * T ) Λ = — Mx<oo
Jo t r

for any positive T. Hence we have

Corollary 3.8. Let p and ω(t) be the same as in Theorem 3.3. If a symbol

p(x, ζ) satisfies

(3.8)' N = sup \pv\x, ξ)\ω«ξ>-τ)-1<ξ>nil-p)/2+Pl"ι<™

for some positive T, then p(X,Dx) is Lp-bounded for 2^p^oo and the inequality

(3.9) holds.

We use Corollary 3.8 in the proof of Theorem 4.4.

4. ZΛboundedness of operators of the critical decreasing order

In this section we show L^-boundedness theorems for operators of symbols

which have the critical decreasing order as | ξ | —> oo.

We denote the norm of bounded mean oscillation for a function f(x) on

Rn by | | / | | * = | | / | | W o = s u p ——- \ \f(x)—fQ\dx, where Q denotes an arbitrary
Q IQI JQ ί f

cube in Rn, \ Q \ is the volume of the cube Q andfQ= I f(x) dx. The fol-
|0ι | J ^

lowing theorem has already been proved in [13] and [16]. However we give here

a slightly different proof, in which we use a continuous decomposition of the

operators.

Theorem 4.1. We assume that a symbol p(xy ζ) satisfies one of the following

two conditions.

(i) N= sup
\a\^κ,\β\tZlΛx,0

where δ is a positive constant with δ < l .

(ii) i V = sup \p[i](x9

where p is a positive constant with
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Then the operator p(X, Dx) is bounded from L°° to BMO and we have

(4.1) \\p(X,Dx)u\\^CnN\\u\U.

Proof. We note that, by Lemma 2.1, if p(x, ξ) satisfies the condition (i)

then p(X, Dx) is ZΛbounded and we have

(4.2) \\p{XyDx)u\\2ίίCN\\u\\2.

Moreover \ϊ p{x, ξ) satisfies the condition (ii) then, by Lemma 2.2, the operator

p(X, Dx)<Dx>
n(1~p)/2 is L2-bounded and we have the similar estimate to (4.2).

As in the proof of Theorem 3.3, we take a smooth function/(ί) so that the

support is contained in the interval [1/2,1] and

π. = l .

Let Q be an arbitrary cube with side d and center x°. Then we note \Q\=dn.

We may assume without loss of generality that the sides of the cube are parallel

to the coordinate axis and d<\. Hence we can write Q={x=(xly - ,xn)', \xj

—x0j\^dl2yj=:ly ••-,«}. We take a CoiR1) and even function φ(t) so that the

support is contained in the interval [—2,2], φ(ί) = l for | ί | ^ l and φ(t)^O.

We set ψd(ξ) = φ(d\ξ\). By Corollary 3.2, we may assume that the support of

p(x, ξ) is contained in {ξ \ξ\ ^2} and^>(x, ξ) satisfies

i ί f c f ) i ^ ^ i v i f r p | i+aιβ|--(1-p)/2 ( i f i ^ 2 )

for I of I ̂ K and \β\ ̂ 1 in t h e case ρ=ϊ and \β\ ^/c in t h e case

T h e n we split the symbol p(x, ξ) as

P(x, ξ) = P(x, ξ) ΨΛξ)+P(*> ξ) ( l - ^ ( f ) ) = A(*> ξ)+Pi(*> f)

Then we see that

(4.3) I p${x, ξ) I Scn NIξI —α—)y»-pι-n--ι*i (j = o, 1)

f o r | a | ^ / c a n d \β\ ̂ 1 in the case p=ί and |/3| ^/c in the case 0 < δ = p < l ,

where the constant cn is independent of the length d of the cube.

First we consider the operator po(X, Dx). Since the support of

Po(x> f )/(^ I f I) is contained in the set

we have

S l/2 DXj.po(t,X,Dx)u(x)^,
d/A t

wherepo(t, x, ξ) =po(x, ξ)f(t\ξ\). The symbol of DXjpa(t, X, Dx) is equal to
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Poj(t, x, ξ) = <Po.Uj) (*, ξ)+ξj A (*, ξ)\ f(t\ξ\)

Hence by (4.3) we have

which gives with the aid of Proposition 3.1

- c N ϊl ~τ
Therefore, for x' in Q we have

L- j β Λ (X, Z>,) «(*) dx-p^X, Dx) «(*') I

I Λ(X, 2),) φ)-plX, Dx) u(x') \ dx

This implies

(4.4)

Next we show the boundedness of the operator pλ{X, Dx). Let X(x) be a
C%(Rn) function which satisfies X(x) = l for any x=(xly '-yxn) with \Xj\^2
(j=ly •••, n) and %(x)=0 for any x=(xly •-, xn) with \xJQ\ ^ 4 for somejΌ. We
set Xd(x)=X(d~p(x—x°))y and we write

(4.5) Pl(X, Dx) u(x)=p1(Xy Dx) (Xd u) (x)+pι(X9 Dx) (u-Xd u) (x)

= Iu(x)+IIu(x).

Then, we see

IIφ) = [d — [κx(ty xy z) (u-Xd u) (x-tz) dz ,
Jo f J

where Kλ(ty xy z) is defined by

Kλ{t, x, z) = j e" tp(x,±ξ) {\-ψd (lή)f(\ξ\)dξ .

Since \xj—x)\ ^2dp for some j^{l, --yn} in the support of u(x) — Xd(x) u(x)y

for any x in Q we have

I tzj I ̂  IXj-x°—tZj I - Ixj-x°j I ^2dp-d/2^dp.

Hence if # belongs to Qy then |^ | ^t~ι dp in the integrand of // u(x). Then
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\
^t 1dμ

<c ]SΓ( A!_\~κ+»/2 fn(l-P)/2-κ(l-p) _
~ n \ t J

Therefore we have

I//u(x) \^

for x in Q. This implies

(4.6)

In order to estimate / u(x) we use the ZΛboundedness of the operator
p(X, Dx)<Dxy

(l~?)/2 under one of the two conditions (i) and (ii). Since

Iu(x) = p(X, Dx) (ί-ψd(Dx)) (Xdu) (x),

we can see

C N | |^(7) x ) Xdu\\2,
1011/2

where ^ ( | ) = < f > " " a - p ) / 2 ( l - ^ ( ? ) ) %(f),%(£)=l for | f | ^ 2 and X(f)=O for
| £ | ^ 2 . Since | ^ ( f ) | ^ c B d^-^ and | Q | = J " , it follows from Plancherel's
formula that

L(
101

(4.7)

From the inequalities (4.4), (4.6) and (4.7) we get

\\ρ{X,Dx)u\\*£CN\\u\L.

Thus we complete the proof of Theorem 4.1. Q.E.D.

Theorem 4.2. Let 2^p<oom Suppose that a symbol p(x, ξ) satisfies the
condition (i) in Theorem 4.1 or satisfies
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(ii)' N= sup |^g(Λ,f)|<f>->+p<'-'-'^<oo ,
|α|SS.,|j8|£*,(*fe)

where mp is the critical decreasing order n{\—p) (1/2— \jp) and 0 < p < l . Then
p(X, Dx) is Lp-boundeed and we have

(4.8) \\p(X,Dx)u\\p^CpN\\u\\p,

Proof. When the symbol p(x, ξ) satisfies the condition (i), the operator
p(X, Dx) is iAbounded by Lemma 2.1 and bounded from L°° to BMO by The-
orem 4.1. Therefore by the interpolation theorem of Fefferman-Stein in [4]
we can obtain the estimate (4.8). In a similar way, we can obtain the estimate
(4.8), when p(x, ξ) satisfies (ii)7, from the interpolation theorem of Fefferman-
Stein in [4] (see [3] and [16]). Q.E.D.

REMARK 4.3. We note also that Theorem 4.2 has already been proved in
[16].

Theorem 4.4. Let 0^8<p^l,τ>0 and let ω(t) be a non-negative and
non-decreasing function which satisfies

(4.9) [1^-dt
Jo t

We assume that a symbol p(x, ξ) satisfies

lNa= sup

^ l υ ) JV 1 = sup

Thenp(Xy Dx) is bounded from L°° to BMO and is Lp-bounded for 2^p<oo} and
we have

(4.11) \\p{X, Dx) u\\p^

(4.12) \\p{X, Dx) uW^

where the constant Co is independent of2^

Proof. We take a Co(Rn) function φ(y) such that the support is contained
in {y; \y\ ̂ 1} and / φ(y) dy=l. We take a positive constnat δ7 so that S'=ρ
if p< 1 and δ < δ / < l if p = 1. Now we define symbolsp(x, ξ) and q(x, ξ) by

P{χ, I) = \φ(y)p(χ-<ξy*'y, ξ) dy

= \φ«ξy'(χ-y))p(y, ξ) <Dδ 'B dy,
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and q(x, ξ)=p(x, ξ)—p(x, ξ). Then by Lemma 2.3 we can show that

\ffl{χ, ξ)\ gCm,pN&>-w-WM

for any β and a with \a\^/e, and

-τ<s'-δ>) <ξ >-α-P)/»-Pi ι

for \a\^κ (see, for example, [8] or [11]). Therefore it follows from Lemma
2.2 and Theorem 4.1 that p(Xy Dx) is L2-bounded and bounded from L°° to BMO,
and by the interpolation theorem of Fefferman- Stein we have

\\p(X,Dx)u\\p^CpNo\\u\\p

\\P(X,Dx)u\\^CQNQ\\u\\~

Moreover by Corollary 3.8, we have

MXiDJuM^C^MMlp ( 2 5 ^ oo).

Thus we get the theorem. Q.E.D.

In this theorem, we got L^-boundedness under a weak continuity condition
(4.10) of symbols with respect to the space variables x9 however, the decreasing
order of symbols as \ξ |-»oo was the constant n(l— p)/2. We know that when
p < l this is not the critical decreasing order for L^-boundedness except for p=
oo. So next we show an Z/-boundedness of operators of the critical decreasing
order under some continuity condition in the space variables.

Theorem 4.5. Let 0 <p < 1 and 2^p<oo. We denote

(4.13) mp = n ( l - P ) ( l / 2 - l / ί 0 , μp = ^ p )

κpp+n(l-p)

Let μ be an arbitrary positive number greater than μp. We suppose that a symbol
p(x, ξ) satisfies

(4.14) No = sup I p$(χ, ξ) I<f >-^ι-ι < oo .
\a\£κ,\β\£κ,(x,ξ)

Moreover if μo=μ—[μ]>0, then we assume that

(4.15) Nx = sup I p®(χ, ξ)-p®(y, ξ) \\x-y\ "Xg>-^«-' < oo .

Then p(X, Dx) is Lp-bounded and we have

(4.16) \\p{X, Ds) B I I ^

Proof. We set p/=p-\-n(l—p)l(pκ). Then we see easily p < p ' < l . We
take a Schwartz rapidly decreasing function φ(z) such that J φ(z) dz= 1 and



ZABOUNDED PSFUDO-DIFFERENTIAL OPERATORS 437

f z*φ(z)dz=0 for any αΦO (see [8]). We define new symbols p(x, ξ) and

q(x> ξ)> as in the proof of Theorem 4.4, by

(4.17) p(χ, ξ) = j φ(y)p(χ-<ξyp'y, ξ) dy

= J φ«f/ (χ-y))p(y, ξ)Qy'n dy,

and q(x, ξ) = p(x, ξ)—p(x, ξ). Then setting v=[μ], we have

p(x, ξ) - p(x, ξ)+ o < Σ < v - ^ p J yβΦ(y) ^<?>-p / 'β | /> w ( * , f)

v(—iY f1 , , f 8

+ Σ — - — — \ (i—O \ y Φ(y)P(β)(χ—K%/ y> %)\%/ p v dy dt.
iβi =v β ! Jo J

Since f yβφ(y) dy=0 for /3Φ0, we have

o ( 1 - ί Γ " ί
x r»ip(β)(y, ξ)-pw(χ,

where φβ(z)=zβφ(z). Thus using Lemma 2.3 we can see that

for |α|5*/c, where φΛ,β(z) are linear combinations of Schwartz functions de-

termined from φβ(z) and its derivatives of order not greater than \a\. By the

definitions of μ, μp, mp and p', we can see easily that

p'μ+mp>p'μp+mp = n{\—p)β .

Therefore by Corollary 3.6 we have

(4.18)

for

Next we consider the symbol p(xy ξ). For \a\^fc and |yS|^^=[/^], it

follows from Lemma 2.3 that

(4.19) \ffi (x,ξ)\ = \dU\φ{y)pw{x-<ξy>'y, ξ) dy}
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(*-y))P<#{y, l)<e/" dy)

=2 C Σ 3 (16f (

When \a\^κ and z>< |/3| SΞ/c, writing β=β1+β2, \β1\=v and /32φ0, we have

\ffl (*, ΏI = I aras* {JΦOO A Λ (*-<£>-"' j , f) dy} i
? 2 dy} I,

where φ(β2)(z)—Df φ(#). Since / φ ^ ) (,s:)^=0, in a similar way to the estimate
for q(xy ξ), we have

(4.20) \M (*, f) I = 13f ίjφo2) «D p / (*-y)) ίPo1) (y,

Since

P\\β\ -v)-p'μ«-p I β I = ( / - P ) I /31 - P V < ( P / - P ) ^ - P V , = o

for |/31 ^£#, combining the estimates (4.19) and (4.20), we get

for IαI ̂ /c and |/31 ^Λ:. Therefore by Theorem 4.2, we have

(4.21) HflX, Dx) tfll^qJVo+JVOIMI^ .

From (4.18) and (4.21) we get (4.16). Q.E.D.

REMARK 4.6. (i) we first note that

μp-tc(l-p) = κp(l-p) (n-pκ)l(κpp+n(l-p))<0

^2y and therefore μp<κ(l—ρ). In the condition (ii)7 of Theorem 4.2, we
assumed the K differentiability of symbols in the space variables x and the
covariables ξ, in order to get the Z/-boundedness for the operators of a class
which generalizes the Hormander class *SjΓtp*(O<p<l). However for operators
of our class which generalizes the Hormander class S^P ( 0 < p < l ) , we can obtain
the L^-boundedness under less regularity μ in the space variables x by Theorem
4.5, since μp<κ(ί—p)<κ.
(ii) It is clear that lim μp=0 and lim μp=0. This means that if p is suffi-

ciently large or p is sufficiently near to 1, then we can obtain the L^-bounded-
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ness under only the Holder continuity of symbols with respect to the space
variables x.
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