Nagase, M. Osaka J. Math. 23 (1986), 425-440

ON SOME CLASSES OF L^p-BOUNDED PSEUDO-**DIFFERENTIAL OPERATORS**

To the memory of Professor Hitoshi Kumano-go

MICHIHIRO NAGASE

(Received March 22, 1985)

1. Introduction

In the present paper we shall give some sufficient conditions for the bound edness of pseudo-differential operators in $L^p = L^p(R^m)$ for $2 \leq p \leq \infty$. We treat the classes of non-regular symbols, which generalize the Hormander's class *S™⁸ .* There have already been many //-boundedness theorems of pseudo differential operators with symbols which belong to generalized classes of $S_{\rho,\delta}^m$ and are at least $n+\varepsilon$ differentiable in the covariables $\xi = (\xi_1, \dots, \xi_n)$. In the present paper we study the boundedness for operators with symbols *p(x, ζ)* which are only up to $\kappa=[n/2]+1$ differentiable in ξ .

Recently in [16], Wang-Li showed an L^p -boundedness theorem for pseudodifferential operators with symbols which belong to a generalized class of $S^{-m}_{\rho,\rho}$, where $0 < \rho < 1$ and $m_p = n(1-\rho) | 1/2 - 1/p|$. Moreover in [12] and [13], the author has obtained L^p -boundedness theorems for the operators which have symbols of generalized class of $S_{1,8}^0(0 \le \delta < 1)$. In these paper the L^p-boundedness theorems for $p \ge 2$ are proved under the assumptions that the symbols are only up to $\kappa = [n/2]+1$ differentiable and satisfy some additional conditions.

The main theorem of the present paper is Theorem 4.5 in Section 4, which is given for operators in the generalized class of Hormander's $S^{-m}_{\rho, 0}$ ^p. We note that Theorem 4.5 is obtained under $\kappa = [n/2] + 1$ differentiability in ξ and Holder continuity condition in the space varaibles $x=(x_1, \dots, x_n)$ when p is sufficiently large or ρ is sufficiently near to 1.

As pointed out by Hörmander in [5], $m_p=n(1-\rho)\left[\frac{1}{2}-\frac{1}{p}\right]$ is the critical decreasing order for the L^p -boundedness of pseudo-differential operators with symbols in $S_{\rho,\delta}^*$. Furthermore we note that $\kappa=[n/2]+1$ differentiability of symbols in ξ does not always imply the L^p -boundedness of the operators when $1 \le p < 2$ (see [16] and [17]).

In Section 2 we give notation and preliminary lemmas. In Section 3, we show L^p -boundedness theorems for the operators with symbols which have higher decreasing order than the critical decreasing order m_p , as $|\xi| \rightarrow \infty$. In

Section 4, we investigate the L^{ρ} -boundedness of operators with symbols which have the critical decreasing order as $|\xi| \rightarrow \infty$. The main theorem is proved by using an approximation (regularization) of symbols (see [8]).

2. Preliminaries

We use a standard notation which is used in the theory of pseudo-differential operators (see [7] and [15]). Let $p(x, \xi)$ be a function defined on $R_{x}^{n} \times R_{\xi}^{n}$. Then the pseudo-differential operator $p(X, D_{\star})$ associated with symbol $p(x, \xi)$ is defined, formally, by

$$
p(X, D_x) u(x) = \int e^{ix \cdot \xi} p(x, \xi) \hat{u}(\xi) d\xi,
$$

where $\hat{u}(\xi)$ denotes the Fourier transform of the function $u(x)$, that is, $\hat{u}(\xi)=\int$ $e^{-ix\cdot\xi} u(x) dx$, and $d\xi = (2\pi)^{-n} d\xi$. For $p(x, \xi)$ we denote $p_{(\beta)}^{(\alpha)}(x, \xi) = \partial_{\xi}^{\alpha} D_{x}^{\beta} p(x, \xi)$ $=$ $(-i)^{|\beta|} \frac{\partial^{\alpha}_{\xi}}{\partial x} \frac{\partial^{\beta}_{x}}{\partial x}$ *f*(*x*, ξ) for any multi-indices *α* and *β*. Moreover we write $\langle \xi \rangle$ = $(1+|\xi|^2)^{1/2}$. Then the Hormander's class $S^m_{\rho,\delta}$ of symbols is defined by $S^m_{\rho,\delta}$ $\{p(x,\xi) \in C^{\infty}(R_x^n \times R_{\xi}^n); \, \, |p_{(\beta)}^{(\alpha)}(x,\xi)| \leq C_{\alpha,\beta} \langle \xi \rangle^{m-\rho|\alpha|+\delta|\beta|} \text{ for any } \alpha \text{ and } \beta\}.$ Here and hereafter we denote by $C, C_{\alpha}, C_{\alpha, \beta}, c_{\eta}$ etc., the constants which are independent of the variables (x, ξ) and are not always the same at each occurence. We denote by N, N_0, N_1 etc., the semi-norms of symbols. Moreover we denote $\kappa = \lceil n/2 \rceil + 1.$

Lemma 2.1. Let $0 \leq \rho < 1$ and let $\omega(t)$ be a non-negative and non-decreas*ing function defined on* $[0, \infty)$ *and satisfy*

$$
(2.1) \qquad \qquad \int_0^1 \frac{\omega(t)^2}{t} dt = M_2 \langle \infty .
$$

Suppose that a symbol p{x³ ξ) satisfies

$$
(2.2) \quad \begin{cases} N_0 = \sup_{|\alpha| \leq \kappa, \langle x, \xi \rangle} |p^{(\alpha)}(x, \xi)| \langle \xi \rangle^{|\alpha|} < \infty, \\ N_1 = \sup_{|\alpha| \leq \kappa, \langle x, y, \xi \rangle} |p^{(\alpha)}(x, \xi) - p^{(\alpha)}(y, \xi)| \omega(|x - y| \langle \xi \rangle^{\delta})^{-1} \langle \xi \rangle^{|\alpha|} < \infty. \end{cases}
$$

Then $p(X, D_x)$ *is* L^2 *-bounded and we have*

$$
(2.3) \t\t ||p(X, D_x) u||_{L^2} \leq C(N_0 + N_1 M_2) ||u||_{L^2}.
$$

Lemma 2.1 is shown in [9] and [10] for $\delta = 0$ and in [13] for $0 \leq \delta < 1$.

Lemma 2.2. Let $0 \leq p < 1$. Suppose that a symbol $p(x, \xi)$ satisfies

$$
(2.4) \t\t N = \sup_{|\alpha| \leq \kappa, |\beta| \leq \kappa, (x, \xi)} |p_{(\beta)}^{(\alpha)}(x, \xi)| \langle \xi \rangle^{\rho(|\alpha| - |\beta|)} < \infty
$$

Then $p(X, D_x)$ is L^2 -bounded and we have

$$
(2.5) \t\t\t ||p(X, D_x) u||_{L^2} \leq C N ||u||_{L^2}.
$$

When $\rho{=}0$, the lemma is obtained by Cordes in [2]. In [6] Kato proved the L²-boundedness for $0 < \rho < 1$ when the semi-norm N in (2.4) is defined for $|\alpha| \leq \kappa$ and $|\beta| \leq \kappa+1$. In [1] Coifman-Meyer obtained the Lemma 2.2.

We use the following lemma in Section 4 in order to smooth the non-regular symbols. The lemma is shown in [8] and [11].

Lemma 2.3. *Let τ be a positive number. Then for any a there exists* $\{\phi_{\alpha,\beta}(\xi)\}_{|\beta|\leq |\alpha|}$ in $S_{1,0}^{-|\alpha|}$ such that for any C^{∞} function function ψ we have

$$
(2.6) \qquad \partial_{\xi}^{\alpha} {\{\psi(\langle \xi \rangle^{\tau} z)\}} = \sum_{|\beta| \leq |\alpha|} \phi_{\alpha,\beta}(\xi) {\{\langle \xi \rangle^{\tau} z\}}^{\beta} \psi^{(\beta)}(\langle \xi \rangle^{\tau} z) ,
$$

 $where \psi^{(\beta)}(y) = \partial_y^{\beta}$

3. L^p-boundedness for operators with lower order symbols

In this section we treat pseudo-differential operators associated with symbols which decrease as $|\xi| \rightarrow \infty$ faster than the critical decreasing order for L^p boundedness. We denote the norm of $L^p = L^p(R^n)$ by $||\cdot||_p$ and denote by $L(L^p)$ the space of bounded linear operators on L^p . Let $H^s = H^s(R^n)$ denote the Sobolev space of order *s* with norm $|| \cdot ||_{H^s}$ defined by

$$
||u||_{H^s}=||\langle D_x\rangle^s u||_{L^2}= \{\int |\langle \xi \rangle^s \hat{u}(\xi)|^2 d\xi\}^{1/2},
$$

and let $\|\cdot\|_{H^{s}(a)}$ denote the equivalent norm with positive parameter a defined by

$$
||u||_{H^{s}(a)}=||\langle aD_x\rangle^s u||_{L^2}= \{\int |\langle a\xi\rangle^s \hat{u}(\xi)|^2 d\xi\}^{1/2}.
$$

Proposition 3.1. Let $s>n/2$ and let $2 \leq p \leq \infty$. We assume that a symbol *p(x, ξ) belongs to the Sobolev space H^s and satisfies*

(3.1) $\sup ||p(x, \cdot)||_{H^s} = N_0 < \infty.$

Then the operator p(X, D^x) belongs to L(L^P) and satisfies

$$
(3.2) \t ||p(X, D_x) u||_p \leq C a^{-n/2} \sup_{\mathbf{v}} ||p(x, \cdot)||_{H^s(a)} ||u||_p
$$

for any $a>0$ *, where the constant C is independent of* $2 \leq p \leq \infty$ *.*

Proof. We have only to prove L^2 - and L^{∞} -boundedness of the operator because of the Riesz-Thorin interpolation theorem (see [18]). First we show L^{∞} -boundedness. We can write

(3.3)
$$
p(X, D_x) u(x) = \int K(x, x - y) u(y) dy,
$$

where the integral kernel $K(x,\,z)$ is defined by

(3.4)
$$
K(x, z) = \int e^{iz \cdot \xi} p(x, \xi) d\xi.
$$

It follows from the Schwarz inequality that

$$
\int |K(x, z)| dz \leq \{\int \langle a z \rangle^{-2s} dz\}^{1/2} \{\int \langle a z \rangle^{2s} |K(x, s)|^2 dz\}^{1/2}
$$

= $c_n a^{-n/2} ||p(x, \cdot)||_{H^s(a)} \leq c_n a^{-n/2} \sup_{s \in \mathbb{R}} ||p(x, \cdot)||_{H^s(a)},$

and this implies that the operator $p(X, D_{\star})$ is L^{∞} -bounded.

Next we show L^2 -boundedness. By (3.3) we have

$$
\int |p(X, D_x) u(x)|^2 dx \leq \int (\int |K(x, x-y) u(y)| dy)^2 dx
$$

\n
$$
\leq \int {\int \langle a(x-y) \rangle^{2s} |K(x, x-y)|^2 dy} {\int \langle a(x-y) \rangle^{-2s} |u(y)|^2 dy} dx
$$

\n
$$
\leq c_n^2 a^{-n} (\sup_{x} ||p(x, \cdot)||_{H^s(a)})^2 ||u||_2^2.
$$

This means that the operator $p(X, D_{x})$ belongs to $L(L_{x})$ *).* Q.E.D.

We note that the symbol in Proposition 3.1 is uniformly bounded by the Sobolev inequality, however, the derivatives of the symbols are not always bounded. As a special case we have

Corollary 3.2. Let $2 \leq p \leq \infty$. If the support of a symbol $p(x, \xi)$ is con*tained in* $\{\xi; |\xi|\leq r\}$ *for some positive constant r and if p(x,* ξ *) satisfies*

$$
(3.5) \t\t N_0 = \sup_{|\alpha| \leq \kappa, (x,\xi)} |p^{(\alpha)}(x,\xi)| < \infty,
$$

then the operator p(X, D^x) is U-bounded and we have

$$
(3.6) \t\t\t ||p(X, D_x) u||_p \leq C N_0 ||u||_p,
$$

where the constant C is independent of $2 \leq p \leq \infty$.

By this corollary, hereafter we may assume that the support of the symbols are contained in $\{\xi; |\xi|\geq R\}$ for some positive *R*.

Theorem 3.3. Let $0 \leq \rho \leq 1$ and let $\omega(t)$ be a non-negative and non*decreasing function which satisfies*

$$
(3.7) \qquad \qquad \int_0^1 \frac{\omega(t)}{t} dt = M_1 \langle \infty .
$$

If a symbol p(x^y ξ) satisfies

 L^p -BOUNDED PSEUDO-DIFFERENTIAL OPERATORS 429

$$
(3.8) \t\t N = \sup_{|\alpha| \leq \kappa, (x, \xi)} |p^{(\alpha)}(x, \xi)| \omega(\langle \xi \rangle^{-1})^{-1} \langle \xi \rangle^{n(1-\rho)/2 + \rho |\alpha|} < \infty,
$$

then $p(X, D_x)$ belongs to $L(L^p)$ for $2 \leq p \leq \infty$ and we have

$$
(3.9) \t\t ||p(X, D_x) u||_p \leq C(N M_1 + N_0) ||u||_p,
$$

where the constant C is independent of $2 \leq p \leq \infty$, and N_o is defined by

(3.10)
$$
N_0 = \sup_{|\bm{\omega}| \leq \kappa, |\xi| \leq 4} |p^{(\bm{\omega})}(x, \xi)|.
$$

Proof. By Corollary 3.2 we may assume that the support of $p(x, \xi)$ is contained in $\{\xi; |\xi| \geq 2\}$, because of (3.10). Then since $\omega(t)$ is non-decreasing, (3.8) can be replaced by

$$
(3.8)'\qquad |p^{(a)}(x,\xi)| \leq N \omega(|\xi|^{-1}) |\xi|^{-n(1-\rho)/2-\rho|a|} \quad (|\xi| \geq 2)
$$

for $|\alpha| \leq \kappa$. We take a smooth function $f(t)$ on R^1 so that the support is con tained in the interval $[1/2,1]$, $f(t) \ge 0$ and

$$
\int_0^\infty \frac{f(t)}{t} dt = 1.
$$

Then since

$$
\int_0^\infty \frac{f(t|\xi|)}{t} dt = 1 \quad \text{for} \quad |\xi| \neq 0,
$$

we can write

$$
p(X, D_x) u(x) = \int_0^{1/2} p(t, X, D_x) u(x) \frac{dt}{t},
$$

where $p(t, x, \xi) = p(x, \xi) f(t|\xi|)$, since $p(t, x, \xi) = 0$ for $t > 1/2$.

To estimate the norm of $p(t, X, D_x)$ we make use of Proposition 3.1 with *s*=*κ* and *a*=*t*^{-*ρ*}. Since $1/(2t) \leq |\xi| \leq 1/t$ on the support of $f(t|\xi|)$, we have

$$
\sum_{|\alpha| \leq \kappa} |t^{-\rho |\alpha|} \partial_{\xi}^{\alpha} \{p(x,\xi) f(t|\xi|) \} |^{2} \leq C^{2} N^{2} t^{n(1-\rho)} \omega(2t)^{2}.
$$

Therefore we have

$$
||p(t, x, \cdot)||_{H^{\kappa}(t^{-\rho})}^2 \leq C^2 N^2 t^{n(1-\rho)} \omega(2t)^2 \int_{1/(2t) \leq |\xi| \leq 1/t} d\xi
$$

= C² N² t^{-n\rho} \omega(2t)².

Hence, by Proposition 3.1, we see that the norm of the operator $p(t, X, D_x)$ is not greater than *CNω(2t),* which gives

$$
||p(X, D_x) u||_p \leq CN \int_0^{1/2} \omega(2t) \frac{dt}{t} ||u||_p = CNM_1 ||u||_p.
$$
 Q.E.D.

REMARK 3.4. (i) In this theorem we did not assume the continuity of symbols in the space variables *x.* In fact we needed only the uniform bound edness and measurability of symbols in the space variables *x* in the proof of this theorem,

(ii) In the case $\rho=1$, Theorem 3.3 has already been proved in [12] and [13].

Now we give L^{ρ}-boundedness results in the case $0 \leq \rho < 1$ as corollaries of Theorem 3.3.

Corollary 3.5. Let $0 \leq \rho \leq 1$ and $2 \leq \rho \leq \infty$. We assume that a function $ω(t)$ on [0, $∞$) *is the same as in Theorem* 3.3 *and assume that a symbol* $p(x,ξ)$ *satisfies*

$$
(3.12) \t\t N = \sup_{|\alpha| \leq \kappa, |\beta| \leq \kappa, (x,\xi)} |p_{(\beta)}^{(\alpha)}(x,\xi)| \omega(\langle \xi \rangle^{-1})^{-1} \langle \xi \rangle^{m} \nu^{+\rho(|\alpha| - |\beta|)} < \infty,
$$

where m^p is the critical decreasing order for U-boundedness, that is,

(3.13)
$$
m_p = n(1-\rho) (1/2-1/p).
$$

Then p(X, D^x) is L^p -bounded and we have

$$
(3.14) \t\t\t ||p(X, D_x) u||_b \leq C(N M_1 + N_0) ||u||_b,
$$

where the constant C is independent of $2 \leq p \leq \infty$ and $N_{\tt o}$ is defined in (3.10).

Proof. When $p = \infty$ and $p(x, \xi)$ satisfies (3.12) for $p = \infty$, by Theorem 3.3, $p(X, D_x)$ is L^{*}-bounded. Since $\omega(\langle \xi \rangle^{-1})$ is a bounded function in ξ , if $p(x, \xi)$ satisfies (3.12) for $p=2$, then it follows from Lemma 2.2 that $p(X, D_x)$ is L^2 -bounded. Then by the interpolation theorem of analytic families of operators (see, for example, [14]), we can get the corollary by defining the families of operators in a similar way to Wang-Li in [16] (see also [3]). Q.E.D.

Corollary 3.6. Let $0 \leq \rho \leq 1$ and $m>n(1-\rho)/2$. If a symbol $p(x,\xi)$ satisfies

$$
(3.15) \t\t N = \sup_{|\alpha| \leq \kappa, (x,\xi)} |p^{(\alpha)}(x,\xi)| \langle \xi \rangle^{m+p|\alpha|} < \infty ,
$$

then $p(X, D_x)$ belongs to $L(L^p)$ for $2 \leq p \leq \infty$, and we have

$$
(3.16) \t\t ||p(X, D_x) u||_p \leq C N ||u||_p,
$$

where we can take the constant C independently of $2 \leq p \leq \infty$.

Corollary 3.7. Let $0 \leq \rho < 1$, $2 \leq p \leq \infty$ and $m>m_p$. If a symbol $p(x, \xi)$ *satisfies*

$$
(3.17) \t\t N = \sup_{|\alpha| \leq \kappa, |\beta| \leq \kappa, (x, \xi)} |p_{(\beta)}^{(\alpha)}(x, \xi)| \langle \xi \rangle^{m+p(|\alpha|-|\beta|)} < \infty,
$$

then p(X, D^x) belongs to L(L^P) and we have

$$
(3.18) \t\t\t ||p(X, D_x) u||_p \leq C N ||u||_p,
$$

where the constant C is independent of $2 \leq p \leq \infty$.

We can prove Corollary 3.6 directly from Theorem 3.3 by taking $\omega(t) = t^{\tau}$, *^r=m—ⁿ (\—p}β.* Corollary 3.7 can be proved from Corollary 3.5 by taking $\omega(t) = t^{\tau}, \tau = m - m_{p}$

If $\omega(t)$ satisfies (3.7) then we have

$$
(3.7)'\qquad \qquad \int_0^1 \frac{\omega(t^{\tau})}{t} \, dt = \frac{1}{\tau} \, M_1 \ll \infty
$$

for any positive τ . Hence we have

Corollary 3.8. *Let p and ω(t) be the same as in Theorem* 3.3. *If a symbol p(x, ζ) satisfies*

$$
(3.8)'\qquad N=\sup_{|\alpha|\leq\kappa,\langle x,\xi\rangle}|\,p^{(\alpha)}(x,\xi)|\,\omega(\langle\xi\rangle^{-\tau})^{-1}\langle\xi\rangle^{n(1-\rho)/2+\rho|\alpha|}\langle\infty
$$

for some positive τ , then $p(X, D_x)$ is L^p -bounded for $2 \leq p \leq \infty$ and the inequality (3.9) *holds.*

We use Corollary 3.8 in the proof of Theorem 4.4.

4. L^P-boundedness of operators of the critical decreasing order

In this section we show L^{ρ} -boundedness theorems for operators of symbols which have the critical decreasing order as $|\xi| \rightarrow \infty$.

We denote the norm of bounded mean oscillation for a function $f(x)$ on R^* by $||f||_* = ||f||_{BMO} = \sup \left(\frac{1}{|Q|} \right) \left(\frac{f(x) - f_Q}{dx} \right) dx$, where Q denotes an arbitrary *Q* IQI *JQ ί*^f cube in *R*, $|\mathcal{Q}|$ is the volume of the cube \mathcal{Q} and $J\mathcal{Q} = \frac{1}{|Q_i|} \int_{Q} J(x) dx$. The fol-י ווישן
גען נ lowing theorem has already been proved in [13] and [16]. However we give here a slightly different proof, in which we use a continuous decomposition of the operators.

Theorem 4.1. *We assume that a symbol p(x^y ζ) satisfies one of the following two conditions.*

(i)
$$
N = \sup_{|\alpha| \leq \kappa, |\beta| \leq 1, (x, \xi)} |p_{(\beta)}^{(\alpha)}(x, \xi)| \langle \xi \rangle^{|\alpha| - \delta|\beta|} < \infty
$$

where δ *is a positive constant with* δ < 1.

(ii)
$$
N = \sup_{|\alpha| \leq \kappa, |\beta| \leq \kappa, (x, \xi)} |p_{(\beta)}^{(\alpha)}(x, \xi)| \langle \xi \rangle^{n(1-\rho)/2 + \rho(|\alpha| - |\beta|)} < \infty,
$$

where ρ *is a positive constant with* $\rho \leq 1$ *.*

Then the operator $p(X, D_x)$ *is bounded from* L^∞ *to BMO and we have*

$$
(4.1) \t\t ||p(X, D_x) u||_* \leq C_n N ||u||_{\infty}.
$$

Proof. We note that, by Lemma 2.1, if $p(x, \xi)$ satisfies the condition (i) then $p(X, D_x)$ is L^2 -bounded and we have

$$
(4.2) \t\t\t ||p(X, D_x) u||_2 \leq C N ||u||_2.
$$

Moreover if $p(x, \xi)$ satisfies the condition (ii) then, by Lemma 2.2, the operator $p(X, D_x) \langle D_x \rangle^{n(1-p)/2}$ is L^2 -bounded and we have the similar estimate to (4.2).

As in the proof of Theorem 3.3, we take a smooth function $f(t)$ so that the support is contained in the interval $[1/2,1]$ and

$$
\int_{-\infty}^{\infty} \frac{f(t)}{t} dt = \int_{0}^{\infty} \frac{f(t)}{t} dt = 1.
$$

Let Q be an arbitrary cube with side d and center x^0 . Then we note $|Q|=d^n$. We may assume without loss of generality that the sides of the cube are parallel to the coordinate axis and $d < 1$. Hence we can write $Q = \{x = (x_1, \dots, x_n); |x_j| \leq \lambda \}$ $[-x_j^0] \le d/2, j=1, \dots, n$. We take a $C_0^{\infty}(R^1)$ and even function $\phi(t)$ so that the support is contained in the interval $[-2, 2]$, $\phi(t)=1$ for $|t| \le 1$ and $\phi(t) \ge 0$. We set $\psi_d(\xi) = \phi(d \mid \xi)$. By Corollary 3.2, we may assume that the support of $p(x, \xi)$ is contained in $\{\xi\}$; $|\xi|\geq 2\}$ and $p(x, \xi)$ satisfies

$$
|p_{(\beta)}^{(\alpha)}(x,\xi)| \leq c_n N |\xi|^{-p|\alpha|+\delta|\beta|-n(1-p)/2} \qquad (|\xi| \geq 2)
$$

for $|\alpha| \leq \kappa$ and $|\beta| \leq 1$ in the case $\rho = 1$ and $|\beta| \leq \kappa$ in the case $0 < \delta = \rho < 1$. Then we split the symbol $p(x, \xi)$ as

$$
p(x,\xi) = p(x,\xi)\psi_d(\xi) + p(x,\xi)(1-\psi_d(\xi)) = p_0(x,\xi) + p_1(x,\xi).
$$

Then we see that

(4.3)
$$
|p_{j(\beta)}(x,\xi)| \leq c_n N |\xi|^{-n(1-\rho)/2-\rho |\alpha|+\delta|\beta|} \qquad (j=0,1)
$$

for $|\alpha| \leq \kappa$ and $|\beta| \leq 1$ in the case $\rho = 1$ and $|\beta| \leq \kappa$ in the case $0 < \delta = \rho < 1$, where the constant c_n is independent of the length d of the cube.

First we consider the operator $p_0(X, D_x)$. Since the support of $p_0(x, \xi) f(t|\xi|)$ is contained in the set

$$
\{\xi\,;\,1/(2t)\leq |\xi|\leq 1/t,\,2\leq |\xi|\leq 2/d\}\ ,
$$

we have

$$
D_{x_j} p_0(X, D_x) u(x) = \int_{d/4}^{1/2} D_{x_j} p_0(t, X, D_x) u(x) \frac{dt}{t},
$$

where $p_0(t, x, \xi) = p_0(x, \xi) f(t|\xi|)$. The symbol of $D_{x_j} p_0(t, X, D_x)$ is equal to

$$
p_{0,j}(t,x,\xi)=\{p_{0,(e_j)}(x,\xi)+\xi_j p_0(x,\xi)\}f(t|\xi|).
$$

Hence by (4.3) we have

$$
||p_{0,j}(t, x, \cdot)||_{H^{\kappa}(t^{-\rho})}^2 \leq C^2 N^2 t^{-2-n\rho},
$$

which gives with the aid of Proposition 3.1

$$
||D_{x_j} p_0(X, D_x) u||_{\infty} \leq \int_{d/4}^{1/2} ||D_{x_j} p_0(t, X, D_x) u||_{\infty} \frac{dt}{t}
$$

$$
\leq C N \int_{d/4}^{1/2} \frac{dt}{t^2} ||u||_{\infty} \leq 4 C N d^{-1} ||u||_{\infty} .
$$

Therefore, for *x'* in *Q* we have

$$
\begin{aligned} & \left| \frac{1}{|Q|} \int_{Q} p_{0}(X, D_{x}) \, u(x) \, dx - p_{0}(X, D_{x}) \, u(x') \right| \\ &\leq \frac{1}{|Q|} \int_{Q} |p_{0}(X, D_{x}) \, u(x) - p_{0}(X, D_{x}) \, u(x') \, dx \\ &\leq C \, N \, ||u||_{\infty} \, . \end{aligned}
$$

This implies

$$
(4.4) \t\t\t ||p_0(X, D_x) u||_* \leq CN ||u||_{\infty}.
$$

Next we show the boundedness of the operator $p_1(X, D_x)$. Let $\chi(x)$ be a $C_0^{\infty}(R^n)$ function which satisfies $\chi(x)=1$ for any $x=(x_1, \dots, x_n)$ with $|x_j|\leq 2$ $(j=1, \dots, n)$ and $\chi(x)=0$ for any $x=(x_1, \dots, x_n)$ with $|x_{j_0}|\geq 4$ for some j_0 . We set $\chi_d(x)=\chi(d^{-\rho}(x-x^0))$, and we write

(4.5)
$$
p_1(X, D_x) u(x) = p_1(X, D_x) (X_d u) (x) + p_1(X, D_x) (u - X_d u) (x) = I u(x) + II u(x).
$$

Then, we see

$$
II u(x) = \int_0^d \frac{dt}{t} \int K_1(t, x, z) (u - \chi_d u) (x - tz) dz,
$$

where $K_1(t, x, z)$ is defined by

$$
K_{1}(t, x, z) = \int e^{iz \cdot \xi} p(x, \frac{1}{t} \xi) (1 - \psi_{d} \left(\frac{1}{t} \xi \right)) f(|\xi|) d\xi.
$$

Since $|x_j - x_j^0| \ge 2d^p$ for some $j \in \{1, ..., n\}$ in the support of $u(x) - \chi_d(x) u(x)$, for any *x* in *Q* we have

$$
|\,tz_j\,|\geqq | \,x_j-x_j^0-tz_j\,|-|\,x_j-x_j^0|\geqq 2d^{\scriptscriptstyle p}-d/2\geqq d^{\scriptscriptstyle p}\;.
$$

Hence if *x* belongs to *Q*, then $|z| \ge t^{-1} d^{\rho}$ in the integrand of *II* $u(x)$. Then

$$
\int_{|z| \geq t^{-1}d^{\rho}} |K_1(t, x, z)| dz
$$
\n
$$
\leq \left\{ \int_{|z| \geq t^{-1}d^{\rho}} |z|^{-2\kappa} dz \right\}^{1/2} \left\{ \int |z|^{2\kappa} |K_1(t, x, z)|^2 dz \right\}^{1/2}
$$
\n
$$
\leq c_n \left(\frac{d^{\rho}}{t} \right)^{-\kappa + n/2} \left\{ \sum_{|\alpha| = \kappa} \int |\partial_{\xi}^{\alpha} \{ p(x, \frac{1}{t} \xi) (1 - \psi_d \left(\frac{1}{t} \xi \right)) f(|\xi|) \} |^2 d\xi \right\}^{1/2}
$$
\n
$$
\leq c_n N \left(\frac{d^{\rho}}{t} \right)^{-\kappa + n/2} t^{n(1-\rho)/2 - \kappa(1-\rho)} = C N t^{\rho(\kappa - n/2)} d^{\rho(n/2 - \kappa)}.
$$

Therefore we have

$$
|II \, u(x)| \leq C \, N \, d^{\rho(n/2-\kappa)} \int_0^d t^{-1+\rho(\kappa-n/2)} \, dt ||u||_{\infty} \leq C \, N \, ||u||_{\infty}
$$

for *x* in Q. This implies

(4.6)
$$
\frac{1}{|Q|}\int_{Q} |II \, u(x)| \, dx \leq C \, N \, ||u||_{\infty} \, .
$$

In order to estimate $I \mathcal{u}(x)$ we use the L^2 -boundedness of the operator $p(X, D_x) \langle D_x \rangle^{n(1-p)/2}$ under one of the two conditions (i) and (ii). Since

 $I u(x) = p(X, D_x) (1 - \psi_d(D_x)) (\chi_d u)(x)$

we can see

$$
\frac{1}{|Q|}\int_{Q} |I u(x)| dx \leq {\frac{1}{|Q|}\int_{Q} |I u(x)|^2 dx}^{1/2}
$$

$$
\leq \frac{CN}{|Q|^{1/2}} ||\tilde{\psi}_d(D_x) \chi_d u||_2,
$$

where $\tilde{\psi}_d(\xi) = \langle \xi \rangle^{-n(1-\rho)/2} (1-\psi_d(\xi)) \tilde{\chi}(\xi), \tilde{\chi}(\xi)=1$ for $|\xi| \geq 2$ and $\tilde{\chi}(\xi)=0$ for $|\xi| \leq 2$. Since $|\tilde{\psi}_d(\xi)| \leq c_n d^{n(1-\rho)/2}$ and $|Q|=d^n$, it follows from Plancherel's formula that

$$
(4.7) \qquad \qquad \frac{1}{|Q|} \int_{Q} |I u(x)| \, dx \leq C \, N \, d^{-n/2} \, d^{n(1-\rho)/2} ||\chi_{d} u||_{2} \\ \leq C \, N \, d^{-\rho n/2} ||\chi_{d}||_{2} ||u||_{\infty} \leq C \, N \, ||\chi||_{2} ||u||_{\infty} \, .
$$

From the inequalities (4.4), (4.6) and (4.7) we get

 $\|p(X,D_x)u\|_* \leq C N\|u\|_*$

Thus we complete the proof of Theorem 4.1. $Q.E.D.$

Theorem 4.2. Let $2 \leq p \lt \infty$. Suppose that a symbol $p(x, \xi)$ satisfies the *condition* (i) *in Theorem* 4.1 *or satisfies*

(ii)'
$$
N = \sup_{|\alpha| \leq \kappa, |\beta| \leq \kappa, (x, \xi)} |p_{(\beta)}^{(\alpha)}(x, \xi)| \langle \xi \rangle^{m} \nu^{+\rho(|\alpha| - |\beta|)} < \infty,
$$

where m_p is the critical decreasing order $n(1-\rho)$ $(1/2-1/p)$ and $0<\rho<1$. Then *p(X, D^x) is L^p -boundeed and we have*

(4.8)
$$
||p(X, D_x) u||_p \leq C_p N ||u||_p.
$$

Proof. When the symbol $p(x, \xi)$ satisfies the condition (i), the operator $p(X, D_x)$ is L^2 -bounded by Lemma 2.1 and bounded from L^{∞} to BMO by The orem 4.1. Therefore by the interpolation theorem of Fefferman-Stein in [4] we can obtain the estimate (4.8). In a similar way, we can obtain the estimate (4.8), when $p(x, \xi)$ satisfies (ii)', from the interpolation theorem of Fefferman Stein in $[4]$ (see $[3]$ and $[16]$). $Q.E.D.$

REMARK 4.3. We note also that Theorem 4.2 has already been proved in $[16]$.

Theorem 4.4. Let $0 \le \delta < \rho \le 1$, $\tau > 0$ and let $\omega(t)$ be a non-negative and *non-decreasing function which satisfies*

$$
(4.9) \t\t\t\t\t\int_0^1 \frac{\omega(t)}{t} dt = M_1 < \infty.
$$

We assume that a symbol p(x, ξ) satisfies

$$
(4.10) \qquad \begin{cases} N_0 = \sup_{|\alpha| \leq \kappa, (x, \xi)} |p^{(\alpha)}(x, \xi)| \langle \xi \rangle^{\kappa(1-\rho)/2+\rho|\alpha|} < \infty ,\\ N_1 = \sup_{|\alpha| \leq \kappa, (x, y, \xi)} \{ |p^{(\alpha)}(x, \xi) - p^{(\alpha)}(y, \xi) | \omega(|x-y|^\tau \langle \xi \rangle^{\delta \tau})^{-1} \right. \\ \qquad \qquad \times \langle \xi \rangle^{\kappa(1-\rho)/2+\rho|\alpha|} \} < \infty . \end{cases}
$$

Then $p(X, D_x)$ is bounded from L^{∞} to BMO and is L^p -bounded for $2 \leq p < \infty$, and *we have*

$$
(4.11) \t\t ||p(X, D_x) u||_p \leq (C_p N_0 + C_0 N_1 M_1) ||u||_p,
$$

$$
(4.12) \t\t ||p(X, D_x) u||_* \leq C_0(N_0 + N_1 M_1) ||u||_{\infty},
$$

where the constant C_0 is independent of $2 \leq$

Proof. We take a $C_0^{\infty}(R^n)$ function $\phi(y)$ such that the support is contained in $\{y; |y| \leq 1\}$ and $\int \phi(y) dy = 1$. We take a positive constnat δ' so that $\delta' = \rho$ if $\rho < 1$ and $\delta < \delta' < 1$ if $\rho = 1$. Now we define symbols $\tilde{p}(x, \xi)$ and $q(x, \xi)$ by

$$
\widetilde{p}(x,\xi) = \int \phi(y) \, p(x - \langle \xi \rangle^{-\delta'} y, \xi) \, dy
$$
\n
$$
= \int \phi(\langle \xi \rangle^{\delta'} (x - y)) \, p(y, \xi) \, \langle \xi \rangle^{\delta'} \, dy \, ,
$$

and $q(x, \xi) = p(x, \xi) - \tilde{p}(x, \xi)$. Then by Lemma 2.3 we can show that

$$
|\tilde{p}_{(\beta)}^{\rm (a)}\!(x,\xi)|\leqq\!C_{\rm a,\beta}\,N_0\!\!\left\langle\xi\right\rangle^{-n(1-\rho)/2-\rho|\rm a|+\delta'|\beta|}
$$

for any β and α with $|\alpha| \leq \kappa$, and

$$
|q^{\scriptscriptstyle{(\alpha)}}(x,\xi)| \leqq \! C_{\scriptscriptstyle{\alpha}}\, N_{\scriptscriptstyle{1}}\, \omega(\langle\xi\rangle^{-\tau(\delta'-\delta)}) \, \langle\xi\rangle^{-\,n(1-\rho)/2\,-\rho|\alpha|}
$$

for $|\alpha| \leq \kappa$ (see, for example, [8] or [11]). Therefore it follows from Lemma 2.2 and Theorem 4.1 that $\widetilde{p}(X,D_{\star})$ is L^2 -bounded and bounded from L^{∞} to BMO, and by the interpolation theorem of Fefferman-Stein we have

$$
\begin{aligned} ||\tilde{p}(X, D_x) u||_p \leq C_p N_0 ||u||_p & (2 \leq p < \infty) \\ ||\tilde{p}(X, D_x) u||_* \leq C_0 N_0 ||u||_{\infty} . \end{aligned}
$$

Moreover by Corollary 3.8, we have

$$
||q(X, D_x) u||_p \leq C_0 N_1 M_1 ||u||_p \qquad (2 \leq p \leq \infty).
$$

Thus we get the theorem. $Q.E.D.$

In this theorem, we got L^p -boundedness under a weak continuity condition (4.10) of symbols with respect to the space variables x, however, the decreasing order of symbols as $|\xi| \to \infty$ was the constant $n(1-\rho)/2$. We know that when $p < 1$ this is not the critical decreasing order for L^p -boundedness except for $p=$ ∞ . So next we show an L^p-boundedness of operators of the critical decreasing order under some continuity condition in the space variables.

Theorem 4.5. Let $0 < \rho < 1$ and $2 \leq p < \infty$. We denote

(4.13)
$$
m_{p} = n(1-\rho)(1/2-1/p), \mu_{p} = \frac{\kappa n(1-\rho)}{\kappa p \rho + n(1-\rho)}
$$

Let μ be an arbitrary positive number greater than μ^p . We suppose that a symbol p(x, ξ) satisfies

$$
(4.14) \t\t N_0 = \sup_{|\alpha| \leq \kappa, |\beta| \leq \kappa, (x, \xi)} |p_{(\beta)}^{(\alpha)}(x, \xi)| \langle \xi \rangle^{m_p + p|\alpha|} < \infty.
$$

Moreover if $\mu_0 = \mu - [\mu] > 0$, then we assume that

$$
(4.15) \quad N_1 = \sup_{|\alpha| \leq \kappa, |\beta| \leq [\mu], (x, y, \xi)} |p_{(\beta)}^{(\alpha)}(x, \xi) - p_{(\beta)}^{(\alpha)}(y, \xi)| \, |x - y|^{-\mu} \ll \xi \rangle^{m} p^{+\rho|\alpha|} < \infty \; .
$$

Then p(X, D^x) is L^p -bounded and we have

$$
(4.16) \t\t\t ||p(X, D_x) u||_p \leq C_p(N_0 + N_1)||u||_p.
$$

Proof. We set $\rho' = \rho + n(1-\rho)/(\rho \kappa)$. Then we see easily $\rho < \rho' < 1$. We take a Schwartz rapidly decreasing function $\phi(z)$ such that $\int \phi(z) dz = 1$ and

 $\int z^{\alpha} \phi(z) dz = 0$ for any $\alpha \neq 0$ (see [8]). We define new symbols $\tilde{p}(x, \xi)$ and $q(x, \xi)$, as in the proof of Theorem 4.4, by

(4.17)
$$
\tilde{p}(x,\xi) = \int \phi(y) p(x-\langle \xi \rangle^{-p'} y, \xi) dy
$$

$$
= \int \phi(\langle \xi \rangle^{p'} (x-y)) p(y,\xi) \langle \xi \rangle^{p''} dy,
$$

and $q(x, \xi) = p(x, \xi) - \tilde{p}(x, \xi)$. Then setting $v = [\mu]$, we have

$$
\tilde{p}(x,\xi) = p(x,\xi) + \sum_{0 \leq |\beta| \leq \nu} \frac{(-i)^{|\beta|}}{\beta!} \int y^{\beta} \phi(y) \, dy \langle \xi \rangle^{-\rho'|\beta|} p_{(\beta)}(x,\xi) \n+ \sum_{|\beta|=\nu} \frac{\nu(-i)^{\nu}}{\beta!} \int_0^1 (1-t)^{\nu-1} \int y^{\beta} \phi(y) \, p_{(\beta)}(x-t \langle \xi \rangle^{-\rho'} y, \xi) \langle \xi \rangle^{-\rho'\nu} \, dy \, dt.
$$

Since $\int y^{\beta} \phi(y) dy = 0$ for $\beta \neq 0$, we have

$$
q(x,\xi) = -\nu(-i)^{\nu} \sum_{|\beta|= \nu} \frac{1}{\beta!} \int_0^1 (1-t)^{\nu-1} \int \phi_{\beta} \left(\frac{\langle \xi \rangle^{\rho'}}{t} (x-y) \right)
$$

\$\times t^{-n} p_{(\beta)}(y,\xi) \langle \xi \rangle^{-\rho'\nu+\rho'n} dydt\$

$$
= -\nu(-i)^{\nu} \sum_{|\beta|= \nu} \frac{1}{\beta!} \int_0^1 (1-t)^{\nu-1} \int \phi_{\beta} \left(\frac{\langle \xi \rangle^{\rho'}}{t} (x-y) \right)
$$

$$
\times t^{-n} \{p_{(\beta)}(y,\xi) - p_{(\beta)}(x,\xi)\} \langle \xi \rangle^{\rho'(n-\nu)} dydt,
$$

where $\phi_{\beta}(z) = z^{\beta} \phi(z)$. Thus using Lemma 2.3 we can see that

$$
|q^{(\mathbf{a})}(x,\xi)| \leq CN_1 \sum_{|\beta|=v} \langle \xi \rangle^{-m_{\rho}-\rho'\nu-\rho|\mathbf{a}|} \int |\tilde{\phi}_{\mathbf{a},\mathbf{b}}(\langle \xi \rangle^{\rho'} y)| |y|^{n_0} \langle \xi \rangle^{\rho'n} dy
$$

$$
\leq CN_1 \langle \xi \rangle^{-m_{\rho}-\rho'\mu-\rho|\mathbf{a}|}
$$

for $|\alpha| \leq \kappa$, where $\tilde{\phi}_{\alpha,\beta}(z)$ are linear combinations of Schwartz functions determined from $\phi_{\beta}(z)$ and its derivatives of order not greater than $|\alpha|$. By the definitions of μ , μ_p , m_p and ρ' , we can see easily that

$$
\rho'\mu + m_p > \rho'\mu_p + m_p = n(1-\rho)/2.
$$

Therefore by Corollary 3.6 we have

$$
(4.18) \t\t\t ||q(X, D_x) u||_{r} \leq C N_1 ||u||_{r}
$$

for $2 \le r \le \infty$.

Next we consider the symbol $\tilde{p}(x,\xi)$. For $|\alpha|\leq\kappa$ and $|\beta|\leq\nu=[\mu]$, it follows from Lemma 2.3 that

$$
(4.19) \qquad |\tilde{p}_{(\beta)}^{(\alpha)}(x,\xi)| = |\partial_{\xi}^{\alpha} \{ \oint \phi(y) \, p_{(\beta)}(x - \langle \xi \rangle^{-\rho'} y, \xi) \, dy \} |
$$

$$
= |\partial_{\xi}^{\alpha} \{ \int \phi(\langle \xi \rangle^{\rho'} (x - y)) p_{(\beta)}(y, \xi) \langle \xi \rangle^{\rho''} dy \} |
$$

\n
$$
\leq C \sum_{\alpha^{1} + \alpha^{2} + \alpha^{3} = \alpha} \int |\partial_{\xi}^{\alpha^{1}} (\phi(\langle \xi \rangle^{\rho'} (x - y))) p_{(\beta)}^{\alpha^{2}}(y, \xi) \partial_{\xi}^{\alpha^{3}} \langle \xi \rangle^{\rho''} | dy
$$

\n
$$
\leq C N_{0} \langle \xi \rangle^{-m_{p} - \rho |\alpha|}.
$$

When $|\alpha| \leq \kappa$ and $\nu < |\beta| \leq \kappa$, writing $\beta = \beta^1 + \beta^2$, $|\beta^1| = \nu$ and $\beta^2 \neq 0$, we have

$$
\begin{aligned} |\widetilde{D}^{(\alpha)}_{(\beta)}(x,\xi)|&=|\partial_\xi^\alpha\partial_z^\beta^2\{\!\!\left\{\phi(y)\,p_{(\beta^1)}\,(x-\langle\xi\rangle^{-\rho'}\,y,\xi)\,dy\!\!\right\}|\\&=|\partial_\beta^\alpha\{\!\!\left\{\phi_{(\beta^2)}\,(\langle\xi\rangle^{\rho'}(x-y))\,p_{(\beta^1)}\,(y,\xi)\,\langle\xi\rangle^{\rho'(n+|\beta^2|)}\,dy\!\!\right\}|, \end{aligned}
$$

where $\phi_{(\beta^2)}(z) = D^{\beta^2}$ $\phi(z)$. Since $\int \phi_{(\beta^2)}(z) dz = 0$, in a similar way to the estimate for $q(x, \xi)$, we have

$$
(4.20) \qquad |\tilde{p}_{\langle\beta\rangle}^{(\alpha)}(x,\xi)| = |\partial_{\xi}^{\beta}\{\phi_{\langle\beta^{2}\rangle}\left(\langle\xi\rangle^{p'}(x-y)\right)\{p_{\langle\beta^{1}\rangle}(y,\xi)-p_{\langle\beta^{1}\rangle}(x,\xi)\}\n\n\times\langle\xi\rangle^{p'(n+|\beta^{2}|)}dy\}\n\n\leq C\,N_{1}\langle\xi\rangle^{-m_{\rho}-p_{|\alpha|}+p'(|\beta|-\nu)-p'\mu_{0}}.
$$

Since

$$
\rho'(|\beta|-\nu)-\rho'\mu_0-\rho|\beta|=(\rho'-\rho)|\beta|-\rho'\mu<(\rho'-\rho)\kappa-\rho'\mu_\rho=0
$$

for $|\beta| \leq \kappa$, combining the estimates (4.19) and (4.20), we get

$$
|\widetilde{p}_{(\beta)}^{\langle\alpha\rangle}(x,\xi)|\leq C(N_0+N_1)\langle\xi\rangle^{-m_p-\rho|\alpha|+\rho|\beta|}
$$

for $|\alpha| \leq \kappa$ and $|\beta| \leq \kappa$. Therefore by Theorem 4.2, we have

$$
(4.21) \t\t\t ||\tilde{p}(X, D_x) u||_p \leq C(N_0 + N_1)||u||_p.
$$

From (4.18) and (4.21) we get (4.16) . $Q.E.D.$

REMARK 4.6. (i) we first note that

$$
\mu_p - \kappa(1-\rho) = \kappa \rho(1-\rho) (n-p\kappa)/(\kappa p\rho + n(1-\rho)) < 0
$$

 \geq 2, and therefore μ_p < $\kappa(1-\rho)$. In the condition (ii)' of Theorem 4.2, we assumed the κ differentiability of symbols in the space variables x and the covariables *ξ,* in order to get the Z/-boundedness for the operators of a class which generalizes the Hormander class $S_{\rho,\rho}^{-m} \nu(0<\rho<1)$. However for operators of our class which generalizes the Hormander class $S^{-m}_{\rho,0}$ ($0<\rho<1$), we can obtain the L^p -boundedness under less regularity μ in the space variables x by Theorem 4.5, since $\mu_p < \kappa(1-\rho) < \kappa$.

(ii) It is clear that $\lim_{p\to\infty} \mu_p = 0$ and $\lim_{p\to 1} \mu_p = 0$. This means that if p is sufficiently large or ρ is sufficiently near to 1, then we can obtain the L^{ρ} -bounded-

ness under only the Holder continuity of symbols with respect to the space variables *x.*

Acknowledgement. The author is heartily grateful to the referee for the improvement of Proposition 3.1 and the simplification of the proofs of Theorem 3.3 and Theorem 4.1.

References

- [1] R.R. Coifman and Y. Meyer: *Au dela des opέrateurs pseudo-differentiels,* As térisque 57 (1978), 1-85.
- [2] H.O. Cordes: *On compactness of commutators of multiplications and convolutions, and boundedness of pseudo-differential operators,* J. Funct. Anal. 18 (1975), 115-131.
- [3] C. Fefferman: *L^p -bounds for pseudo-differential operators,* Israel J. Math. 14 (1973), 413-417.
- [4] C. Fefferman and E.M. Stein: *H^p -spaces of several variables,* Acta Math. **129** (1972), 137-193.
- [5] L. Hδrmander: *Pseudo-differential operators and hypo-elliptic equations,* Proc. Symposium on Singular Integrals, Amer. Math. Soc. 10 (1967), 138-183.
- [6] T. Kato: *Boundedness of some pseudo-differential operators,* Osaka J. Math. 13 $(1976), 1-9.$
- [7] H. Kumano-go: Pseudo-differential operators, MIT Press, Cambridge, Mass. and London, England, 1982.
- [8] H. Kumano-go and M. Nagase: *Pseudo-differential operators with non-regular symbols and applications,* Funkcial. Ekvac. **22** (1978), 151-192.
- [9] T. Muramatu and M. Nagase: *On sufficient conditions for the boundedness of pseudo-differential operators,* Proc. Japan Acad. 55 Ser A (1979), 613-616.
- [10] T. Muramatu and M. Nagase: *L² -boundedness of pseudo-differential operators with non-regular symbols,* Canadian Math. Soc. Conference Proceedings, 1 (1981), 135-144.
- [11] M. Nagase: *The L^p -boundedness of pseudo-differential operators with non-regular symbols,* Comm. Partial Differential Equations 2 (1977), 1045-1061.
- [12] M. Nagase: *On the boundedness of pseudo-differential operators in L^p -spaces,* Sci. Rep. College Gen. Ed. Osaka Univ. 32 (1983), 9-19.
- [13] M. Nagase: *On a class of L^p -bounded pseudo-differential operators,* Sci. Rep. College Gen. Ed. Osaka Univ. 33 (1984), 1-7.
- [14] E.M. Stein and G. Weiss: Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, NJ, 1971.
- [15] M. Taylor: Pseudo-differential operators, Princeton Univ. Press, Princeton, NJ, 1981.
- [16] Wang Roughuai and Li Chengzhang: *On the L^p -boundedness of several classes of pseudo-differential operators,* Chinese Ann. Math. 5B(2) (1984), 193-213.
- [17] K. Yabuta: *Calderόn-Zygmund operators and pseudo-differential operators,* Comm. Partial Differential Equations 10 (1985), 1005-1022.
- [18] A. Zygmund: Trigonometrical series, Cambridge Univ. Press, London, 1968.

Department of Mathematics College of General Education Osaka University Toyonaka, Osaka 560 Japan

 $\hat{\boldsymbol{\gamma}}$