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Introduction. The conditional expectation of a Banach-valued function
is defined by means of Bochner integral, see L. Schwartz [11]. The purpose
of this paper is to study sufficient conditions for a linear operator on the
space of L,-valued integrable functions on a probability space (Q, A, u) to be
a conditional expectation operator (in the sense of Schwartz [11]), where L,
means the space of integrable real-valued functions over a measure space
(X, S, \). For the case of real-valued functions, such a problem has been
studied by several authors, such as T. Ando [1], R.R. Bahadur [2], R.G.
Douglas [4], S.C. Moy [8], M.P. Olson [9], J. Pfanzagl [10], M.M. Rao [11],
and Z. Sidak [14].

For the case of strictly convex space-valued functions D. Landers and
L. Rogge [7] proved that every constant-preserving contractive projection
becomes conditional expectation operators. They also show that these con-
ditions do not characterize the conditional expectation operator for the case
of L;-valued functions.

In Section 2 we shall reduce the problem of characterization of condi-
tional expectations of L,-valued functions to the problem of operators of scalar
valued integrable functions or a product space. In Section 3 we deal with the
case of a measure space with ergodic transformations. Then every constant-
preserving contractive projection becomes a conditional expectation operator
under the additional condition that it commutes with these transformations.
Then we deal with the case that X is a locally compact Hausdorff topo-
logical group and A is the left Haar measure on the o-ring S generated by the
class of compact sets. In Section 4 we suppose that X=R/Z, where Z is the
class of integers, and S is the class of Borel sets and A is the Haar measure.
Then properties of translation-invariant g-subalgebra S’ of S is considered,
and we will use this result to consider the case in Section 2.

1. Definitions and useful lemmas. Let E be a Banach space over
the reals with the norm [|-||; and (Q, A, w) a probability space. Let L,(Q,
A, p, E) denote the space of all E-valued Bochner integrable functions on (£,
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A, p) associated with the norm defined by

171 = | 1f@)lls dia(e)
For the definitions and properties of Bochner integral, see Hille and Phil-
lips [6].

DeriniTION 1. For a o-subalgebra B of (4, a function g is called the con-
ditional expectation of f given B if g is weakly measurable with respect to B,

and S gdy = g fdu for each Be B, where the integral is Bochner integral.
B B
We denote by f< the conditional expectation of f given B.

We shall denote by R the space of real numbers. For each oLy (Q, A,
u, R) and a€E we define (¢-a) (0)=@(w)+a for each w=Q. Then ||p-d||,=

lalls {191 .

Lemma 1.1. For each f€L,(Q, A, p, E) the conditional expectation f3
of f given B exists uniquely up to almost everywhere and satisfies S [ f ()| zd ()=

[ 1@z di(a).
For proof see Schwartz [12].

By the definition of conditional expectation, (@+a)B=¢@3B-a for each pEL,
(Q, A, p, R)and a€E.

DEerINITION 2. Let P be a linear operator of L(Q, A, u, E) into itself.
P is said to be contractive if ||P||=sup{||P(f)|l.: fEL(Q; A, i, E) and [|f||,=
1} <1, P is constant-preserving if P(1g-a)=1g-a for each a€FE and P is called
a projection if PoP=P.

In particular a contractive operator is bounded, and hence continuous.

Lemma 1.2. The conditional expectation operator (+)B is a constant-pre-
serving contractive projection for each o-subalgebra B of .

This is a direct consequence of Definition 1 and Lemma 1.1.

Lemma 1.3 (Douglas). If P is a constant-preserving contractive projec-
tion of L\(Q, A, p, R) into itself, then there exists a o-subalgebra C of A such that
P(f) is the conditional expectation of f given C for each feL(Q, A, p, R); ie.,
P(f)=fC for each fe L\(Q, A, u, R).

For proof see Douglas [4].
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Obyviously, the above lemma holds for every finite measure space (Q, A, u).

Lemma 14. If Q is a constant-preserving contractive projection of L,
(Q, A, p, E) into itself, then for each o= L\(Q, A, p, R) with 0=p=1 and acE
there exists a p-null set N such that

llall:—11Q(@+a) (o)llz=lla—Q(p+a) (o)l for each owEQ—N .

Proof. Since Q is constant-preserving and contractive and 0=p <1,

a-all,—llp-all, = lialls—llals{ 191 4w
= llalls| 11a—gldn = llalls | 1a—p|du = I[1a+a—g-all,

2[1Q(1ga—e@-a)ll, = |llg-a—Q(e-a)ll,
= [Mg-all.—[IQ(p-a)ll. 2 1a-all.—lp-all. .

Therefore it holds that

No-all.—lIQAp- )l = [1a-a—Q(P-a)ll. -

Hence we have
[4lall:—110@+a) @Ils} diw) = [i11aw)-a—0(p+a) @Iz di(e) -

From the evident inequality
llalle—11Q(@+0) (0)ll:=lla—Q(p-a) ()|l for each w&Q, we have |lall—[IQ
(@+a) (0)llz=|la—O(@-a) (w)||; for each w=Q—N, where N is a p-null set.

Proposition 1.1. Let Q be a constant-preserving contractive projection of
L(Q, A, u, E) into itself. If, for each p=L,(Q, A, p, R) and for each nonzero
element a of E, there exists ' € L\(Q, A, pu, R) such that Q(p-a)=e’ -a, then there
exists a o-subalgebra C of A such that Q(f) is the conditional expectation of f given
C for each fe L(Q, A, u, E).

Proof. ¢’ does not depend on the choice of the element a of E. (See
the Proof of the theorem of Landers [7].) Therefore we can define an operator
Q' of L(Q, A, p, R) into itself by Q'(p)-a=Q(gp-a) for each acE and pE
L(Q, A, p, R). Clearly Q" is a constant-preserving contractive projection of
L(Q, A, p, R) into itself. Therefore by Lemma 1.3 there exists a o-subal-
gebra C such that @C=Q'(p). Therefore we have Q(p-a)=@C-a=(p-a)C.
And hence Q is the conditional expectation operator given C by the proof of
[12, Theorem 1.6.4]

In the rest of this paper we restrict ourselves to the case that E=L,(X, S,
N, R), where X is a measure space and S is a o-ring and A\ is a measure on S.
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Lemma 1.5. Suppose that Q is a constant-preserving contractive projection
of Li(Q, A, p, E) into itself. If K&S with M(K)<oco, then, for every pE L,
(Q, A, u, R) with 0= =1 and A& J, we have

1> SA O(+ 1) (e, %) dpa(w) dN(x)=0 and
SA O(p+1g) (0, x) du(w) = 0, A-a.e.x on KC .

Procf. By Lemma 1.4 there exists a p-null set NV such that |[1.|[;—||Q
(2+1g) (0)lz=I11x—O(@*1g) (»)||z for each w=Q—N, since 1,€FE, where 1,
is the indicator function of K. Hence

[1c 7@~ {10601 (@ 91 A7) = {1160+ 1) (0, 9) 1 AN@) .
From the evident inequality
1g(®)— | OQ(@+1k) (@, %) | = | 1x(%)— QP 1k) (@, ¥)|
we have for each 0EQ—N
1e(®)— | Q(9+ 1) (0, )| = | 1i(x)— Q@+ 1x) (@, )|, M-aex.

Therefore, for each w=Q—N, 0=0(p-1g) (0, ¥)=1, raex, and Q(p-1gk)
(w, )=0, A-a.e.x. on KC. Hence

1> sA O(9-1x) (@, %) du(w) dMx)=0 and
SA O(p+1g) (o, x) du(w) = 0, A-a.ex on KC.

2. The case of a general measure space. Let (X, S, ) be a measure
space. For convenience we denote L,(QxX X, AXS, uXA, R) by L,(QxX)
and L,(Q, A, p, Li(X, S, A, R)) by L,(Q, L(X)).

Lemma 2.1. There exists a norm isomorphism of L(Q, Ly(X)) onto L,
(QxX).

For proof see Treves [15, p. 464, Exercise 46.5]

Let Q be a mapping of L,(Q, L(X)) into itself. Let ¢ be the isomorphism
of Li(Q, Ly(X)) onto L)(Qx X). Then Q'=icQoi™! is a mapping of L,(QXX)
into itself.

Lemma 2.2. Q is a contractive projection iff Q' is a contractive projection.
This lemma is a direct consequence of the definition of .

For K& such that 0<)\(K)<oo we denote L(K, SNK, A/SNK) by
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L(K) and L(QXK, AX(SNK), px(A/SNK)) by L(QxK). We may
regard L;(Q X K) as a subspace of L,(QX X) by a canonical way.

Lemma 23. If Q is a constant-preserving contractive projection, then
O'(Ly(x K))cL(Q X K).

Proof. If feL,(Q, L(X)) and f is an L,(K)-valued function, then by
Lemma 1.5, O(f) is an L(K)-valued function. By Lemma 2.1 there exists a
norm isomorphism of I,(Q, L,(K)) onto L,(Qx K), therefore Q'(L,(QX K))C
L(Q X K).

Lemma 24. Let Q be a bounded transformation of L,(Q, L(X)) into
atself. Then Q is the conditional expectation operator given B iff Q'|L,(Q X K)
is the conditional expectation operator of Ly(Q X K) into itself given BX(SNK).

Proof. Suppose that Q is a conditional expectation operator given .
Then for every MeB and NeSNK, we have QO(1,-1y)=(1,)2-15. It
follows that Q'(L(Qx K))CL,(Qx K). For any Me B, NeSNK and feL,
(2% K), we have

SMXN Q'(f)duxdn = SN{gM O(f) du}dn = SN}SMfd‘u}d)\,
= SMXNfdy,XdK .

Thus Q'/L,(Qx K) is the conditional expectation operator given Bx (SN K).
Conversely, suppose that Q'/L,(Q X K) is the conditional expectation operator
given BX(SNK) for each KeS with 0<MK)<<eo. Let o= L)(Q, A, u, R)
and K€ S with 0<MK)<oco. Then, for any M and NES, we have

SN {SM O(p-1x)duydr = SMXN O'(p+1x) dux dn
ZS q,ga.le,bxdx:S {S 281, dubdn .
MxN N I

It follows that Q(@+1x)=@B-1;. By linearity and continuity Q(@-a)=@3-a
for all ae Ly(X). By the proof [12, Theorem 1.6.4], Q is the conditional expec-
tation operator given 3.

Let O be a constant-preserving contractive projection on L,(Q, L,(X)).
Then by Lemmas 1.3 and 2.3, for any K&.S with finite measure, there is a
o-subalgebra Fy of AX(SNK) such that Q'/L,(Q X K) is the conditional ex-
pectation operator given Fx. Moreover, by Lemma 2.4, Q is a conditional
expectation operator on Ly(Q, L,(X)) if and only if there is a o-subalgebra B
of A such that Fy=3x(SNK) for all K.

3. The case of a measure space with ergodic transformations. Let
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(X, S, \) be a measure space, S a o-algebra, SA\)={K; KES and MK)<
oo} and S;(Z\)={KcX; KNEES for each E€S(\)}. For each KeS,(\)
let M(K)=sup {MKNE); EES(\)}.

DrriNiTION 3. A measure space (X, S, \) is localizable if each nonempty
collection €V S(\) has supl/& S, in the sense that for each K&/, MK—
supC{/)=0 and if H;&S and M(K—H,)=0 for each K&/, then A(suptl/—H,)
=0.

DEerINITION 4. A measure space (X, S, A) is locally localizable if each
nonempty collection I/ S(A) has supc/ & S)(A), in the sense that for each K&
Y, MK—supV)=0 and if H,& S;(\) and M(K—H,)=0 for each K&/, then
A(supC/—H,;)=0.

DEerFINITION 5. A measure space (X, S, A) has the finite subset property
if for each K& S, AMK)>0, there is K'e S with K'CK and 0<\(K")<co.

Lemma 3.1. If (X, S, \) is a locally localizable measure space with the
finite subset property, then (X, S;(\), X) is a localizable space which satisfies the
[finite subset property and N|S=.

For proof see Ghosh, Morimoto and Yamada [5].

DzerFINITION 6. A class {f(x, K): K&S(\)} of S-measurable functions
on (X, S, A) is called a cross-section
if f(x, K)=0on KC and g ,g,(%)f(x, K))
= lgng,(%)f(x, K;) (a.ex) foreach K, K,eS()\).
Lemma 3.2. Suppose that a measure space (X, S, \) is localizatle. Then

for each cross-section {f(x, K): K&S(\)} there exists a S-measurable function
f such that f(x)«1x(x)=f(x, K) (A-a.e.x) for each K& S(\).

For proof see Zaanen [16]

In the rest of this section we assume that (X. S. \) is a localizable space
with the finite subset property.

Lemma 3.3. Let Q be a constant-preserving contractive projection of L,
(Q, A, u, E) into itself, where E=L\(X, S, N, R). Then for each p €L,(Q, A, p,
R), 0=¢=1, and A there exists a N-a.e. unique S-measurable function b
such that

0=b(x)<1 (\-aex) and b-1K:1K-L O(e-1x) du
(A-a.e.x) for each Ke&S(\).
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Proof. By Lemma 1.5, S O(e-1x) dp=0 on KC for each K&S(\). For
A

each K,, K,€S(\) IKI“Kz'S,, Op-1x,) du=1gnx, (SA O+ 1inx,) dp> since
s O(@+1,x,) du=0 on K;NK,. Similarly
A

Lok | 0@ 1x) di=lrnm:| 0@ lar) du.

Therefore {g O(p+1g)du: K&S(\)} is a cross section, and hence by Lemma
A
3.2 there exists a S-measurable function b such that b+1,-=1 K-S O(p+1x)dp
A

(M-a.e.x) for each K&S(A). What remains is to prove the uniqueness of b.
Suppose that there exists a S-measurable function & such that b-1,=5b"+1x
(M-a.e.x) and A({x: b(x)==b'(x)})>0. By the finite subset property of (X, S, \)
there exists E€S(\), EC {x: b(x)=%b'(x)}, which leads to a contradiction, since
b-1;=0b"+1; (a.ex). We have proved that b(x)=>’(x) (A-a.e.x). Similarly by
Lemma 1.5 and the finite subset property of (x, S, A) we have 0=b(x)=1
(M-a.e.x).

DEerFiNITION 7. Let T be a one to one transformation of (X, S, A) onto
itself, then T is called a bounded measurable transformation if T is a measur-
able transformation and there exists a positive number k such that M(77(4)) =
ken\(A4) for each AES.

DrerINITION 8. Let {T: T€9} be a class of bounded measurable trans-
formations of X onto X such that T7(S(A))=S(A) for each T€9. (X, S, A, T:
Ted) is called ergodic if M(AAT(A4))=0 for each T4 implies AM(4)=0 or
A(49)=0.

Lemma 34. If (X, S, A, T: T€9) is an ergodic space, then for each bound-
ed measurable function f on X f(x)=f(T(x)) a.e.x for each T implies that f(x)=

const. h-a.e.x.

Proof. Let f be a bounded measurable function on X and f(x)=f(T(x)),
Ar-aex for each Te9. For each real number d let E,=f7'((d, c)). Then
MEATYE)) SN(f(*)= f(T(x)))=0. By the definition of erogdicity ME,)=0
or ME$)=0, f is bounded, and hence there exists a real number M such that
[f(x)| =M, aex. If d>M then, ME,)=0. If d<—M, then NME])=0.
Let c=inf {d: M(E;)=0}. Then f=c¢, r-a.e.x.

Let (X, S, A, T: T€9) be an ergodic measure space and E=L,(X, S, A,
T: Te9). For each real valued measurable function ¢ on X and 79 we
write T+a(x)=a(T(x)). Then T can be seen as a bounded linear operator of
L(X, S, \, R) into itself.

DerFINITION 9. Let Q be a transformation of L(Q, A, w, E) into itself,
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then Q is called covariant under 9 if Q(p+(T+a))=T-Q(p+a) for each pEL,
(Q, A, p, R) and aeFE and T 9.

Theorem 1. Let Q be a constant-preserving contractive projection which
is invariant under 4. Then Q=(+)2 for some o-subalgebra B of .

Proof. Let p=L,(Q, A, . R), 0S¢p=1and A=A and T€4. By Pro-
position 1.1 it is sufficient to prove that there exists ¢’ €L(Q, A, p, R) such
that Q(@-15)=@ -1y for each K&S(\). By Lemma 3.3 there exists a S-

measurable function b such that 0=b(x)=<1 (a..x) and b-1K=S O(@+1)du (A
a.e.x) for each K&.S(A). 4

(T0) s =T01) = T| Qlp-1edp
— | 100 10an = | 0(p-(T-10)dp
— SA O(p+1-1)dp.  Since T-(S(\)) = S(\) we have
(T+b)- 1y = SA O(p-1x)dp — b1, for cach Ke&SO\).

By the uniqueness of b T-b=b(A-a.e.x). By Lemma 3.4 there exists a positive
number k(4) such that b(x)=14-k(4) (A-a.e.x). Hence b-1,=1,k(A4).
Let {4,,n=1, 2, ---} be a sequence of elements of ] and 4,N 4,=¢(n+m).

LeeB(0 4) = =, Oe-10dn = 5| 0(p-10dn

n=1

= 3 L K(4,) = 1o (S KAL)

n=1

Therefore k( U A,)= b k(A4,), this shows that k(+) is a measure on 4. £k is
n=1 n=1
absolutely continuous with respect to y, since 1 K-k(A):S O(p+1g)dp. By the
A
Radon-Nykodym theorem there is @’'€Ly(Q, A, u, R) such that

g ¢'-1KdM:1K-§ <p’du=1,{ok(/l)=s O(p+1)dp .
A A A
Therefore O(@:1x)=@" 1.

Remark. If (X, S, \) is o-finite measure space, then Theorem 1 can be
proved without the condition that 77(S(A))=S(\).

Let G be a locally compact group and A a left Haar measure on the o-
algebra S generated by open sets (cf. Berberian [3, Exercise 79.6, p. 263]). Then
(G, S, \) is a locally localizable measure space with the finite subset property
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(cf. Segal [13]). Let I be the set of all translations on G. Then it is easy
to see that (G.S. .9) is an ergodic measure space. Thus we obtain the follow-

ing.
Corollary 1. A constant-preserving contractive projection on L,(Q, L,(G))

which is covariant under all translations is a conditional expectation operator given
some o-subalgebra of .

4. Properties of translation-invariant o-algebras on R/Z and a
characterization of conditional expectation for L,(R/Z)-valued function.
Let X=R|/Z, where Z is the class of integers. Let A be the Haar measure
and S the A-completion of the class of Borel sets on X. Let JI be the o-ring
of A-null sets and & an irrational number.

We define a mapping T, of X onto X by T,(x)=x+a (mod 1). A o-
subalgebra S’ of S is said to be T,-invariant if T,(K)& .S’ for each K&S’. For
n=1,2,..-. Let S,={KeS, K=K+1/n (A-a.e.x)}.

Lemma 4.1. Let U and V be o-subalgebras of S containing Jl. Then
U=V iff

(&t = (&%) N-a.e.x for any kEZ.
Proof. For each complex integrable function f and a positive bumber £>0

” .o .
there exist complex numbers ¢;, ¢, **, ¢, such that || f— > ¢; €|, (x). Since
im1

conditional expectation operator is linear continuous, we have this lemma.
Lemma 4.2. Let S’ be a o-subalgebra of S containing Jl. Then

0 (k%0 (mod 7))

) .e. keZ.
it (k=0 (mod m)) % T

S = S,, iff(ezaikz R j— {

Proof. If k%0 (mod 7), then S &% dx=0 for each K&S’. This lemma
K

is a direct consequence of this fact and Lemma 4.1.

Lemma 4.3. Let S’ be a T,-invariant o-subalgebra of S containing Jl.
Then

(€275 (Ty(x))S = &***(&**%)S (%) a.e.x for any keEZ.

Proof. Let f(x)=(¢"*%)¥'(x). Since A and S’ are T,-invariant, for any
KeSs’

[ f@mane = f@ane={ e an

Tal
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_ SK ) d?\,(x) _ ezm‘kaSK Friks d7\.(x)
- ezmgK £(x) dA(x).

Therefore f(T,(x))=e"** f(x).

Lemma 4.4. Let feL(X. S.N. R) such that f(T,(x))="* f(x) a.e.x.
Then f(x)=Cée"** a.e.x, where C is a constant.

Proof. {¢"/%, j=1, 2, ---} is a complete orthogonal system in L,(X, S, A, R).
Let f(x)= i c;"*, Since f(T,(x))=€"*" f(x) a.ex, it holds that ¢;@*/"=
Jj=1
¢;&"* for any positive integer j. Therefore ¢;=0 except for j=k.

Theorem 2. Let S’ be a o-subalgebra of S containing Jl. Then S’ is
T ~invariant iff S'=3J1 or S'=S, for some positive integer n.

Proof. Suppose that S’ is T,-invariant. By Lemma 5.3 and Lemma 4.4
there exists a complex number C, such that (&%*)5=c,¢®*** a.ex for each
positive integer k. If S’'=Jl, then there exists a positive integer k such that
(**)' 0 (a.ex). Let n=Min{k: k is a positive integer and (&%) =0
(a.ex)}. Then &+ is S’-measurable and ¢,=1. Since S’ is T,-invariant
and e*** is S,-measurable, S,CS’. Therefore for each & such that k=0
(mod #) Cx=0. For any positive integer k there exist positive integers z and
j such that k=h-n+j (0=<j<mu). Since &*"** is S,-measurable, it is S’-meas-
urable. Hence (¢¥*%)S =g ih#(@iX)S' =0 aex. By Lemma 42 S§'=S,.
Conversely if S'=J] or S'=S, for some positive integer 7, then S’ is T,-in-
variant.

DeriniTION 11, Let yo(x)=x—[x]. Then 4 is a mapping of R onto R/Z.
A subset K of R/Z is said to be an interval if K=+r([a,d]) for some real
numbers a, bER.

DeriNiTION 12. For K€ S define
k(K) = Max{\(H): H is an interval and HCK} .

DeriniTiON 13. For each acLy(X, S, A\, R) and x,€X, let (T, -a)(x)=
a(x,-x). Let P be a transformation of L(Qx X, AXS, pXN\, R) into itself.
P is said to be translation invariant if T, +P(@+-a)=P(p-T,-a) for each

pEL(Q, A, u, R), acL(X, S, \, R) and x€X.

Theorem 3. Let P be a translation invariant constant-preserving con-
tractive projection of L(QX X, AX S, pX\, R) into itself. If there exists KES



CoNDITIONAL EXPECTATIONS FOR L,(X)-vALUED FuNCTIONS 323

such that R(K)>1/2, MK)<1 and P(1gxx)=1gxx, then there exists a o-subalgebra
B of A such that P(f)=f3XS for each

fEL(QAXX, AXS, pX\, R).

Proof. By Lemma 1.3 there exists a o-subalgebra C of A XS such that P
(f)=fC for each feL,(QXX, AXS, uXx, R). Leti be the isomorphism of
L(Q, A, u, Li(X, S, \, R)) onto L(QXX, AXS, uxXA, R) and Q=i "o Poi,
then Q is a translation invariant contractive projection of L,(Q, A, u, L(X, S, A,
R)) into itself. Write S’={K: QX Ke&(C}. Since P is translation invariant,
S is a T,-invariant o-subalgebra of S. Therefore by Theorem 2 S'=3Jl or
S, for some positive integer . Since 1>k(K)>1/2, S’=S. This implies that
for each K€S P(lgxg)=1gxx. Therefore Q(1g-1x)=15+1;. By the arbitr-
ariness of K we have Q(lg+a)=1g5-a for each acL,(X, S, A, R), and hence Q
is a constant-preserving contractive projection. Therefore by Corollary 1 there
exists B such that Q(f)=f3 for each feL,(Q, A, w, L(X, S, A, R)). By
Lemma 2.4 P(f)=f3XS for each fe L,(Qx X, AXS, u XA, R).

ReMARK. In Theorem 3 for the transformation P of L(QXX, AXS,
1 X\, R) into itself contsant-preserving means P(lgyy)=1gxx.
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