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Introduction. The conditional expectation of a Banach-valued function
is defined by means of Bochner integral, see L. Schwartz [11]. The purpose
of this paper is to study sufficient conditions for a linear operator on the
space of Lrvalued integrable functions on a probability space (Ω, <Jί, μ) to be
a conditional expectation operator (in the sense of Schwartz [11]), where Lx

means the space of integrable real-valued functions over a measure space
(X, S, λ). For the case of real-valued functions, such a problem has been
studied by several authors, such as T. Ando [1], R.R. Bahadur [2], R.G.
Douglas [4], S.C. Moy [8], M.P. Olson [9], J. Pfanzagl [10], M.M. Rao [11],
and Z. Sidak [14].

For the case of strictly convex space-valued functions D. Landers and
L. Rogge [7] proved that every constant-preserving contractive projection
becomes conditional expectation operators. They also show that these con-
ditions do not characterize the conditional expectation operator for the case
of Lλ-valued functions.

In Section 2 we shall reduce the problem of characterization of condi-
tional expectations of Lx-valued functions to the problem of operators of scalar
valued integrable functions or» a product space. In Section 3 we deal with the
case of a measure space with ergodic transformations. Then every constant-
preserving contractive projection becomes a conditional expectation operator
under the additional condition that it commutes with these transformations.
Then we deal with the case that X is a locally compact HausdorίF topo-
logical group and λ is the left Haar measure on the cr-ring S generated by the
class of compact sets. In Section 4 we suppose that X=R/Zy where Z is the
class of integers, and S is the class of Borel sets and λ is the Haar measure.
Then properties of translation-invariant σ-subalgebra S' of S is considered,
and we will use this result to consider the case in Section 2.

1. Definitions and useful lemmas. Let E be a Banach space over
the reals with the norm \\ \\E and (Ω, <Λy μ) a probability space. Let Li(Ω,
Jly μ, E) denote the space of all £-valued Bochner integrable functions on (Ω,
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Jl, μ) associated with the norm defined by

\\f\\L=\\\f(<o)\\Edμ(co).

For the definitions and properties of Bochner integral, see Hille and Phil-
lips [6].

DEFINITION 1. For a σ-subalgebra ig of Jls a function £ is called the con-
ditional expectation of / given 3ϊ if g is weakly measurable with respect to -S,

and 1 gdμ = \ fdμ for each B E ^ , where the integral is Bochner integral.
JB JB

We denote by f^ the conditional expectation of / given JS.

We shall denote by R the space of real numbers. For each φ^L^Ω, Jl,
μ, R) and a^E we define {φ a) (ω)=φ(ω) a for each ωEίl . Then ||<p β||z,=

M\E\\φ\dμ.

Lemma 1.1. For each /eL^Ω, Jl, μ, E) the conditional expectation f&

of f given 3} exists uniquely up to almost everywhere and satisfies I \\f{ω)\\Edμ{ω)=

\\\f{<o)\\Edμ{ω).

For proof see Schwartz [12].

By the definition of conditional expectation, (<p a)$=φB a for each
(Ω, Jl, μ9 R) and

DEFINITION 2. Let P be a linear operator of Li(Ω, JLt μ> E) into itself.
P is said to be contractive if | |P | |=sup{| |P(/) | | L : / G i ^ Ω , JL, μ, E) and | | / | | L =
1}^1, P is constant-preserving if P( l Q α) = lΩ α for each a^E and P is called
a projection if PoP=P.

In particular a contractive operator is bounded, and hence continuous.

L e m m a 1.2. 77z£ conditional expectation operator (•)•# ά # constant-pre-

serving contractive projection for each σ-subalgebra ^ of Jl.

This is a direct consequence of Definition 1 and Lemma 1.1.

Lemma 1.3 (Douglas). If P is a constant-preserving contractive projec-
tion of Li(Ω, Jl, μ, R) into itself then there exists a σ-subalgebra C of Jl such that
P(f) is the conditional expectation of f given C for each / G L ^ Ω , Jl, μ, R); i.e.,
P(f)=fCfor eachfε±Lx(a, Jl, μ, R).

For proof see Douglas [4].
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Obviously, the above lemma holds for every finite measure space (Ω, Jly μ).

Lemma 1.4. If Q is a constant-preserving contractive projection of Lγ

(Ω, <Λy μ, E) into itself, then for each £>eLx(Ω, Jl, μy R) with Q^φ^X and
there exists a μ-null set N such that

M\E-\\Q{φ-a){ω)\\EM\a-Q{φ*a)(ω)\\E for each

Proof. Since Q is constant-preserving and contractive and OfS<p^l,

\\\Q a\\L-\\φ a\\L=\\a\\E-\\a\\E\\φ\dμ,

= \\a\\εy'ίa-φ\dμ =γ\a\\E\\a-φ\dμ = \\\a a-φ'a\\L

>\\Q(\a.a-φ a)\\L = \\la-a-Q{φ>a)\\L

= \\U'a\\L-\\Q{<p-a)\\L^\\la.a\\L-\\<p>a\\L .

Therefore it holds that

Hence we have

{{Ml*-H0(9> «)(ω)|y dμ(ω)= \\\la(ω) a-Q(φ.a)(ω)\\xdμ(ω).

From the evident inequality

M\E-\\Q(φ-a)(ω)\\Em*-Q(<P-a)(ω)\\E for each ω G Ω , we have ||fl||*-||£?
{φ a) (ω)\\E=\\a—Q(φ a) (ω)\\E for each ©GΩ-N y where N is a μ,-null set.

Proposition 1.1. Let Q be a constant-preserving contractive projection of
Lj(Ω, Jly μ, E) into itself. If, for each φ^L^Cl, JHy μ, R) and for each nonzero
element a of E> there exists φ' eLx(Ω, Jly μ, R) such that Q(φ a)=φ' ay then there
exists a σ-subalgebra C of \Λ such that Q(f) is the conditional expectation of f given
Cfor eachf^L^Ω, JLy μf E).

Proof, φ' does not depend on the choice of the element a of E. (See
the Proof of the theorem of Landers [7].) Therefore we can define an operator
Q' of Li(Ω, Jly μy R) into itself by Q\φ) a=Q(φ a) for each α e £ and φ^
Li(Ω, <Jly μ, R). Clearly Qr is a constant-preserving contractive projection of
Li(Ω, <Jly μy R) into itself. Therefore by Lemma 1.3 there exists a σ-subal-
gebra C such that φC=Q'(φ)m Therefore we have Q(<p a)=φC a=(φ a)C.
And hence Q is the conditional expectation operator given C by the proof of
[12, Theorem 1.6.4]

In the rest of this paper we restrict ourselves to the case that E=L1(Xy Sy

λ, R)y where X is a measure space and S is a σ-ring and λ is a measure on S.
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Lemma 1.5. Suppose that Q is a constant-preserving contractive projection
of Lλ(Cly Jί, μ, E) into itself. If K<=S with X(K)<ooy then} for every
(Ω, Jl, μy R) with O^φSl and A(=Jl, we have

1 ̂  ί Q(φ lκ) (ω, x) dμ(ω) dX(x)^O and

\ Q(φ lκ) (ω, x) dμ(ω) = 0 , \-a.e.x on K.C .
J A

Proof. By Lemma 1.4 there exists a μ-null set N such that H1JU— \\Q
(<P lκ) (a>)\\E=\\lκ-Q(φ-lκ) (ω)\\E for each ω<EΞΩ-7V, since lk<E:E, where lk

is the indicator function of K. Hence

κ){ωi x)\ d\{x) ^ ^ \ \ κ -

From the evident inequality

M * ) - I £?(?>• 1*) (ω, x)\^\ \κ{x)-Q{φΛκ) (ω, Λί) | ,

we have for each ω^Ω—N

1 * M - I Q{φ-lκ) (ω, *) I = I \k{x)-Q{ΨΛκ) (ω, x) I, λ-a.e.x.

Therefore, for each ω^Ω—iV, O^g(^-l^) (ω, Λ?)^1, λ-a.e.x, and Q{φΛκ)
(ω, Λ;)=0, λ-a.e.x. on K.C. Hence

^ ( Q(φ lκ)(φ,x)dμ(ω)dΛ{x)^O and

(ω) = 0, λ-a.e.x on K.C .

2. The case of a general measure space. Let (X, S, λ) be a measure
space. For convenience we denote ^ ( Ω x X , JlxS, μXλ, i?) by Lj(ΩxX)
and Li(Ω, oϊ, /̂ , L^JC, S, λ, R))

Lemma 2.1. There exists a norm isomorphism of L^CL, LX(X)) onto Lx

(ίlxl).

For proof see Treves [IS, p. 464, Exercise 46.5]

Let Q be a mapping of Li(Ω, £i(-^Q) into itself. Let i be the isomorphism
of Z^Ω, ίri(-X')) onto ^ ( Ω x l ) . Then Qr=ioQoi~l is a mapping of ^ ( Ω x l )
into itself.

Lemma 2.2. Q is a contractive projection iff Q' is a contractive projection.

This lemma ;s a d;rect consequence of the definition of i.

For KΪΞS such that 0<X(K)<oo we denote LX(K, SΓ\K> XjSpiK) by
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LX(K) and L^ΩxK, Jlx(SnK), μX(\ISΓ\K)) by L^ΩxK). We may
regard LX(Ω X K) as a subspace of Lj(Ω X X) by a canonical way.

L e m m a 2.3. If Q is a constant-preserving contractive projection, then

Proof. If /eL^Ω, ZΊ(^O)
 ai*d / is an L^i^-valued function, then by

Lemma 1.5, Q(f) is an L1(i^)-valued function. By Lemma 2.1 there exists a
norm isomorphism of LX(Ω, LX(K)) onto ^(ΩxiC), therefore

Lemma 2.4. Lei Q be a bounded transformation of Li(Ω, LX{X)) into
itself. Then Q is the conditional expectation operator given i3 iff QΊLx{ΩχK)
is the conditional expectation operator of L^CίxK) into itself given j£x(Sf)K).

Proof. Suppose that Q is a conditional expectation operator given J3.
Then for every M G 5 and NEΞSΠK, we have Q(1M 1N)=(1M)&-1N. It
follows that Q'iL^axK^dLjiίlxK). For any Me.®, NtΞSnK and/GL x

(ΩXUΓ), we have

t QV)dμXd\=\ {\ Q(f)dμ}dX=\ }(

= \ fdμXdΛ.
JMXN

Thus Q'jL^ΩxK) is the conditional expectation operator given
Conversely, suppose that Q'jL^CίxK) is the conditional expectation operator
given ^x(Sf)K) for each i £ e S with 0<λ(i£)<oo. Let ^ G Ξ L ^ Ω , oϊ, /A, R)
and ί G S with 0<λ(i^)<oo. Then, for any M<=Jl and N^S, we have

MXN

It follows that Q{φΛjϊ)=φ®Λκ. By linearity and continuity
for all a^Lx(X). By the proof [12, Theorem 1.6.4], Q is the conditional expec-
tation operator given iS.

Let Q be a constant-preserving contractive projection on Zq(Ω,
Then by Lemmas 1.3 and 2.3, for any K^S with finite measure, there is a
σ-subalgebra Fκ of c_^X(SΓΊi£) such that Q'/L^ΩxK) is the conditional ex-
pectation operator given Fκ. Moreover, by Lemma 2.4, Q is a conditional
expectation operator on Zq(Ω, Lλ(X)) if and only if there is a σ-subalgebra i2
of ĉ ϊ such that Fκ=^x(S Π i£) for all K.

3. The case of a measure space with ergodic transformations. Let
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(X, S> X) be a measure space, S a σ-algebra, S(X)={K; K^S and X(K)<
00} and S,(\)=iK<zX; KΓlE<=S for each E(=S(X)}. For each
let

DEFINITION 3. A measure space (X, 5, λ) is localizable if each nonempty
collection cl^ClS(X) has supCFeS, in the sense that for each K^CV, X(K—
supq/)-0 and if H^S and λ(ϋΓ—^0=0 for each i f G φ , then λ(supq^—#0
= 0 .

DEFINITION 4. A measure space (X> S, X) is locally localizable if each
nonempty collection cVdS(X) has s u p ^ e S ^ λ ) , in the sense that for each K^
C[7, \(K-supCV)=o and if H^Sfa) and T^K-H^O for each X G Φ , then
X(supq;-fl1)=0.

DEFINITION 5. A measure space (X, S, λ) has the finite subset property
if for each KeS, \(K)>0, there is Γ G S with K'cK and

Lemma 3.1. If (X, S, λ) is a locally localizable measure space with the

finite subset property, then (X, Sι(X)y λ) is a localizable space which satisfies the

finite subset property and rX/S=X.

For proof see Ghosh, Morimoto and Yamada [5].

DEFINITION 6. A class {/(#, K): K^S(X)} of 5-measurable functions
on (X, 5, λ) is called a cross-section

if /(*, K) = 0 on KC and I*,,,*,(*)•/(*, ^1)

M i Q (a.e.x) for each Klf K2t=S{\).

Lemma 3.2. Suppose that a measure space (X, S, λ) is localizable. Then
for each cross-section {/(A?, K): K^S(X)} there exists a S-measurable function
f such thatf(x) lκ(x)=f(x, K) (λ-a.e.x)/or each K(=S(X).

For proof see Zaanen [16]

In the rest of this section we assume that (X. S. X) is a localizable space
with the finite subset property.

Lemma 3.3. Let Q be a constant-preserving contractive projection of Lγ

(Ω, Jl, μ, E) into itself, where E=L1(X, Sy λ, R). Then for each ̂ ε i ^ Ω , Jϊ, μ,
R), 0 ^ 9 ) ^ 1 , and AξΞϋl there exists a X-a.e. unique S-measurable function b
such that

0^b(x)^l (X-a.e.x) and bΛκ=\κλ Q(φΊκ)dμ
J A

(X-a.e.x) for each
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Proof. By Lemma 1.5, f Q{φΛκ) dμ=0 on KC for each ί e S ( λ ) . For

each Kl9 K2(ΞS(X) ίKl(\κ2')AQ(φ^κ1)dμ=lKιnK9(^Q(φ lKιnK2)dμ9 since

\AQ(<PmWκ2)dμ=0 on KλΠK2. Similarly

Q(<P I

Therefore {\ Q(φ lκ) dμ: K^S(X)} is a cross section, and hence by Lemma
JA /•

3.2 there exists a S-measurable function δ such that b lκ = lκ \ Q(φΛκ)dμ
JA

(λ-a.e.x) for each K€ΞS(X). What remains is to prove the uniqueness of b.
Suppose that there exists a *S-measurable function bf such that b \κ=bf \κ

(λ-a.e.x) and X({x: δ(x)φ&'(#)})>0. By the finite subset property of (X, S, X)
there exists E^S(X), Ed{x: b(x)Φbf(x)}i which leads to a contradiction, since
bΛE=b'AE (a.e.x). We have proved that b{x)=V(x) (λ-a.e.x). Similarly by
Lemma 1.5 and the finite subset property of (x, S, λ) we have 0^b(x)^ί
(λ-a.e.x).

DEFINITION 7. Let T be a one to one transformation of (X, S> λ) onto
itself, then T is called a bounded measurable transformation if T is a measur-
able transformation and there exists a positive number k such that
k-X(A)for

DEFINITION 8. Let {T: T^3} be a class of bounded measurable trans-
formations of X onto X such that T'\S(\)) = S(\) for each T<=2. (X, S, λ, T:
ΓGΞ2) is called ergodic if λ(^ΔΓ~ 1 (^))-0 for each Γ G 3 implies \(A)=0 or

Lemma 3.4. If(X> *S, λ, T: Γ G 2 ) is an ergodic space, then for each bound-
ed measurable function f on X f(x)=f(T(x)) a.e.x for each Γ G 2 implies thatf(x)=
const. X-a.e.x.

Proof. L e t / be a bounded measurable function on X and f(x)=f(T(x))y

λ-a.e.x for each Γ G 3 . For each real number d let Ed=f~ι((d, oo)). Then
X(EdAT-\Ed))^\(f(x)Φf(T(x)))=O. By the definition of erogdicity \(Ed)=0
or λ ^ ^ O , f is bounded, and hence there exists a real number M such that
| / ( Λ ? ) | ^ M , a.e.x. If d>M then, X(Ed)=0. If d<-M, then X(Ec

d)=0.
Let c='mf{d: X(Ed)=0}. Then f=c, λ-a.e.x.

Let (X, S, λ, T: Γe£Z) be an ergodic measure space and E=LX{X, 5, λ,
T: TEΞ3). For each real valued measurable function a on X and TΈ:2 we
write T a{x)—a(T(x)). Then T1 can be seen as a bounded linear operator of
L^X, S, λ, Ά) into itself.

DEFINITION 9. Let Q be a transformation of Z-i(Ω, CJΪ, />6, E) into itself,
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then Q is called covariant under 3" if Q(φ (T a)) = T Q(<p a) for each

(Ω, Jl, μ, R) and Λ G £ and Γ G 2 .

Theorem 1. Let Q be a constant-preserving contractive projection which

is invariant under 3. Then Q=z(m) ^ for some σ-subalgebra J3 of Jl.

Proof. Let ^ G i ^ Ω , JL, μ, R), O ^ ^ g l and AΪΞJL and Γ G 3 . By Pro-

position 1.1 it is sufficient to prove that there exists 95'GL^Ω, JL, μ, R) such

that Q{φΛκ)=φ'Λκ for each K^S(\). By Lemma 3.3 there exists a S-

measurable function b such that O^i(jc)^l (a.e.x) and b lκ=\ Q(φ ^κ)dμ (λ-

a.e.x) for each K(=S(\).

(T-b) lτ-Hκ>

= [ Q(φ lτ-i(K))dμ. Since T-\S(\)) = S(\) we have

(Γ 6) l ^ = ( Q(φ*\κ)dμ = bΛκ for each
J A

By the uniqueness of b T δ=i(λ-a.e.x). By Lemma 3.4 there exists a positive

number k(A) such that δ(x)=l x (̂̂ 4) (λ-a.e.x). Hence b \κ=lκ k(A).

Let {̂ 4n, w—1, 2, •••} be a sequence of elements of Jl and Anf)Am=φ(n^m).

Therefore &( U An)= ^k(An), this shows that k( ) is a measure on Jl. k is

absolutely continuous with respect to μ> since ltf &(yϊ)= \ Q(<p lκ)dμ B y t n e

Radon-Nykodym theorem there is φ'GL^Ω, «̂ ?, μ, i?) such that

^ μ ( ) Q(φ-lκ)dμ.
A JA JA

Therefore

REMARK. If (X, S, X) is σ-fΐnite measure space, then Theorem 1 can be

proved without the condition that T~\S(\))=S(\).

Let G be a locally compact group and X a left Haar measure on the σ-

algebra S generated by open sets (cf. Berberian [3, Exercise 79.6, p. 263]). Then

(G, S, λ) is a locally localizable measure space with the finite subset property
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(cf. Segal [13]). Let 2 be the set of all translations on G. Then it is easy
to see that (G.S. .3) is an ergodic measure space. Thus we obtain the follow-
ing.

Corollary 1. A constant-preserving contractive projection on L^Ω,
which is covariant under all translations is a conditional expectation operator given
some σ-subalgebra of Jl.

4. Properties of translation-invariant σ-algebras on R\Z and a
characterization of conditional expectation for L^R/Zyvalued function.
Let X=R/Z, where Z is the class of integers. Let λ be the Haar measure
and S the λ-completion of the class of Borel sets on X. Let 32 be the σ-ring
of λ-null sets and a an irrational number.

We define a mapping TΛ of X onto X by TΛ(x)=x+a (mod 1). A σ-
subalgebra S' of S is said to be 7>invariant if TΛ(K)(=S' for each K<=S'. For
ί i=l , 2, .... Let 5 Λ = { X G 5 , K=K+l/n (λ-a.e.x)}.

Lemma 4.1. Let U and V be σ-subalgebras of S containing 32. Then

^jkxy = φ«ikχγ χ_a.e.x for any

Proof. For each complex integrable function / and a positive bumber £ > 0
«

there exist complex numbers cl9 c2y •••, cn such that \\f— Σ Cj #*ij'x\\L (X). Since

conditional expectation operator is linear continuous, we have this lemma.

Lemma 4.2. Let 5" be a σ-subalgebra of S containing 37. Then

' = Sn iff{^y = I ° ( f ° ( m°d n)) a,.x for any
*JJ\ > U 2 ^(A=0(mod/z)) J y

Proof. If AΐO (mod n), then f #*ikx dx=0 for each KEΞS'. This lemma
JK

is a direct consequence of this fact and Lemma 4.1.

Lemma 4.3. Let Sr be a TΛ-invariant σ-subalgebra of S containing Jl.
Then

(e2*'**) (TΛ(x))s' = ^"{e^'YXx) a.e.x for any k^Z.

Proof. Let f(x)={#*ikxY(x). Since λ and Sf are 7>invariant, for any
KeϊS'

\ f(Tm(x)) d\{x) = f f(x) d\(x) =\ e*«ik* d\(x)
JK JTa(K) JTΛ(K)
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w d\(x) = «*"**( <?*ikx d\{x)
J KK

f{x)dX{x).
K

Therefore f(TΛ(x))=(?«ik«f(x).

Lemma 4.4. Let f<=L2(X. S.\. R) such that f{TΛ{x))=<?*}k*f(x) a.e.x.
Then f(x) = Ce2*ikx a.e.x, where C is a constant.

Proof. {e2*tjx,j=l, 2, •••} is a complete orthogonal system in L2(X, Sy λ, R).

Let /(*)== Σ c/«iix. Since f(TΛ(x))=^ikΛf(x) a.e.x, it holds that c/«ij«=

c.#«ιk<» for a n y pOsjtive integer j . Therefore ^ = 0 except forj=k.

Theorem 2. L ί̂ 5 ' be a σ-subalgebra of S containing V2. Then S' is
TΛ-invariant iff Sr=Jl or Sf—Sn for some positive integer n.

Proof. Suppose that S' is 7^-invariant. By Lemma 5.3 and Lemma 4.4
there exists a complex number Ck such that (#*ikx)s'=ck#*ikx a.e.x for each
positive integer k. If S' + UJ, then there exists a positive integer k such that
( ^ Y + O (a.e.x). Let n-Min{&: fc is a positive integer and ( ^ f ' ί O
(a.e.x)}. Then e2**'** is 6"-measurable and cn=\. Since S' is ΓΛ-invariant
and e2ncinx is ^-measurable, SndS'. Therefore for each k such that &=0
(mod n) Cκ=0. For any positive integer k there exist positive integers h and
j such that k=h nJrj (0^j<n). Since g2*1'*11* is 5M-measurable, it is 5"-meas-
urable. Hence (e*ikY=<Fihnx{?*iiχ)s'=Q a.e.x. By Lemma 4.2 S'=Sn.
Conversely if S'=tJ2 or S'=Sn for some positive integer n, then 5" is ΓΛ-in-
variant.

DEFINITION 11. Let ψ(x)=x—[x]. Then ψ is a mapping of R onto
A subset K of i?/Z is said to be an interval if K=ψ([ay b]) for some real
numbers a>

DEFINITION 12. For K^S define

k(K) = Max{λ(ίf): i/ is an interval and HdK} .

DEFINITION 13. For each a<=Lx(Xy S, λ, R) and X O G I , let (ΓXo•«)(«;)=
a(xo x). Let P be a transformation of L^ίlxX, <JlxSy μXX, R) into itself.
P is said to be translation invariant if Tx P(φ a)=P(φ Tx a) for each

^ J G L ^ Ω , oϊ, At, i?), a^L^Xy 5, λ, i?) and x G l .

Theorem 3. L ί̂ P be a translation invariant constant-preserving con-
tractive projection of Lx{ClXX, J x 5 , μXX, R) into itself If there exists
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such that k(K)>lβy \(K)<1 and P(lΩxκ)=lΩxκ, then there exists a σ-subalgebra
B ofJL such that P(f)=f&x<S for each

ftΞL^ΩxX, J X S , μX\,R).

Proof. By Lemma 1.3 there exists a σ-subalgebra C of JlxS such that P
(f)=fc for each/eZ^Ωx-XΓ, J x S , μXλ, R). Let i be the isomorphism of
Li(Ω, JLy μ, LX(X, Sy λ, R)) onto L^ίlxZ, JlxS, μXX, R) and Q=i~ιoPoi,
then £) is a translation invariant contractive projection of Lλ(Ω, <Jί, μ, L̂ -X, 5, λ,
i?)) into itself. Write S'= {K: ΩxK^C}. Since P is translation invariant,
S is a ΓΛ-invariant σ-subalgebra of S. Therefore by Theorem 2 S'=Jl or
*Sn for some positive integer n. Since l>k(K)>l/2, S'=S. This implies that
for each K<=S P(1ΩXK)=IΩXK Therefore 0(1Ω 1JΓ)=1Q 1JΓ. By the arbitr-
ariness of K we have 5(lQ α)=l Q α for each a&L^X, S> λ, R), and hence £)
is a constant-preserving contractive projection. Therefore by Corollary 1 there
exists & such that Q(J)=f& for each /eZ^Ω, cΛ μ, ^ ( Z , 5, λ, Λ)). By
Lemma 2.4 P(f)=f$x<S for each/eZ^ΩxX, J x S , μXλ, Λ).

REMARK. In Theorem 3 for the transformation P of ^ ( Ω x l , J x 5 ,
μXX, R) into itself contsant-preserving means
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