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1. Introduction

Let p be an odd prime and g=p". We choose a positive integer & such
that the class of k in Z/p* generates the group of units (Z/p?)*.

Let K* be the K-cohomology theory and K@, its p-localized theory.
The :Adams operation ¢* on K induces a stable operation {+* on K%, We
denote by K, the spectrum which represents the K{)-cohomology theory.
Since stable operations induce maps of spectra, we have the following cofibra-
tion of spectra

1—*
Kp —> K —> Cpyr.
We define a spectrum Ad as Z7'C,_y+ and its associated cohomology theory
Ad*. When k is a prime power, the associated connective theory of Ad* co-
incides with the cohomology theory defined by Seymour [9] and Quillen [8].

Let m and 7 be positive integers. We identify Z/m with the set of m-th
root of 1 in C, and S**! with the unit sphere in C**'. The complex vector
space structure on C**! induces a Z/m-action on S?*! and we define the stand-
ard Lens space mod m as S**(Z|m). As is well known, the standard Lens
space L"(m) has a CW-complex structure

2n+1

L'(m)= U ¢

and we denote its 2n-skeleton by Li(m). Since the canonical inclusion C**'C
C"*? induces a cellular inclusion L"(m)CL"*'(m), we have a CW-complex
L>(m)=colim L"(m). 'This space L=(m) is a classifying space BZ/m of Z|m.
We consider the case m=p". Main results are the following.

Theorem 1.1. Let M(n)=r+[(n—1)/(p—1)]. For any integers i, j satis-
fying i—j=0 (mod (p—1)pM™~Y), there holds the following isomorphisms.

Ad(Li(p')) = AdH(Li(P))
Ad*LY(p")) == Ad™*HLi(p")) -
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Theorem 1.2. We put N=r-+v,(i). Let j be an integer which satisfies
v()=v,(j) and i—j=0 (mod (p—1)p"~). Then, there holds the following iso-
morphism:

AdHLy(p)) = AdS(Ly(P")) -

We used the computer of Osaka City University computer center to cal-
culate the samples of the group structure of Ad*(Lj(p")).

The author expresses his hearty gratitude to Professors S. Araki, Z. Yosi-
mura and A. Kono.

2. Preliminaries

Let G be a compact Lie group and R(G) be its complex representation
ring. The augmentation ideal I is the kernel of the induced ring homomor-

phism R(G)—R({1}).
Proposition 2.1 (Atiyah, Atiyah-Segal). There holds the following natural
isomorphism:
a: R(G); — K(BG) .

In case G=S', R(S")=Z[H, H"] where H is the canonical representation
of S'. Let x be e(H)=H—1, the euler class of H. Since I=(x), K(BS")=Z
[x):=Z[[x]] and K*(BS')=0. We consider the case G=Z|q. There is the ca-
nonical inclusion i: Z|qC S", and we write 1*(H)=H and i*(x)=x. Then R(Z|q)
=Z[H)/(H'—1) and I=(x). Thus K(BZ|q)=(Z[x]/((x+1)'"—1)); and K'
(BZ[q)=0. We denote R=K (,,(BZ|q)=(Z»[x]/((x+1)*—1));. The definition
of the completion induces

Lemma 2.2. There exists a continuous surjection
Zp)[x]):/(x+1)"—1) = (Zp[#] (x4 1) = 1))k -
The K-ring of finite Lens spaces is given by Mahammed [7]. That is
(2.3) K(Li(9)) = Z[x]/((x+1)'—1, x™*)
KY(Li(g) =0,
where x is the restriction of x, the euler class of the canonical line bundle.

Lemma 2.4. The ring K, (Li(q)) is isomorphic to R|(x"*") and the in-
clusion Ly(q) C L™(q) induces the projection R—R[(x"**).

We denote Lg**(q)=1L>(q)/Ls(q) and L§¢(q)=L¢(q)/L3(g). Then we have
the following exact sequence.

(2.5) 0 — K(Li"(g)) — K(L~(9)) > K(Li(g)) = 0.
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Thus we have
Lemma 2.6. K(L;"(q)) = «""* R
RYL(g) = 0.

It is easy to see that Li%"*(q)=S**1Ué"**2, Thus we have
y q

Lemma 2.7. K(L{%'"(q)=Z|q
KY(L5%""(q) = 0.
On the other hand, the exact sequence
0 — K(L5"*!(q)) = K(L5""(g)) ~ K(Lt%""(g)) = 0

shows that K(L3%'"(q))=x"R/x**', which is a cyclic group generated by x”.
So we have

Proposition 2.8. When m—n=0 (mod p—1), we put t=min (r, v,(m)+-1).
Then

~ ~ Zlp* if n—m=0 (mod p—1)
Adz n+l,n g14d2m+1 Ln+1.n ~
(L5o(@) (L% (@) {O if n—m=0 (mod p—1).

3. Proof of Theorems

We identify K3(X) with K(,)(X) using the Bott periodicity. We denote
the stable operation * on K{5(X) by *". Then *”=k™™)* under this
identification.

Lemma 3.1. Under the above identification, when m—m'=0 (mod p—1),
Tin((L— ") — (L= g ) P~ Tan()

Kobayashi, Murakami and Sugawara [6] have computed the explicit abe-
lian group structure of K(Lj(g)). One corollary of their results is

Proposition 3.2.
PO Ry (Li(g)) = 0.
Let M(n)=r+[(n—1)/(p—1)] and M'=(p—1) p¥®~1. Then
Corollary 3.3. Under the above identification
Lt = 1yt K(Li(g)) > K(Li(g)) -

When i—j=0 (mod M"), we consider the following commutative diagram
where horizontal lines are exact:
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0 — Ad¥(Li(q)) - K*(L¥(g)) — K*(Li(g)) — Ad**Y(Li(g)) — 0

~ o~

0 — Ad*(Li(9)) = K*(Li(q)) — K*(Li(q)) — Ad**(Li()) = 0,

where the vertical isomorphism are induced from the Bott periodicity. This
completes the proof of Theorem 1.1.

We took k as a generator of (Z/p?)*. It is easy to see the following lem-
mata.

Lemma 3.4. The class of k in Z[p" is a generator of (Z[p")* for every r.
Lemma 3.5. Let W=(p—1)p""'/2. Then k" =—1 (mod p").
Let U=(p—1)/2. Lemma 3.5 induces
Corollary 3.6.
R®=D2" o g0 2 = 1 (mod p') .

DEerFINITION 3.7.
A= @™y =T @™y @-1)

We compute the action of the Adams operation on the element A, and
using Corollary 3.6 we have

Lemma 3.8. There exists a natural number t such that

(YHe VR4 = —H'A .

The proof is only a computation. The natural number t=— 1’2_1 Rit=be"
but we don’t need it. Let Q=(p—1) p"7%/2. a

Lemma 3.9. There exists a natural number s such that
(\/,k)(p—w’—’/z (H'A) = —H*A .
Proof. Using Lemma 3.8, we need to solve the following equation in Z/q.
R0 g g —

Since Q is not a multiple of p—1, »,(1—k?)=0. This implies that 1—k¢
is invertible in Z/p". Thus the above equation has a solution.

DeFINITION 3.10. We put B=H’A and C= ‘)Z:_‘,l(\lr”)fB. This element
C is a polynomial of H, so we write C=C(H). It is easy to see that y*B=—B,
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J*C=—C and B and C are in the ideal (H—1)?. So we define D(H)=(H—1)"?
X C(H).

Lemma 3.11.  The integer D(1) is prime to p.
Proof. Let f(X)=(X"—1)/(X—1), then f(1)=u. Thus

D(1) = ST B 205 o x 420070
j=o0
=k (1—k9)[(1—F?).
Since v,(1—k%)=0, the proof is completed.

Lemma 3.12. The ideal generated by C coincides with the ideal (H—1)?
in R.

Proof. We write D as a polynomial of x=H—1. Then D=D(1)+ higher.
So D is an invertible element in Z,[x];. By Lemma 2.2 D is invertible in R.
Since C=(H—1)?D, the Lemma is proved.

Proposition 3.13. When n=0, —1 (mod p), then
g;izmH(Laa,n(q)) _ é Z[pi+m |
j=1

Proof. By Lemma 2.6 K(L3""*(q))=x""'R. The assumption implies n=
tp—&, where ¢ is a positive integer and € is 0 or —1. We choose an additive
basis of x"*'R as {g,(?, j); 1=j=<r, 1=<i<(p—1) p''—1} where g,(, j)=(—C)*
X (H? ¥ 4+&—1). As same as in computation in [4], we have the required
result.

Consider the following exact sequence
0 — Ad™(L™(q)) — AdHLi ()
= Ad=(L5 7 (g)) > Adm(Li5(g)) > 0.
By Proposition 2.8, we have
Corollary 3.14. If n—m=0 (mod p—1), we have an isomorphism:
Al Ly (q)) = A& (Li"g)) -
Proposition 3.13 and Corollary 3.14 imply
Lemma 3.15. Let N(m)=r-+v,(m). Then

pN(m) .Ad2m+1(L3°,n(q)) — 0 .
The exact sequence
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0 — Ad(Li(g)) — AP (L5 *(g)) > AP(L(g))

induces

Corollary 3.16. p"™ -%2"'+1(L3(q))=0 for any integer n.
Lemma 3.1 and Corollary 3.16 imply Theorem 1.2. This completes the

proof.
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