Kodama, A.
Osaka J. Math.
23 (1986), 271-298

ON THE STRUCTURE OF A BOUNDED DOMAIN
WITH A SPECIAL BOUNDARY POINT

Dedicated to Professor Tadashi Kuroda on his 60th birthday

Akio KODAMA

(Received March 22, 1985)

Introduction. In this paper we study the structure of a bounded domain
D in C" (n>1) with a boundary point p9D satisfying the following condi-
tions: There exist an open neighborhood U of p and real-valued C2-functions
P -+ pr (1=k=mn) defined on U such that

€1  p@)==pp)=0;
(C2) DNU={zeU: p(x)<0, i=1, k};
(C.3) the differential form dp; A -+ A9pu(2) +0 forall 2zeU;

€4 3 P k0, e=E)elT  for i=1,-,k,

*,8=1 03, 0%
where
T — {g:(ga)eC”: Eg—gi(p)‘f‘, —0, =1, ...,k};

(C.5) for some constant 4=0, the function p= ﬁ pi+A4 Zk‘. P} is
i=1 i=1

strictly plurisubharmonic on U.

As a typical example of such domains, we have of course a strictly pseudo-
convex domain with C2-smooth boundary (in fact, in this case any boundary
point satisfies the above conditions). Furthermore, in a recent paper [8],
Pincuk proved that any bounded pseudoconvex domain D with piecewise C*-
smooth boundary also admits a boundary point pdD satisfying the condi-
tions (C.1)~(C.5). After that, he used efficiently this fact to show the follow-
ing interesting

Theorem (Pincuk [9]). Let D be a homogeneous bounded domain in C*
(n>1) with piecewise C?-smooth boundary. Then D is biholomorphically equiva-
lent to a direct product of the open unit balls B" in C" (1=<i<k): D=B" X .-
X B,
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Here it should be remarked that any homogeneous bounded domain in
C" is pseudoconvex [5] and that B" X - X B" is biholomorphically equivalent
to the so-called Siegel domain

8(”1’ Ty nk) = {(zly cty By O 0, wk)eckxcn—k:
Imz,-—lw;[2>0, 1= 1, "',k}'

in C*xC"*=C*xC"™'x---xC" ', where |-| denotes the Euclidean norm
on C"™%,

Now, in order to state our results, let us introduce some notations. For
a domain D in C¥, we always denote by Aut(D) the group consisting of all
biholomorphic automorphisms of D. For the open convex cone

R = {(3, -, y) ER*: y,>0, i=1, k}

in R* (1<k=<n) and an R%-hermitian form H: C**x C*™*— C*, let P(R%, H)
denote the Siegel domain in C*x C"~* associated to R} and H. (For the defini-
tion of a Siegel domain, see section 1.) Our main purpose in this paper is to
establish the following extension of the Pincuk’s theorem:

Theorem I. Let D be a bounded domain in C" (n>1) with a boundary
point pEdD satisfying the conditions from (C.1) through (C.5). Assume that:

(%) There exist a compact set K in D, a sequence {k.} in K and a sequence {f.}
in Aut(D) such that lLim f,(k,)=p.

Then D is biholomorphically equivalent to a Siegel domain D(R", H) in C*x C"*.
Conversely, every Siegel domain D(RY,, H) in C* X C** is biholomorphically equi-
valent to a bounded domain D in C" satisfying all the conditions (C.1)~(C.5)
and ().

Corollary 1. Let D be a bounded domain in C" (n>>1) with a boundary
point p satisfying the conditions from (C.1) through (C.5). Assume that there
exists a compact subset K of D such that Aut(D)-K=D. Then D is biholomor-
phically equivalent to the Siegel domain E(n,, -+, m) in C* X C*™*.

Let D be a domain in C". A point p&dD is said to be a strictly pseudo-
convex boundary point of D if there exist an open neighborhood U of p and a
strictly plurisubharmonic function p: U—R such that DN U={z€ U: p(z) <0}
and dp(2)=+0 for all z€0DNU. Consequently, the conditions from (C.1)
through (C.5) are automatically satisfied for a strictly pseudoconvex boundary
point p of D. On the other hand, it is easy to see that a Siegel domain
9D(R:, H) in CxC"' is biholomorphically equivalent to the open unit ball
B" in C". Therefore, as a corollary of Theorem I, we also obtain the following
well-known fact due to Wong [12] and Rosay [11]:
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Corollary 2. Let D be a bounded domain in C" with a strictly pseudoconvex
bourdary point pcdD. Assume that the condition (x) in Theorem I is satisfied.
Then D is biholomorphically equivalent to the open unit ball B" in C".

Next we wish to consider a problem as follows. Let M be a complex
manifold of complex dimension 7 which can be exhausted by biholomorphic
images of a fixed complex manifold D, that is, for any compact subset K of M
there exists a biholomorphic mapping fx from D into M such that K Cfg(D).
Then, how can we describe M using the data of D? We can see many articles
related closely to this problem, for instance, Fornaess-Sibony [2], Fornaess-
Stout [3] and Fridman [1]. Our second purpose of this paper is to prove the
following theorems. (For the precise definitions of terminologies, see section 1.)

Theorem II. Let M be a connected hyperbolic manifold of complex dimen-
sion n in the sense of Kobayashi [6] and let D be a bounded domain with piecewise
C?-smooth boundary of special type. Assume that M can be exhausted by
biholomorphic images of D. Then M is biholomorphically equivalent either to D
or to a Siegel domain D(R%, H) in C*x C"* (1<k=n).

Theorem IIl. Let D, and D, be bounded domains with piecewise C*-smooth
boundaries of special type. Then D, and D, are biholomorphically equivalent if
and only if each of them can be exhausted by biholomorphic images of the other.

In particular, considering the case where M is a connected complete
hyperbolic manifold and D is a bounded strictly pseudoconvex domain with
C*-smooth boundary in Theorem II, and also the case where D, and D, are
bounded strictly pseudoconvex domains with C3-smooth boundaries in Theo-
rem III, we obtain the main results of Fridman [1].

This paper is organized as follows. In section 1 we recall some defini-
tions and a well-known fact on Siegel domains. Section 2 is devoted to proving
Theorem I and Corollary 1. And Theorems II and III will be shown in the
final section 3.

1. Preliminaries

Let M and N be complex manifolds and Hol(V, M) the family of all holo-
morphic mappings from N into M. A sequence {f,} in Hol(V, M) is said to
be compactly divergent on N if, for any compact sets L, K in N, M respectively,
there exists an integer v, such that fy(L)NK=@ for all v=v,. According to
Wu [13], we shall define the tautness of complex manifolds as follows:

DerFINITION 1. A complex manifold M is said to be taut if Hol(N, M)
is a normal family for any complex manifold N, i.e., any sequence in Hol(N, M)
contains a subsequence which is either uniformly convergent on every compact
subset of N or compactly divergent on N.
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Let dy, dy be the Kobayashi pseudodistances of M, N respectively [6].
The following distance-decreasing property will play an important role in
the proofs of our theorems: Let f: N— M be a holomorphic mapping. Then

(1.1) dy(f(p): (9)=dn(p» @)  forall p,qEN.

Consequently, every biholomorphic mapping f from N onto M is an isometry
with respect to dy and d,;; and if N is a complex submanifold of M, then

dM(pr Q)édN(P’ g) fOI‘ all P) QEN'

DerINITION 2. A bounded domain D in C" is said to have a piecewise
C"-smooth boundary (r=1) if there exist a finite open covering {U;} Y., of an
open neighborhood V' of 8D, the boundary of D, and C’-functions p;: U,—~R,
j=1, -+, N, such that

(i) DNV=A{z€V": for j=1, ---, N, either 2 U; or z€ U}, p;(2)<<0};

(i) for every set {j, -+, ji}, 1=j,<---<j;=N, the differential form

dpj, A+ Ndpj(2)*0 for all zelri] U;j,.
We call {U;, p;} -, a defining system for D.

Note that, by the condition (ii) the set S;={z&€U;: p;(z)=0} is a closed
C’-smooth real hypersurface of U; for j=1, ---, N. Without loss of generality,
we may assume in Definition 2 that: If p€8DNS;, and p&.S; for j=+ j;, then
there is an open neighborhood U of p such that DN U={z€ U: p,(2)<0}.
And, in an arbitrary small neighborhood of any point p&9DN S}, the boundary
8D contains a non-empty open subset of S;.

DeFINITION 3. Let D be a bounded domain in C" with piecewise C?-
smooth boundary and let {U;, p;}., be its defining system. Then 8D is
said to be of special type if, for an arbitrary given point p9D, one can find
a subset {7}, =, i} (1=k=n) of {1, ---, N} and an open neighborhood U of p,

Uc rkﬁ Uj,, such that the system (p; U; pj, -, pj,) satisfies all the conditions
1=1

from (C.1) through (C.5) in the introduction. We call (U; pj, -, pj,) 2 de-

fining system for D in the neighborhood U of p.

Obviously, any bounded strictly pseudoconvex domain with CZ-smooth
boundary is also a domain with piecewise C2-smooth boundary of special type.
We present here a simple example of bounded domains with piecewise C*-
smooth, but not smooth, boundaries of special type.

ExampLE 1. Take two arbitrary constants @, 5$>0, a=b and consider the
domain

D = {(z), 2,) EC?: a| 2 |*+b|2,|*°<]1, b|z|*+a]z,|*<1}.
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Then it is easily checked that D is a bounded domain with piecewise C2-smooth
boundary of special type.

We fix a coordinate system (2, w)=(2y, -+, 2,, Wy, =", W,,) in C*XC™. For
a given open convex cone {1 in R" not containing any full straight line, a map-
ping H: C" X C"—C" is called an Q-hermitian form if

(i) H is complex linear with respect to the first variable;

(i) H(u, v)=H(v, u) for all u, v€C"™;

(i) H(u, u)€Q for all ucC”, where Q denotes the topological closure
of Qin R";

(iv) H(u, #)=0 if and only if #=0.
According to Pjateckii-gapiro [10], we define a Siegel domain as follows:

DEerFINITION 4. For a given open convex cone Q in R" not containing
any full straight line and an Q-hermitian form H: C" X C"—C", the domain

DQ, H) = {(z, w)eC"xC": Im 2—H(w, w)EQ}

in C"XC" is called a Siegel domain of the second kind associated to Q) and H.
In the case m=0, 9(Q, H) reduces to the domain

D) = {zC": Imz€Q}.
This is called a Siegel domain of the first kind.

In this paper we regard a Siegel domain of the first kind as the special
case of the second kind and by a Siegel domain we mean a Siegel domain of the
first or the second kind.

Let (2', 2”) be a coordinate system in C*XC"*=C" (1=<k=n) with
2'=(2y, **, %), &=(24+1 ***» 2,) and consider a Siegel domain

DR, H) = {(z', #')eC*X C"*: Im z'— H(z", ') ER"}

in C" associated to R*® and an R*-hermitian form H as in the introduction.
Then we have the following

Lemma (Pjateckii-éapiro [10]). There exists a biholomorphic mapping
C from D(RL, H) onto a subdomain D of the direct product of the open unit balls
B1X o X B (- +m=n).

For later use of the concrete description of the biholomorphic mapping

C: 9(R:, H)—D, we shall recall here the proof.

Proof of Lemma. With respect to the coordinate system 2'=(z, -, 2;)
in C*, H can be written as H=(H,, ---, H,), where every H; is a positive semi-
definite hermitian form on C*~*. Hence we can express
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Hyatl, ) = 3 LiGNLIGY),  i=1,k
i=1
for 21/, 23’ €C"* with complex linear forms Li on C*"*. 'Thanks to the posi-

k
tive definiteness of the hermitian form >} H;, we can now select n—k& linearly
i=1

independent forms among the set {Li: j=1, ---, m;, i=1, ---, k}, say
ml e Ly oo, L™t with my4-++o4n,=n and n;=1, 1—1 - k. Deﬁne the
hermltlan form H,. C"*x C"*—C by putting, for i=1, ..., k,

B att, ) = (”ZIL’(z”)L’(z") it mz2,
1 0 if n;=1
for 21/, 24’ €C"* and set H=(H,, ---, H,). Then H: C"*xC"**—C* is an
R% -hermitian form and Y(R:, H)C D(R:, H). Set
= (Li(2"), +++, LE7Y(2")), i=1,-k.

Then (2, **+, &4 @y, ***, w;) defines a linear coordinate system in C*x C"1~
X C" '=C*x C"* and, with respect to this coordinate system, the domam
D(R%, H) can be written in the form
DR, H) = {(21, **, 2py 0, **+, 03) ECF X C*F:
Im2;—|w;|*>0, i =1, -+, k}.
It is now an easy matter to check that 9(R", H) is biholomorphically equivalent
to the direct product
_@"lx XQ"I: — (2.‘{, 2’:+1, ey 2;,, zék)ecxc’ﬁ—lx XCX C”k—1:
|21 s [P<1, i =1, o, B

via the mapping

. 4_zi—\/:T /L 20’:‘ ) —
C.z,—zi_l_\/___l, zk“_z.-—l-\/jl for i=1, .. k.

So, if we define the non-singular linear mapping L: C"—C" by
L(z,) z”) = (zl: L}(z”)’ ) L’lzlal(z//)’ ) Li(z"), Ty Lgk_l(zﬂ)) ’

then the composition C=CoL gives rise to a biholomorphic mapping from
D(RE, H) into B x - x F'*. Putting D=C(D(R%, H)), we therefore obtain
a desired biholomorphic mapping C: 9(R%:, H)— D. Q.E.D.

From the construction, it is obvious that C can be extended to a biholomor-
phic mapping from an open neighborhood ¥V of the origin 0=(0, -+, 0)E
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09(R", H) onto an open neighborhood U of the point p=(—1, 0, -, —1, 0)
dDCCXCM™IX - XCXCH,

ReMARK. The above lemma holds for any Siegel domain 9(Q, H) in
C" xC" [10].

2. Proofs of Theorem I and Corollary 1

Throughout this section, the following notation will be used for =1, ---, k:

Vpi(z) = 2(251‘ @, 28, xel;

S; = {z€U: py(z) = 0},

where p;: U—R is the function given in (C.1)~(C.5) in the introduction. We
note that, for every i=1, ---, k, the vector Vp;({) is perpendicular to the closed
C%-smooth real hypersurface S; at each point {&.S; with respect to the
Euclidean structure on C"=R?".

Proof of Theorem I. Generalizing the idea of “stretched coordinate
system” due to Pincuk [8], [9], we first prove that a bounded domain D satis-
fying the conditions from (C.1) through (C.5) and (%) is biholomorphically
equivalent to some Siegel domain 9(R%, H). By the compactness of K and
(C.3), we may assume without loss of generality that

(2.1) 1im k, =k,  for some point &, of K
and .
(2.2) Vpi(p) = (0,-,0,2,0,--,0), =1, Fk,

where ¢ means that the number 2 appears at the i-th position. Now we will
proceed in steps.

1) Some subsequence {f,;} of {f,} converges uniformly on compact
subsets of D to the constant mapping C,: D—C" defined by C,(2)=p, 2€D.
In fact, owing to the boundedness of D, we can select a subsequence {f,;} of
{f.,} which converges uniformly on compact subsets of D to a holomorphic
mapping f: D—>C". Clearly f(k,)=p and f(D)cD. Choose an open neighbor-
hood V of k, such that f(VV)C U and consider the plurisubharmonic function
peof: V=R, where p: U—R is the strictly plurisubharmonic function given
in (C.5). Then

pof(k) =0 and pof(z)<0, =€V

and hence po f(2)=0 for all zeV. In view of strict plurisubharmonicity of p,
this means that f(z)=p on V. Hence f=C, by the theorem of identity, as
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desired.

2) For later purpose, we wish to construct a family of biholomorphic
mappings h¢: C"—C", depending continuously on {€90D N U, which has good
properties. First we notice by (2.2) that the square matrix (Q)L (z)) has

0z; 156, i<k
non-zero determinant for each point 2 belonging to a sufficiently small neighbor-
hood of p. So, shrinking U if necessary, we can assume that the affine mapping
@%: C"—>C" defined by

¢ " zwgl %(C)(zu_gu), 1= 11 Tty k;
[/3 [

ujzzj—é'], j: k+1, LR (]

is non-singular for each point {€dD N U. Setting pi=p;o(p*)" for i=1, ---, k,
we have then by Taylor’s formula

pS(u) = 2 Re [u,.+mf;'v_,:'l ak o€ ) ugup) -+ H 1)+ ()

in a neighborhood of the origin, where @(u)=o0(|#|%) and

; 1 o O
i) =1 9P (0), muw= > P (Owa,.
4 p(C) 2 au,,au,,( ) (u) ‘”,BE=1 auaauﬂ( )u ‘e
Define
,\l,\ﬁ': W; = ui+m’pz=k+1amﬁ(§)uauﬂ ) 1= 17 Tty k;
w; = uj, j=Fk+1, - n

for tedDNU. It is clear that y¢: C"—C" is a biholomorphic mapping with
the inverse mapping

(1]/-5“)—1: “= wi*d,ﬁgkﬂa;ﬁ(c)w“wﬁ ’ t=1, k5

i =W

;s j=k+1, m.

Therefore the composition Aé=+rfo@s: C"—C" is a biholomorphic mapping
from C” onto C” for each t€0DNU. From the construction of 4%, it is ob-
vious that

h¢ —h* as ¢ —p locally uniformly on C*;
h(E) =0 forall ¢tedDNU.

Set pi=pio(Yf)'=p;o(h¥)~! for i=1, ---, k. Then each p} can be expressed in
the form
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(2.3) pS(w) = 2 Re (w;+ K (w))+ H§(w)+ai(w)
in a neighborhood of the origin, where
k . k n .

Kf(ZU) =0’82=1 a;ﬂ(g)wwwﬂ—l_zmzq ﬂ§+1 a;B(é‘)wuwﬂ >
(2.4) '

Hiw)= 3 —0PL Oy, and afw) = of|w]?).

! *,8=1 Gwaﬁwp of !
0°ps 8%pt .
(Here we have used the fact that P (0)=—2PL (0), 1=q, B<mn, in our
0 6115 8w¢6wﬂ

ud
case.)
3) This step is a preparation of the next one. We set

N = 5 (Vo B+ +Vpu(p) = (1, =+, 1, 0, -, 0).

220
k times

Then the vector N is not tangent to every hypersurface .S; at the point p8D N
S;N---NS,, because Vp, (p) is perpendicular to S; at p for every i=1, ---, k.
This guarantees us the existences of positive numbers &, &, and &; such that

(2.5) B,(&)C {2 = t+AN: £€8DNB,(S,), In| <&} U,

where B,(€;) stands for the open Euclidean &;-ball with center at p. Now,
we put

P’ = fu(ky) for v=1,2,---.
Then, by virtue of the first step 1) and (2.5) we may assume (by passing to a
subsequence if necessary) that {f,} converges on compact subsets of D to the

constant mapping C,(2)= p and that every point p*, v=1, 2, --+, has the follow-
ing form:

(2.6) P ="+AN for some ¢*eoDNU, A'<0.

(The negativity of A" is a direct consequence of (C.2).) It is clear that {*— p,
A'—0 as v—oco. For the sake of simplicity, we shall set

B=hn" and p!=p}, i=1,-k
for v=1, 2, ---, where ¢ and p?v are the mappings and functions defined in
2). Then
BY(p*) = (8%, -+, 8}, 0, +++, 0), p=1,2,
with

k
=S Py i1 e kv =1, 2,

®=1 9z,
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Therefore, putting

27) = (184 + |8 and s =7
for v=1, 2, ..+, we obtain by (2.2) that

(2.8) lim 8Yfr, = —1/Vk  for i=1,-k.

In particular, we can assume that
0< 87| <1 for i=1,kv=12
Now let us fix a family {D;}7., of relatively compact subdomains of D

such that

D= DD,-:)'--DD,-H:)D,.:)---:)DI:»K,

i=1

where K is the compact subset of D as in the theorem. Taking D; arbitrarily,
we set D’'=D); for simplicity. Since f,(2)—p uniformly on D’, there exists an
integer »(D') such that

fDYCDNU  forall »=u(D').

We define the mappings L': C"—C" and F*: D'—C" for v=1, 2, --- by setting
LY :(_Zﬂ;“') _%’ Wk-ua“')%): = @ EC”
SN T T
and

FY(z) = LYoh*f(z), =z&D’',

where 87, s, are the numbers given by (2.7). Then L are non-singular linear
transformations of C” and F” are biholomorphic mappings from D’ into C”.
Moreover it follows from (C.2) and the construction of F” that
(2.9) F'k)=(—-1,--,—1,0,--,0), F(D"cWw,
k times

for all v=»(D"), where
(2.10) W, = {wel": (L") (w)eh*(U), pio(L*) (w)<0, i=1, -, k}
for v=1, 2, ---. \ .

4) Set p’=>] pi+A4 3 (p})? for v=1, 2, ---. By virtue of (C.5) every p*

i=1 i=1
is a strictly plurisubharmonic function on A*(U). Since E?&O}:Sm (the usual
w

Kronecker’s symbol), we see that every p* has the form )
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@211)  p'(w) =2 Re[ié(l+2Ap,-(§‘“))w,-+%K”(w) ]—l—H”(w)—}—a"(w)

in a neighborhood of the origin, where a*(w)=0(|w|?) and

K@) = 3 0P (O, H'@)= 3 2P (O)yww,.
®,8=1 0w, 0wg ®.6=1 Qw,0Ws

Since p” is strictly plurisubharmonic on A'(U) and a’(w)=o(|w|?) for all
v=1, 2, --- and since A*—h?, H*—H? and a’—a? locally uniformly, we can find
an open neighborhood W* of the origin 0 with W*cChA(U) for all »=1, 2, ---
and a positive constant C, which depends neither on » nor on we W*, such
that

(2.12) H'(w)+a’(w)=C |w|* on W*

for all v=1, 2, ---.

5) In this step we shall show that some subsequence of {F"} converges
uniformly on every compact subset of D to a holomorphic mapping F: D—C".
To see this, consider first the domains

V, = {weC": (L*)w)eh'(U), p*o(L*) " (w)<0}

for v=1, 2, ---. Shrinking U if necessary, we may assume without loss of
generality that DN U C {z€U: p(2)<0}, where p: U—R is the function de-
fined in (C.5). Therefore

(2.13) w,cV, forall »=1,2,--,
where W, are the domains given by (2.10). Let us put for a while
w' = FY(2), z&D’ for vz=v(D').

Since (L*)™}(w")=h"cf,(2)—0 uniformly on D’, we may assume, by taking a
subsequence if necessary, that

(LY (FYD")ycw* forall »=1,2, -,

where W* denotes the open neighborhood of the origin as in (2.12). Hence
it follows from the relations (2.9) and (2.11)~(2.13) that

0> p*o(L) ()
=22 Re| - ‘é(l+2Ap,-(§"))8‘,fw}‘—f—é—K”o(L’)“(w”) ]
+C[ 8wy |*+ -+ | 8xawk |24y (| whar [P+ [w3 [P)]

and so
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0>2Re[ — 33(1+24p") S w45 K*o(L) () |
Ok [P [ )
for all w’e F¥(D') and all v=1, 2, ---. 'This implies that if we define the domain
B in C" %! and the holomorphic mappings ®*: D'—C* ** v=1, 2, ---, by
B = {(u, v)€CxC"*: 2Reu+C |v|?<0}
and

1
2r,

k v
& = (=2} (14+24pe") & Fidy - K*o(L) "o F", Fiun, -, F3),

then every @’ gives rise to a holomorphic mapping from D’ into B. On the
other hand, it is easy to see that B is biholomorphically equivalent to the open
unit ball

P = {2, &)eCxC |2 |24 |27 |P<1}

in C*~**! yia the correspondence

u-+1 \/2?‘0).

(4, v) (27, 27) = (m’ u—1

In particular, B is a taut domain, so that {®"} forms a normal family. More-
over, using the facts (2.8), (2.9) and lim p;(§*)=pi(p)=0 for every i=1, --- &,
Vroo

we can show by direct computations that
k v
DY(k,) = (,gl(l+2AP:‘(§V))i—i-l—zirK%(Lv)_%Fv(kV)’ 0, ())
%(—\/?’ O)"" O)EQ as v -—>oo,

which says that {®'} is not compactly divergent on D’. Therefore we can
assume that {®'} converges uniformly on compact subsets of D’ to a holo-
morphic mapping ®=(®,, -, ®,_44;): D'>BCC***, that is,

k v
(2.14) — 31+ 240N P Fit L K e(1)oF > @,
and
(2.15) Fio®, 4, j=k+1,n

as v— oo uniformly on compact subsets of D’.

It remains to show that, for every i, 1<7,<k, the sequence {F}} also
contains a convergent subsequence. To do this, choose an €>0 so small that
the function p,=p-}-€p;, is still strictly plurisubharmonic on U. Clearly
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DNUC{2€U: p(z)<0}. Set p;=po(h*)"! for v=1, 2, .--. Then, by (2.3)
and (2.11) p; can be written in the form

k
() = 2 Re[ (14 24p e+ L K (a) 6w,
+H(w)-+EH | (w)+a¥(w)+-E47 (w)
in a neighborhood of the origin, where
Ai(w) = 2 Re [K7 (w)] -+t (w) .
Setting
C, = Irr}in. HYw)>0, C,= max. |H? (w)| =0
wi=1 wl=1
and choosing an §,>0 so small that C,—&,C,>0, we obtain that, for every
&, 0<ese,
H*w)+-eH? (w)=4C|w]?, wel”
with C=(C,—&,C;)/4. So, recalling the facts that A*—h?, H'{EH} —
H?*4-eH? and a’—a? local uniformly and a(w)=o(|w|?), a}(w)=o(|w|?) for
all v=1, 2, ---, we can find an open neighborhood W#* of the origin, W*cCh*(U)

for v=1, 2, .-, and a constant C;>0, which depends neither on » nor on
we W*, such that

|4} (w)| =Cslw]?  on W™*;
HY(w)+&eH; (w)+a’(w)=2C |w|?  on W*
for all sufficiently large v. Here, as we have already seen above, £€>0 may

be chosen as small as we wish. Thus we can assume without loss of generality
that

HY(w)+EH; (w)+a*(w)+EA} (w) = C |w]? on W*

for all large », and hence by the same reasoning as in the first half of this step
5), we can assume, by taking a subsequence if necessary, that the sequence
v w

: v 81‘ v 1 v v\ — v io v
(B at24p0) ¥ iy Koy ter—e Sor, )

y=1

converges uniformly on compact subsets of D’ to a holomorphic function ®,
on D’. 'This combined with (2.8) and (2.14) yields that

Fi — —\/Ek (®,—®,) as v-—>o00

uniformly on compact subsets of D’. Finally we have shown that {F'} con-
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verges uniformly on compact subsets of D’ to a holomorphic mapping F(j):
D'=D;—C". Since j was arbitrary, we can extract, by the usual diagonal
arguments, a sequence {F*i} of {F"} which converges uniformly on every com-
pact subset of D; to the holomorphic mapping F(j): D;—C" for all j=1, 2, ---.
Therefore we can define a holomorphic mapping F: D—C" by setting F(z)=
F(j)(2) for all z€Dj, j=1, 2, ---.

6) This step is devoted to proving that the range of F: D—C" lies in
the closure of a domain 9, which is biholomorphically equivalent to some
Siegel domain P(R%, H). We first define the functions H;: C*"*x C**—C,
i=1, -, k, by

216) Huo)=YE 55 P (0uo0,,  uw=(w), v=(v)eC"
2 es5inpu, 0w,

and consider the domain

(2.17) W = {(w,, -+, wy, w’')EC*X C**: Re w;+H(w”, w’)<0,
i=1, -, k}.

It is easily seen from the construction of #? and (2.2) that the differential (dh?),
of ##: C"—C" at the point p is the identity mapping and
T={E=(E¢)EC":‘§I%@)&=O, izl,'--,k}
= {(0, e, 0, E”)Eckxcm—k: EreC .
Hence
Hi(u, u)=0 forall usC** i=1,.-,k
by (C.4) and

.‘;3[ p3 ST u] A )
u = u,
SlaiTie pw 0w, ¢ T wfSia w0, 8

forall u= (u,)eC"*.

This last equality combined with our assumption (C.5) guarantees that the
k
hermitian form 33 H; is positive definite on C*7*. Consequently, the mapping

H=(H,, -+, H,): C"*XC"*->C* is an R%-hermitian form. Let D(R%, H)
be the Siegel domain in C*xX C** associated to the convex cone R% and this
R’ -hermitian form H and let L: C"—C" be the linear mapping defined by

L', w")=(—/—1w', w”), (@',2")eC*XC*"*=C".

Then L gives rise to a biholomorphic mapping from 99 onto D(R%, H). In
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particular, we see that 9§ is a complete hyperbolic domain and hence it is taut

[4], [6].
We shall study here the functions p} more closely. By virtue of (2.3) we
can express

pi(w) = 2 Re w;+H}(w)+ Aj(w)
in a neighborhood of the origin, where
Ai(w) = 2 Re [K}(w)]+ai(w) .

Since K”——>K’,’, al—a? for i=1, -,k and K0, ---, 0, #”)=0, w”’C"* for
=1, - k; v=1, 2,--- by (2.4-) we can show that there exist a constant C>0
and a positive function 7(f), which are independent on », such that

12Re [K}@)]|SC 3} |w,] 0] forall w=(w,)EC",
limn(f) =0 and |ai(w)|=<n(|=|*)|w|*
t>+0
in a neighborhood of the origin. Hence we have that, for every i=1, -, &,

AU < 0 5319 o (2) )

7y

(@) ) [ 1B % ]

] k+1

—>() as v—> oo

uniformly on every compact subset of C". By a routine calculation, we can
also prove that, for i=1, .-+, &,
Ho (L") Y(w)

7y

— H%O, ---, 0, w”) as v—o00

uniformly on every compact subset of C”.

Now, we change the notation and may assume that {F*} itself converges
uniformly on every compact set in D to the holomorphic mapping F: D—C".
Choose a point 2 €D arbitrarily and put again

w’ = FY(2)
(starting with some index »=w(2)). Then it follows from (2.9) and (2.10)
that, for every i=1, ---, &,
0 Pro(L) (@)
7y

—2 R(—iw)+i [H Yo(L¥)"H(2") +Ato(L*) " (w")]
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for all sufficiently large », and so letting » tend to infinity, we have

0=2 Re(\/I?F,(z) )—f—H’,’(O, - 0, Fk—H(z)’ ) Fn(z))
for every i=1,---,k. Clearly this means that F(z)& JJ and accordingly
F(D)c .

7) We claim that F(D)C 9. To see this, observe that the interior of

the closure 9§ coincides with 9p itself in our case. Hence the problem
reduces to showing that F: D—C" is an open mapping. Now we define the
biholomorphic mappings g*: W,—D, v=1, 2, ---, as follows:

gw) =file(W)o(L)w), wEW,,
where W, are the domains given by (2.10). It is clear that
(2.18) goF p,=1idp;, and FYogipp) =idpp)

for v=y(D;), j=1, 2, ---. Let W’ be an arbitrary subdomain of 9’ with com-
pact closure. Then

h(U) = k(U), (L)(w)—0

and, for every i=1, ---, &,

pie(L)'(®) _, » Re(\/l?w,)—l-H’,?(O, e, 0, ") <0

7y
uniformly on W’. This assures us the existence of an integer »(WW’) such that
(2.19) Wcw, for all v=p(W').
Now, keeping the fact
F(ky) = 1112 FY(ky)=(—1, -, —1,0,--,00=9

in mind, we choose open neighborhoods W', D' of the points (—1, -+, —1,
0, -, 0), ky with compact closures in 99, D, respectively, in such a way that
F(D"YcW'’. Then there is a large integer »(D’, W’) such that

(2.20) F*DYcw’ for all wv=w(D', W').

We here assert that F: D—C" is injective on D', so that F(D’) is a non-empty
open subset of C". 'To verify this assertion, assume that F(2')=F(z")=w
for 2/, 2’&D’. It follows then from (1.1) and (2.18)~(2.20) that

dy/(F*(2"), F¥(2")) = dprwn(g"(F(2)), g7 (F*(2")))
= dpmn(2', &) =2dp(’, 2")
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for all v = max. (v(W’), »(D’, W’)), and so
0=dp(2’, 2")<lim dyp/(F*(2'), F*(2")) = dp:(w, w) = 0.

Clearly this means that 2’=2", as asserted. On the other hand, being the local
uniform limit of regular holomorphic mappings F°, the mapping F: D—C"
is either regular on D or the Jacobian determinant of F vanishes identically on
D [7; p. 80]. But, as we have already seen above, F(D) contains a non-empty
open subset of C*. Thus F: D—C" must be regular on D and F(D)C Y.

8) As the final step, we show that F: D—9) is, in fact, a biholomorphic
mapping from D onto 9. First let us fix a family {W} ., of relatively com-
pact subdomains W; of 9 such that

W = f_j WD doW,,DW;D.--D2W,5(—1, -+, —1,0, -+, 0)..
j k times

Choosing a W, arbitrarily, we put W'=W, for simplicity. By (2.19) there
exists an integer »(W’) such that W'C W, for all v=»(W’). So that the re-
striction G*=g'y- defines a biholomorphic mapping from W’ into D for every
v=v(W’). By the Montel’s theorem, some subsequence of {G"} converges
uniformly on compact subsets of W’ to a holomorphic mapping G(j): W'=
W,—DcC". Hence, in exactly the same way as in the construction of
F: D—9p), we can define a holomorphic mapping G: #—DCC". Once it is
shown that G(9)CD, our proof can be completed, because in such a case

(2.18) implies that
GoF =1id, and FoG =1idg,.

But, since G(—1, -+, —1,0, ---,0)=k, by (2.9), (2.18) and since F(D)C
as above, by interchanging the roles of D’ and W', F and G in the preceding
step 7), we can prove that G: 9¥—C" is a regular mapping on 9¥. Then it
follows at once from [3; Lemma 0] or [7; p. 79] that G(9¥)cD. We have
shown eventually that the composition LoF: D—9(R", H) gives a biholomor-
phic equivalence between D and 9D(R%, H), which was the first half of the
theorem.
In order to prove the converse, let us take an arbitrary Siegel domain

DR, H) = {(z', 2")eC*xC"*: Imz'—H(", 2’')eR:}
in C*x C"* and consider the biholomorphic mapping
C: YR, H)— D = C(DR:, H))CB" X - X B

constructed in section 1. We want to show that this bounded domain D satis-
fies all the conditions from (C.1) through (C.5) and (%) at the point p=(—1, 0,
oy, —1, 0)€0DCCXC7P X+ XCXC™ ', As was remarked at the end of
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section 1, C can be extended to a biholomorphic mapping from an open neigh-
borhood ¥V of the origin 0€09(R%, H) onto an open neighborhood U of the
point p=(—1, 0, ---, —1, 0)=8D. We shall denote this extended mapping by
the same letter C. Now we set, for i=1, ---, &,
—1

pi(2)=————F——(Imz,— Hy(2", 2")),

pi(2) ,zi+\/_1|2( ( )
where H; is the i-th component function of the R%-hermitian form H: C"~*X
C**—C* Shrinking V if necessary, we may assume that every p; is a real
analytic function on V. And it is clear that

DRE, HYNV = {2EV: pi(2)<0,  i=1, -, k}.

Here we introduce the following notations:

E, : The kX k unit matrix.

E(@#): The kxk matrix having 1 in the (7, 7)-position and O elsewhere
(1=i<k).

0 : The zero matrix with suitable size.

H;=(hig)ir12a.p<n: The hermitian matrix defined by

Hu,0) =, 3 Mugt%a, 1= (1), v = (05 €C** i=1, -, k.

And X>0 (=0) means that X is positive (semi-) definite, where X is a her-
mitian matrix. With these notations, we can show by direct computations that

0p; ) _(\/—*1 o)
(62:,(0) ISisk,1Sasn 2 E,,.;O),

<a—z;)_iz—;(0))1§m,ﬂ§n - (E(()l)}g‘> » i=1,- k.

Hence we have

Therefore, if we define the functions p;: U—R by
p; = p;oC™1 for i=1,-k

using the biholomorphic mapping C: V' —U, the conditions (C.1)~(C.5) are
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satisfied for the system (p; U; py, -*-, ps). Furthermore, considering the one-
parameter subgroup

@i (21, 27) > (€2, eMP'2) teER
of Aut(D(R%, H)), we can see that
{Cop,oC'},crC Aut(D);
- t1 e—1
Cop,oC7)(0) = <e—’ ""’—)O)
( ¢f )( ) 8‘“"‘1 et+1
—-(—=1,0,--,—1,0)=p as t-—>—oco.

(Note that 0=0/—1, -=-,~/—1, 0, --,0)D.) Obviously this guarantees
us that the condition (*) is also satisfied. Thus the proof of Theorem I has
been completed. Q.E.D.

Proof of Corollary 1. By our assumption there exist a sequence {k.}
in K and a sequence {f,} in Aut(D) such that lim f,(k,)=p. As an immediate

consequence of Theorem I, it follows that D is biholomorphically equivalent
to a Siegel domain PD(R: H). The proof is thus reduced to the following
general

Proposition. Let 9= (R", H) be a Siegel domain in C" X C™ associated
to R, and H. Assume that there exists a compact subset K of 9 such that
Aut(D)-K=9. Then 9 is biholomorphically equivalent to some Siegel domain
E(my, -, m,) in C" X C™ as in the introduction.

Proof. We shall prove this fact along the same line as in the homogeneous
case by Pincuk [9]. With respect to the given coordinate system (2, w)=
(21 ***y By Wy, *++, Wy) in C" X C", the R’ -hermitian form H can be expressed as
H=(H,, ---, H,). According to [9], we may assume without loss of generality
that there exists a direct product decomposition C*=C™7'X --- X C"*! (my+ -+
+m,=n-+m and m;=1 for i=1, ---, n) satisfying the following conditions i)
and ii): Set, for i=1, .-, n,

w; = (wm,+---+m,~_1-—(i—z)a ) wm1+~-~+m,'—l');

Hi(ws ‘Z()) = Hi(wb B mn) )

where m;=0. Then, for every i=1, ---, n we have:
l) Hi(wlv Tty Wiyttt wn) = Hi(ml) Tty Wiy 0’ Ty O);
i) Hi0,-,0, w0, -+, 0) is positive definite on C™:~' whenever m;>1.
Now, choosing a sequence of positive numbers &, such that g, | 0, we put

P\' — (\/:—133(2'1—1)’ \/__1 33(2”'2)’ ey \/____133”’ 0’ ey ())
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for v=1,2,---. Then p’€9 and limp'=009. Especially, there exist
sequences {k,} CK and {f,} CAut(9) such that
p=fuk) for v=1,2 ..

As we have already seen as in the proof of Theorem I, there exists a strictly
plurisubharmonic function p defined on an open neighborhood U of the origin
0€989 such that p(0)=0 and DNUC{(z, w)eU: p(z, w)<0}. Therefore,
by the same reasoning as in the step 1) of the proof of Theorem I, we can as-
sume that {f,} converges uniformly on compact subsets of 9 to the constant
mapping Cy(z, w)=0. Now define the mappings L": C"XC"—C"xXC" and
F': 9-C"xC" for v=1, 2, --- by
L:z,=_25i g = i=1,-n

L 85(271—1') ’ 81Z’n—i’

for (2, =+, 24 @y, -+, w,)=(2, W)EC" X C" and

FY(2, w) = L f,(2, w), (2, w)ED.

Then LY are non-singular linear transformations of C"x C™ and F" are biholo-
morphic mappings from &) into C" X C™ such that

(2.21) FY (k) = (!_-1, v,/ =1, 0,00, 0)

n times

for all v=1, 2, ++-. Let us consider the image domains W,=F"(9), v=1, 2, ---.
Set

(222) p‘;(z’ (T)) = Im 2,~—H,~(8\i_167)1, 8\‘;_2&‘)2’ HRE) 81151'—17 ;, O’ ) O)
for i=1, -+, m; v=1, 2, ---. 'Then it is easily seen that
W, ={(2, 8)€C"xC": p!(2, &8)>0, i=1,--,n}

for v=1, 2, ---. Hence every ®'=(FY, -+, F}), v=1, 2, -, is a holomorphic
mapping from ) into the Siegel domain D(R%)={(2,, +*-, 2,)EC": Im 2,>0,
i=1, .-, n} (which is of course a taut domain) such that ®*(k,)=(/—1, -,
vV —1)€D(R%) by (2.21). Thus, passing to a subsequence if necessary, we
can assume that {®'} converges uniformly on compact subsets of 9 tc a
holomorphic mapping ®: 9— 9(R%}). Then, from ii) and the inequality
pioFY(z, w)>0,(z, w)€9), for v=1, 2, «-+, it follows that the sequence {¥i=
(Frs1y **y Fhsm—1)} 1s bounded on every compact set in 9, so that we may
assume that {¥}} converges uniformly on compact subsets of & to a holo-
morphic mapping ¥;: 9—-C"~'. In this case we see that the sequence {¥;=
(F:M,J, coty Faimamy—2)} must be also bounded on every compact set in 9.
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Indeed, assuming the contrary, we can find a sequence {(z;, w;)} -1 in 9@ such
that (2;, w;)—>(2p, wo) €D and r;= | ¥3i(2;, w;)|—occ. Without loss of generali-
ty, we can assume that

L whe, w) > sdecm  with [a=1.

On the other hand, from the inequalities pyioF"i(2;, w;)>0 we obtain that
Oy gy, 1 g,
0=H, (¥ H(en w), - Wien w), 0, 0)

Im Fyi(=zi, wi) _, 0 as 7> 0o
2

<

and so
Hy0, &3, 0,---,0)=0.

This contradicts the fact ii). Therefore we can select a convergent subse-
quence of {¥;}. Repeating this process, we obtain .eventually a subsequence
of {F'} converging uniformly on every compact set in & to a holomorphic
mapping F: 9—-C" xC".
Now we set
H;(&);)IH;(O, e, 0, @; 0, -, 0)) i=1.n
and define the Siegel domain @ in C" X C™ by
D= {2z a)eC"xXC": Imz,—H(&)>0, i=1,--,n}.
We also define the holomorphic mappings G*: W,—9 by
G*(2, &) = f;'o(L) (2, &), (2, @)W,

for v=1, 2, ---.  Then, in exactly the same way as in the proof of Theorem I
we can show that F(D)c J and {G*} contains a subsequence which converges
uniformly on every compact set in 9 to a holomorphic mapping G: 9—9D such
that GoF=idg and FoG=1idg. Thus & is biholomorphically equivalent to
9. Since 9 is obviously biholomorphically equivalent to the Siegel domain
&(my, -+, m,) in C" X C", our proof has been completed. Q.E.D.

3. Proofs of Theorems II and III

Using exactly the same technique as in the proof of Theorem I, we shall
show the theorems.

Proof of Theorem II. To begin with, we fix a family {M} 7., of relative-
ly compact subdomains of M such that



292 A. Kobama
(3.1) M= GM,D---DM,HDM,:)---DMI.
i=1

Since M can be exhausted by biholomorphic images of D, there exists a
sequence {p,};=1 of biholomorphic mappings from D into M such that

M,CouD), v=1,2, .
We set
Py =@yt @(D)— D, v=1,2 .

Since D is bounded, for each j=1, 2, --- some subsequence of {yry s }+z; con-
verges uniformly on compact subsets of M, to a holomorphic mapping yr(j):
M;—DcCC". Thus, after taking a subsequence and relabelling if necessary,
we can assume that {yr,} converges uniformly on every compact set K in M
to a holomorphic mapping +: M—C", starting with some index v=p(K).
Clearly yo(M)cD. Since D is a bounded domain with piecewise C?-smooth
boundary of special type, the same reasoning as in the step 1) of the proof of
Theorem I yields that, if Yr(x,)€8D for some point x,&M, then Yr(x)=nr(x,)
for all x& M. Therefore the proof is now divided into the following two cases.

Case 1: v(M)cD.

We shall prove that M is biholomorphically equivalent to D in this case. We
first claim that «»: M —D is injective, so that it defines a biholomorphic map-
ping from M onto the image domain {r(M)CD. Assume that Yr(x")=yr(x")=2
for x,” ¥’M. It follows then from (1.1) that

dp(Yu(x")s Yol(x)) = dp,r(Pu(¥(x"), P(Pu(*")))

= ?y(D)(x’) xl,)ng(x’, x”)

for all sufficiently large ». Consequently we have x'=x"/, because M is hyper-
bolic and dp(yry(x"), Yry(x”))—dp(2, 2)=0. Thus «r: M—D is injective.

We next claim that «»: M—D is surjective. By the argument above,
we can identify M with the bounded domain (M) in C”", and hence some sub-
sequence {p,;} of {p,} converges uniformly on compact subsets of D to a
holomorphic mapping @: D—-McC". Once it is shown that @(D)C M, the
sequence {,(2)} lies in a compact subset of M for any z&D. Hence

2 = limry (9,(2)) = Y(@(2)) EW(M) ,

which means the surjectivity of 4». Therefore, it is enough to show that ¢(D)
CM. Changing the notation, we may assume that {@,} converges uniformly
on compact subsets of D to @. Choose an open neighborhood D’ of (M)
with compact closure in D and fix an integer v, so large that y»(M,)C D’ for
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all v=v,, where M, is the subdomain of M appeared in (3.1). Then, for any
point x& M, there exists a sequence of points 2, of D’ such that @,(2,)=x
for all v=»,, We can assume that z,—z for some point 2 of D’. Hence
x=\l‘i+m @(2y)=@(2)E@(D), and accordingly M,Ce(D). On the other hand,

being the local uniform limit of regular holomorphic mappings ¢,: D—-M CC”,
@ is either regular on D or the Jacobian determinant of ¢ vanishes identically
on D. But, since @(D) contains the non-empty open set M, as above, we
conclude that @: D—C" is regular on D. Then it follows immediately that

@(D)C M, completing the proof.
Case 2. V(M) = {p} coD.

Since D is a bounded domain with piecewise C?-smooth boundary of special
type, there exist an open neighborhood U of p and real-valued C2-functions
P s Pr (1=k=mn) defined on U satisfying the conditions from (C.1) through
(C.5) in the introduction. Let us fix a point x,& M, arbitrarily and put

P =, (%) for v=1,2,.-.

Then p*=Ar,(%,) = Yr(x)=p as v—>oco. Changing the coordinate system and
shrinking U if necessary, we may assume that

)
VPI(P):( )01 é: 07 0)’ l=1,,k
as in (2.2) and every point p*, v=1, 2, --+, can be written in the form
P =E+NN for some ¢*€0DNU, A<0,
where
N==5 (Vpx(P)+ +Ve(p) = (1, - 1,0, 0).

k times

We define two families of biholomorphic mappings {#'} and {L'} by the same
manner as in the proof of Theorem I. Let {M,}7., be the monotone increasing
sequence of relatively compact subdomains of M as in (3.1). Taking an M;
arbitrarily, we set M'=M; for simplicity. Since +r (x)—p uniformly on M,
there exists an integer »(M') such that

Y (MYCDNU forall v=w(M').
Define now the biholomorphic mappings F*: M'—C" v=v(M') by
FY(x) = Loh"or (), xeM' .

Then, repeating exactly the same arguments as in the proof of Theorem I,
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we can show that some subsequence of {F'} converges uniformly on compact
subsets of M’ to a holomorphic mapping F(j): M'=M;—~9PCC", where I is
the domain in C” given by (2.17). Since j was arbitrary, we obtain a holomor-
phic mapping F: M—9§c C” such that

F(xy) = (—1, -, ~}, 0,:-,0e9.
k times

It remains to prove that: (i) F(M)C9Y and (i) F: M—9Y is, in fact, a
biholomorphic mapping from M onto 9. But, the assertion (i) can be shown
by considering the biholomorphic mappings g*: W,—M given by

g'w) = @,o(B)e(L)(w), weEW,

for v=1, 2, ---, where W, are the domains in C” given as in (2.10), and by re-
peating exactly the same arguments as in the step 7) of the proof of Theorem I.
To prove (ii), we first assert that F: M —9 is injective, so that M is biholo-
morphically equivalent to the image domain F(M)C9y. In fact, assume that
F(x")=F(x")=w for ', ¥’€M. Let W’ be an open neighborhood of w with
compact closure in 9¥. Let y,&N be so large that F'(x"), F*(«”)eW’ and
W'cW, for all v=v,. Then

dy/(F*(x"), F*(x")) = dpr (8" (F*(&')), g(F*(x")))
= dgv(W')(x” x//)ng(‘x’,) x”)

for all v=w, Letting v tend to infinity, we obtain that d,,(x’, ”/)=0 and hence
x'=x" by the hyperbolicity of M. Therefore F: M—9p is injective. On
the other hand, being biholomorphically equivalent to a Siegel domain
9D(R:, H), 9 is biholomorphically equivalent to a bounded domain in C* by
the lemma in Sect. 1. Thus we may regard M as a bounded domain in C".
Repeating the same arguments as in 8) of the proof of Theorem I, we can now
verify the assertion (ii). As a result, we have shown that M is biholomor-
phically equivalent to a Siegel domain 9(R%, H) in the Case 2. Q.E.D.

The following example tells us that both the cases in Theorem II actually
occur.

ExampLE 2. Consider the following two domains in C?%:
EQ2) = {(2, w)eC?* Imz—|w|*>0};
D = {(z, ) €C*: |a|*+]2|*<1, [2]24162,|*<<4} .

Then &(2) is a Siegel domain biholomorphically equivalent to the open unit
ball 4 in C? and D is a subdomain of % with piecewise C?-smooth, but not
smooth, boundary of special type. Moreover we have:
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i) &(2) can be exhausted by biholomorphic images of D.

il) &(2) is not biholomorphically equivalent to D.
To see these facts, we put p,=(1, 0)€0.%? and choose a small open neighbor-
hood U of p, in C? in such a way that DN U=F*NU. (The existence of such
a neighborhood U is obvious, because p, is an interior point of the domain
{(21, 2,)EC?: |2|*+16]|2,|*<4}.) By the homogeneity of &, there exists a
sequence {f,} in Aut(%?) such that f,(0)— p,, where 0 denotes the origin of C2
Without loss of generality, we may assume that f,(2)—p, uniformly on every
compact subset of . So, for any compact set K in % there exists an integer
v, such that f, (K)C B NU=DNU. Setting Fy=f;p, we obtain a biholo-
morphic mapping Fx from D into ? such that K CFg(D). This implies that
B, and hence &(2), can be exhausted by biholomorphic images of D, which
was the assertion i). Since 4° is not biholomorphically equivalent to D by
[8; Theorem 1.1], we have also the assertion ii).

Proof of Theorem III. If D, and D, are biholomorphically equivalent,
it is trivial that each of them can be exhausted by biholomorphic images of the
other. 'Therefore we have only to prove the converse.

Assume that each of D, and D, can be exhausted by biholomorphic images
of the other and that D; and D, are not biholomorphically equivalent. Let
{D{} -1 (resp. {Dj}7.:) be an increasing sequence of relatively compact sub-

domains of D, (resp. of D,) such that D,= UDj (resp. D,= GD;) Then the
i=1 i=1

proof of Theorem II guarantees the existences of biholomorphic imbeddings
@,: Di—D,, ®,: D,~»D, for v=1, 2, --- and boundary points p,=0D,, p,=0D,
satisfying the following conditions i), ii) and iii): Let

Yy = @yt o D) —D,, ¥, = o @(D,) - D,

be the inverse mappings of @,, @, respectively, and let (Uy; pi, -+, pi),
(Uy; i, -+, pi,) be defining systems for Dy, D, in the neighborhoods U,, U, of
P, P, respectively. Then we have

i) DyceyD,), Dic®,D,) for v=1, 2, ---;

i) Yry(2)—>p, ¥y(2)—p, uniformly on compact subsets of D,, D, re-
spectively;

i) D, (resp. D,) is biholomorphically equivalent to a Siegel domain
D(Rt2, H,) (resp. D(RY, H,)), where H, (resp. H,) is the R’ (resp. R%)-
hermitian form as in (2.16) defined by the Levi-forms of pi, ---, p, (resp. of
P}) ) P;l)

Fix now two points x;&D; and xj & Dj arbitrarily. By virtue of i) and
ii) we can find a number n(y,) for each yy=1, 2, --- such that

(3.2) Y (DR CDYD,)  forall v=n(v);
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(33) Vo) EB( L),

Vo

1

Yo

where B,,z(—l—) denotes the open Euclidean ( )-ball with center at p,. We
Vo

set, for v=1, 2, .-+,
H="¥,wVupy: D: > D,.

Owing to the boundedness of D,, we can assume that {f,} converges uniformly
on every compact set in D, to a holomorphic mapping f: D,~D,CC". But,
in view of (3.3) and the fact that 8D, is a piecewise C?-smooth boundary of
special type, we can see that f(2)=p, for all x€D,. So, if we put

b3 = fu(x5) for v=1,2, -,

then py=f,(x5)— f(x5)=p,. Changing the coordinate system and shrinking U,
if necessary, we may assume that
i
Vei(p) = (0,+,0,2,0,-,0), i=1,k

and every point p;, v=1, 2, -+, has the form

Py = 3NN, for some ¢;€0D,N U, A<0,

where

1
Ny = 2 (VA (2D ++ k() = (L 1 1,0, -, 0)
k, times
Let us define the families {43}, {(p?)’} and {L}} by the same manner as in the

proof of Theorem I. Set D}=Dj as before. Then, since f,(2)— p, uniformly
on Dj, there exists an integer »(Dj3) such that

f(Dy)CD,NU,  forall »=u(Dj).

Therefore we can define the biholomorphic mappings F}: Dj— C” for v =v(Dj)
by
F3(2) = Liohyo f(2), zeD;.

Now it is not difficult to check (along the same line as in the proof of Theorem
I) that some subsequence of {F3} converges uniformly on compact subsets
of Dj to a holomorphic mapping Fy(j): Dj=Dji—3,CC", where Ip, is the
domain in C” as in (2.17) defined by the Levi-forms of pi, -+, pi,. Since j
was arbitrary, we obtain a holomorphic mapping F,: D,—3,CC" such that
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Fyxd) = (=1, -, —1,0, -, 0)E,.
o

k, times

It remains to prove that F,(D,)C 9, and F, is biholomorphic mapping from
D, onto 94,. But this can be done with exactly the same arguments as in the
proof of Theorem I, if we consider the biholomorphic mappings gz: W3—D,,
v=1, 2, .-+, defined by

&1(w) = @yo®,yo(hz)to(L3)  (w), weWsy,

where W} are the domains as in (2.10) defined by 43, (p?)” and Lj. Recalling the
fact that 99, is biholomorphically equivalent to the Siegel domain D(R%?, H,),
we conclude by iii) that D, and D, are biholomorphically equivalent. This con-
tradicts our assumption. Therefore, if each of D, and D, can be exhausted by

biholomorphic images of the other, they must be biholomorphically equivalent.
Q.E.D.
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