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Throughout this paper we fix an (even or odd) prime number [, n=10" a
power of /, and an algebraic number field £ which contains exp(2zi/n) and has a
finite degree over the rational number fleld @ For elements x, yE&* and a
prime spot p in % (abbrev. k-prime), Hilbert’s n-th power residue symbol

(x,glk) is defined by /3= (x’g lk) *z/y using norm residue symbol

o-=<f’k(pﬂ) , which takes the value in the group of the #-th roots of 1 in

k, W. We denote the completion of % at p by k, and the group of the n-th roots
of 1in k, by W,. After the canonical inclusions of fields kCk, and of Galois
groups G(k,(z/y)[k,) CG(k(z/ y)[k), the (global) Hilbert’s power residue symbol
is extended to the local symbol (», y|k,), taking the value in W,. We put

(x) y)n = Hall F-primep (x: y | kp)n

which is a pairing on &* taking the value in the group II, W,. Then this pairing
symbol admits fundamental properties like the multiplicativity about each com-
ponent, the conjugacy theorem about isomorphism 7: k—%", and the transgre-
ssion theorem about the lifting of % to some extension &’/k. Moreover it has the
norm theorem saying that x is in the norm group Ng,K*; K=k(z/7y), if and
only if (x,y),=1 and further it has the reciprocity law saying that (x,y),=
(& %)

In this paper we define a tripling symbol (x, y, 2),EW on k*. Not that
it is defined for all the elements of 2* X &* X k™, but it is done only for the ones
having a property named strictly orthogonal. The definition of strict ortho-
gonality is rather complicated but we shall illustrate here some sufficient condi-
tions for it. In case /%2, {x,y, 2} are strictly orthogonal if they are all n-th
powers in & at any [|(/) under inclusion kCk, and any two of them are ortho-
gonal about the symbol (, ),. In case /=2 we need some additional conditions;
saying when exp(2zi/4n)Ek, {x,y, 2} are strictly orthogonal if further any
two of them are orthogonal about (, ),,. Our results of this paper 'are the
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following properties of the symbols: It is multiplicative about each com-
ponent, admits the conjugacy, and has the transgression relation (Theorem 1). It
has the norm theorem saying that &N, L*, L=k(z/ x,%/y) if and only if
(x,, 2),=1, under the assumption that {x,y, 2} are in the above illustrated
situation (Theorem 2a). (This theorem is described for general strictly or-
thogonal triples by some modifications, Theorems 2, 2a.) Further this symbol
has the reciprocity law (x, y, 2)™'=(y, %, 2)=(2, ¥, ¥) namely it is alternative
about the permutation of entries, under some few conditions only when /=3
(which can be erased if exp (2zi/3n)ek) (Theorem 3).

When n=2 and k=@, Furuta defined a symbol [d,, d,, a]=+1 for some
d,, d,, a= Q™ and obtained some properties of it similar to ours. But the
reciprocity law [d,, d,, a]=[d,, a, d,] is not completed in it though the possibility
for it is suggested by tables of values of the symbol. Our symbol is an ex-
tension of Furuta’s (Section 3, vi)), completing the reciprocity law.

When x and y are strictly orthogonal and the principal ideals (x) and (y)
are different k-primes except n-th power, the existence of some central extension
M|k containing L=Fk(z/ x,2/y) which is unramified on L is determined by
the checking of (x, y, 2),=1, 2 running over the elements of £ such that the
principal ideal (2) is an n-th power ideal, so in a finite set essentially (the end of
Section 1). For example, let =3 and 2=Q(\/—3). Let x, yEk* generate
prime pirncipal ideals (x) and (y) different from each other, L=k( x, &/ y)/k
be unramified at [|(3), and (x, y);=1. Then the class number of L is divisible
by 3 if and only if (x,y, {5);=1, {3=exp (2zi/3). Such condition for L is the
same that k(/xy) (and k(+/xy?)) has an unramified cyclic extension of degree 3
not derived from the genus field. Fix this ¥ and let y run under the above
conditions. Then, if we apply the reciprocity law for the above vanishing of
the symbol, the relative density of the set of prime ideals (y) such that L has
the class number divisible by 3 in the set of all the (y) is calculated to be 1/3
(the end of Section 2). The last statement will be extended by some accordant
modification to any 7 and k=@Q(exp (2zi[n)).

About the class number of k(¥/x, ¥/y); %, y € k=@Q(exp (2xi/5)), a
simple example is given (Section 3 viii)).

1. Definition of (x, y, z)

We denote the ring of rational integers by Z and Z(n)=Z/nZ. When a
finite set 4 in a group is given, 4> means the subgroup generated by 4. For
a natural number m and F* the multiplicative group of a field F, we put
(F*)"={«"|x€F*}. When an m-ple element {x,, ---, x,,} in F* can hold

xft - xgm=1mod (F*))  onlyif m=--=n,=0mod!,

we say that {x,, :--, x,} is l-independent. The algebraic closure of a field F will
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be denoted by F. Put n’=n or 2n according as < 2 or I=2 respectively. Let
&w imply a primitive m-th root of 1 in general and § a fixed one among &,’s.
When ACE* is given, we use the notation k{4}=Fk(z/A)=k(x/ x |xEA),
k{A}'=k("\/A) regardless the condition {,Ek (but uniquely determined if
—1e4>-(k)", as L, Ek{A} Ck{A4}’) and samely for local case.

Let G*=I1*a¥>=<o¥, -+*, a¥> be the free group of a finite rank r=1.
Let {N¥|A €A} be the set of all the normal subgroups of G*, with (finite)
l-power indices. By N¥,CNX 2\ =), the index set A is directed. Together
with the canonical homomorphism ¢, y: G*/N%,—G*/N¥ given for every pair
A2\, {G*|N¥; ¢} forms a projective system. The projective limit

® = lim G*/N¥

is called the free pro-/ group of rank . 'The open subgroups of & are given by
N,=Ker (8— G*/N}) by definition and @ is compact and totally disconnected.
Since N¥’s are again finitely generated free groups of rank (r—1)[G*: N¥]+1 by
the well-known Schreier’s Theorem, any open subgroup of @ is again free pro-/
group itself and has I-pcwer index in @. The subset {s, ---, s,}, s;=1lim (oF
mod N¥), in @ forms a (topologico-algebraic) generator system of &. When a
finite -group G and r elements oy, -:-, 0, in G are given, there exists uniquely a
homomorphism »: G*—G such that y(c¥)=a;, accordingly uniquely a homo-
morphism 7: &—G such that %(s;)=g;; i=1, ---, 7. Thus we know specially that
there is a surjective homomorphism from & on G=Z(l) x --- X Z(/) its kernel being
AR
r
the Frattini subgroup of & by itself and the images of s;’s forming a Z(I)-basis
of G, which means that {s;, ---,s,} is a minimal generator system of . Further
we know that & has the universal mapping property about finite /-groups, that is,
when a row-exact diagram

&)

|

P—sG——1

of another finite /-group P and homomorphism arrows, it can be completed to a

commutative diagram
6]
a4k
0

P— G—>1.

Because, we may take any 7;E607'(g;) for each o; and define 4 so that yr(s;)=;.
Taking lim, ® has also the universal mapping property about pro-/ groups.
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The free pro-/ group of rank 1 is the one isomorph to the additive group of the
l-adic integers Z;. 'The unit group will be joined to pro-/ groups, giving rank 0.

For each k-prime [ over (I), we shall fix a local Galois extension Q!/k; whose
Galois group G(Q!/k,) is a free pro-I group (of any rank =0), e.g., Q'=k;, Q'=
the maximal unramified l-extension, Q'=the cyclotomic Z-extension. When
142 and @, CF is any local subfield of %, not containing {;, the maximal l-ex-
tension Q/F has the free pro-I Galois group of rank [F: @;]41 [7]. So, if we put
Q'=Qk Cky, G(Ql/ky) is a free pro-I group of rank ([F: ]+1—1)[QNk: F]+
1=[QNkr: @]+1. When r’is a natural number not greater than this number
and kIC.Q’CQI is an intermediate Galois extension having Galois group G(Q'/;)
generated by at most 7’ elements, using the universal mapping property we can
find a pro-I extension of %, in Q' containing Q' and its Galois group being a free
pro-I group having rank 7’. So, for example when /52, k; has always a free
pro-I extension of rank 2 cantaining the maximal unramified /-extension and the
cyclotomic Z;-extension simultaneousely.

Let F/k be a finite Galois [l-extension. From the Kummer theory,
(F*)'NE*[(R*)" is isomorph to Hom (G(F/k), {¢,>) in virtue of the pairing

(@, 8) >/ 5°; o=G(FIE), be(F*) "Nk

choosing an arbitrary z/5. When 7 is an automorphism of F such that k=%
and {"={'€<{,>. this isomorphism is also 7-isomorphism because z/ 5" is one
of z/p™’s and

&5 = @E)

(We note that G(F|k) is made a 7-group by o717 and, when 4 is a 7-group,
Hom(4,<¢,)) is also a 7-group defining the action of 7 by é’(a):(d(a"_l))’;
deHom(4,<t,), ac A).

Lemma 1. When {€k* and G(Q'[ky) is a free pro-I group,
(1) & talF)y=1; EEF*NQ"), LuEF™, m=1"Zn
2  EnlF).=1; & peFn@>)
about local Hilbert power residue symbols, for any finite extension F[k in Q!, and
(3) Fn(Q™) =F*)"Npys(F™ 0 ("))
Jfor any succession of finite extensions F' O F Dk, in Q.

Proof. (1) is evident because F{£}/F can be contained in a larger cyclic
extension in Q' of any given l-power degree. Since a subgroup of finite index
in a free pro-/ group is again a free pro-/ group, we may prove (2) and (3) only
in the case where F=Fk; and rank G(Q.I/kl) =1. Since (§,&|F),=1 from (1)
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even if /=2 and F*/(F*)" has the type (n, *-+, n), we may prove (2) when 7"'e
(F*)"<E>. Put H=Lo)>=G(F{£}|F) and let G=H+Z(n)[H] be the semi-direct
product of H and the group ring Z(n)[H]. We fix an isomorphism G(F{y} |F)=<
Z(n)[H]/(1 —o)Z(n)[H] which is extended canonically to G(F{§, n}/F)=
G(F{£}|F) X G(F {n} |[F)=G|(1 —o)Z(n)[H]. Using the universal mapping
property it can be extended further to 8: G(Q!/F)—G which becomes surjective
by itself because (1—o)Z(n)[H] is the commutator subgroup of G, so in the
Frattini subgroup of G. Let E/F be belonged to Ker # in the sense of Galois
theory. Since G(E/F {£})=<Z(n)[H] as H-groups, we have

HY(H, Hom (G(E|F{€}), <C))=H"(H, GEF{E}) =1 (see [9)).

So, from the Kummer theory Hom (G(E/F{£}), <O)=F{&}* N (E*)"/
(F{E}*)", we can find ve F{£} * N (E*)" such that

Newirv = nmod (F{E}7)" .

Since (F{£}*)" N F*=(F*)"+<&> we have (2). We denote the left and the right
hand sides of (3) by X and Y respectively. For (3) only to show XCY is re-
quired. Let us use the induction about [F': F], so we may assume [F': F]=I
and F'=F(\/E); E€X. Take &'€F™N(Q")" such that F'{£'}|F is a cyclic
extension of degree In containing F{£}. Then §é(F*)"+{Npz£">C Y because
(&/E) """ is one of &/ Ny, <o>=G(F'[F), and ((/E)+++" )=
z/E*-1=t,. Further we have seen just above that if y& X and 5"/ & (F*)"+-<&>
then also & (F*)"+<E>+Np@rvCY. Since X is spanned by a & and all such
7’s, (3) follows. q.e.d.

The product of the real archimedean k-primes will be denoted by oo, =1
if I&=2. For a fractional divisor a in %, we denote the set of its k-prime factors
by Sia). For a finite set 4Ck*, we define a finite set of prime k-divisors
Skm(A) (OI‘ Sm(A)) by

Su(4) = PIpES((D)eo) or k(lm z/A)lk is ramified at p}.

We should note that S(x)=S((x))US((/)oc) for the principal ideal (x) and

S(D)=S(1)=58((D) U S(0).
Abbrev. S,(4)=S(A) and S,(A)=S'(4). When x, yEk* satisfy

) (’”’z'k)” (=@ ylh))=1 ata p
we say that x and y are orthogonal at p and when x and y are orthogonal at

any pe S(x, y) therefore at every b, both are said orthogonal. From Lemma 1,
(4) is satisfied at | (J) if
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x, yE(Q™)" after the canonical inclusion kCk,.

In this case, multiplying suitable elements in (#*)" to x and y if necessary, we
can make

(5) €Ny 0 @), yEN; ek N (@)

because of (3), without influence on the orthogonality of ¥ and y. When /52,
we shall say x and y are strictly orthogonal if both are orthgoonal and satisfy (5)
at any [|(/). Next we intend to give the same definition when /=2. Note that
x and y are orthogonal at a p&S(I) such that (¢, xlkp)2=l and (£, y|ky),=1 or
more sufficiently such that { wEk, if and only if

6) [kp{—x, y}:k]=n or (accordingly and) [k {x, —y}: k)]=<n.

Because, we can put easily {—x, YD+ (ky )y =<&", n'j>-(k;,‘ ) using 7, j {0, 1, ---, v}
and &, nEky such that (§, 9|k,),={ and AF=<& 7>-(k;)". Then (v, y|k,),
(=(—x, y| k), at such p)=1if and only if the power residue symbol is trivial
on {—=x, y>-(k,)" therefore if and only if i4j=». On the other hand,
[%y {—=, ¥} : ky]=01""""7 so we obtain the former inequality of (6). Replacing
{—x, y} by {x, —y} we obtain the latter. When x and y are orthogonal and
satisfy (5) at any I|(2) and further

(1)  twEk, if PES(x,y)—S5(2)
(8) [kp{——x,y}':kp]gn' and [kp{x, —y}' k]=n' if pES(x,)—S(2),

then x and y are said strictly orthogonal. When a negation of (8), say
[kp{——x, ik ]>n'is happened at a p&=.5(2), kp{—x, y}+'[k, must contain the
unramified extension of degree 4 at peE Sy(x, y) and of degree 2 at p&.S,(x, y)—
S(2) so we have easily L],,ka{—x, y}'. This means (8) does not depend on
the choice of */Fx nor “\/Fy (though k, {Fx, +y}'[k is not necessarily
unique) and it is held outside S’(x, y) by itself. A set A={x,, ---, x,} in K are
said (strictly) orthogonal if so are any pairs {x;, x;} taken in 4, 145, When
1%2, for an orthogonal set 4 ={x,, -+, x,,} Ck* there is an orthgonal set B=
{y1, -, ym} Ck* such that x;=y; mod (k*)" and BCNy s (k{B}* N(Q™)")
(so B is strictly orthgonal) if and only if 4C(Q™)" from Lemma 1. In case
1%2 we say such 4 is strictly o1thgoonal mod (£*)".

Lemma 2. Let I=2. Let A={x,y, 2} be a strictly orthogonal triple in k*.
Then -

) tuSk, atany PES(A)—SQ).

Proof. Fix such a p. From (7) we know {,,/Ekp. We may assume
pPESy(x) so k(v x)[k, is ramified. Then both k {x}’[k, and k,{—x} [k, are
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purely ramified cyclic extensions of degree n’. Here assume that ky(v/ )/, is,
accorilirigly k(v —y)[k, is also, unramified. Then by (8), k(v y)=ky=
ky(v/—y) therefore k,{—y} ' Ek,{x} " and k,{y}' Gk, {—x}" accordingly

ky{xh= ky{—2} Dk {y, —3} DR {1}’

meaning (9). After all we may assume that the three extensions ky(v/ %),
k(v ), ky(\/ 2) over k, are all ramified. Then by (8)

(k;)"’.<x> = (k;)"'.<_y> = (k;)"’.<z> = (k;)"’.<_x>
which means again (9). q.e.d.

Under the condition (9) we have easily
(xj) é’nlk )2= (xj9 '—llk )n = 1; xEA ) pQES(Z) *

So, the next comming condition (11) given for the subextension &, {x }'[k, in an
abelian extension £, (é’ W) {%}’ kp is independent on the choice of * /% x; so well-
defined.

Corollary 1. Let A={x,, -+, x,} be an m-ple in k*. If (7) and (9) are
satisfied for 4, i.e., if Ly Eky; PES(A)—S(2) and §,,Eky; PESY(A)—S(2) only
when [=2, then the following conditions (10) and (11) and the previous condition (8)
are all equivalent each other:

(10)  [Ry{x, 2} RISn'; %, x,€4 (%5); pES(A)—S()
(A1) (w, kla} k) =id; %, x,€4 (i%4); pES(A)—S().

So, if m=3, among the conditions (5), (7), (8) of strict orthogonality, the last one
(8) can be replaced by (10) or by (11).

Proof. We may assume /=2 and prove the equivalence of (8), (10), and (11)
under the assumptions (7) and (9) at a fixed peS’'(4)—S(2). When pE S,(4),
[k,{+x;, t-x;}': k] does not depend on the choice of +signs from (9), so (8)
and (10) are equivalent. When p&S'(4)—Sy(4), k,{+-x;, +;}[k, bas ramifica-
tion index <#, independent on the choice of +signs, and samely for the in-
dependence of relative degree provided it is =4. For the negations of (8) and
of (10) the very last condition that the relative degree =4 is necessary in common
so we have the equivalence of (8) and (10). Next, when pES,(4), L, Ek, and
(8ws %; | By);=1 for any x; &4 from (7) and (9) so applying (6) described about »’
- instead of n, we have the equivalence of (8) and (11). When p&S'(4)—S,(4),
we treat at first the case where both x;, x; & (k) )2.  We may assume kp {x;, 2} 2
k,{\/x;, x;} therefore it is a sharp quadratic extension; because if they are the
same the cyclic extension & {x,, x;} /k {x;}' must be trivial, in other words

PASEHT (k")”/ so both (10) and (11) can stand always by themselves. Under
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this assumption, (10) becomes
[k {V/x), 2} : R)]=m.
Since k,{x;}'|k, is a cyclic extension, (11) is also rewritten as
(Vi % 1B). = 1.

From (¢, V/%;|k,),=(&, x;|k,),=1 we can apply (6) again for \/; and x; and ob-
tain the equivalence of (10) and (11). The last remained case is p= S'(4)—S,(4)
and at least one of x; and «x;, say x;, is not in (k] ). Then n=2 and
[ky{x;}": ky]=n" so (10) is equivalent to x,-6<xj>-(k;)"/. At the same time,
[Ker (, kybejh'fly): (R 1=Ik5 : (RI"/1Tm (, Ryla} TR | =[K; : ()" fn'=n"
or n according as {, €k, or not, so it is equal to [{x;> (k)" :(k;)"']. On the
other hand, (¥, kp{xj} ’/kp)=id. is evident, so Ker(, kp{xj} ’/kp)=<x,->~(k;;)'l .
Thus (10) and (11) are equivalent also in this case. q.e.d.

From this Corollary, we have easily

Corollary 2. Let A={x,, ---, x,.} be a strictly orthogonal m-ple in B, m=3
and ACN, ap(k {4} N (Q™)") at every X|(I). Then, any subset of CADCE™ is
again strictly orthogonal.

Let us denote the idéle group, the principal idéle group, and the ide¢le
class group of k by J,, P, and C, respectively. When a finite set S={pb} of
prime k-divisors are given, the restricted product JIjesky is a closed subgroup
of J,. We shall state here Hasse Normensatz in a little sharper form.

Theorem H. Let K|k be a cyclic extension, S be finite, and |’ be an open
G(K|[k)-subgroup of Jx containing 1lyesKy: Ky=3lpip Kp. Put P'=]'(Pg and
C'=]'|P'. Then P’ and C' are also G(K|k)-groups, C'==Cy, and there is an
exact sequence

1-P -] —>C—1.
The cohomology homomorphism
H(G(K[k), P") — H(G(K[k), J)
induced from the former is injective. In other words,

P’nNK/kJ’ = NgnP' .

The proof is given as a direct consequence of the isomorphism C’'=Cg
obtained by the approximation theorem, accordingly of H™Y(G(K/k), C')=
H™YG(K[F), Cx)=1.

When {x, y} is l-independent, we denote the Galois automorphism in



TRIPLING ON THE ALGEBRAIC NUMBER FIELD 159

G(k{x, y} [k) such that 2/F -t -%/%, v/ T -%/F by o

Proposition 1. Let {x,y} be strictly orthogonal and l-independent. We
fix any finite set S of prime k-divisors containing S’(x,y). Put k{y}=K and
o=c,in G(k{x, y}|k). Then we can find ac K> such that, putting M=k{x,y, a},

(12) & "=xmod (K*)"

(13)  G(MJ{y})=G(Mk{x})=Z(n) x Z(n)

(14) if PB|pe&S(oo) is real in k{x, y}, it remains so in M|k

(15) McQ! at every 1€ S((l)) under any inclusion M CE, over k{ix,y} CQ! given

by (5)
(16) M(& ) {x, v} ' [R(Ew){x, y}' is fully decomposed at p=S—S(I) in general but
inertial specially if n=2, §,& ky, and k {x} =k, {y} =k(£,).
Proof. Let us take, if any, p&S—S(/)and B|p in K. Put [Kgp: k)=d
(=d,) so the decomposition group G,(K/k)=<o | x"*>.
We shall treat the case /=2 at first. From (6), v/ x €Kg and it is easily
seen that

(17) X = NK;E/kpd\/E.

Here we want to apply Theorem H on

2y & () s BllesO) }
2, €(Kg),<Ls, 'V 75 BlpeS—SO)] .

Actually J£,DIlyes Ky, J&+ is G(K[k)-invariant and open, and from (5) and
(17),

Jto= {lTxe T

xENK/,,]}?, .
So, we can find u€ Pg,=Jg. N Px such that

x= Ngpu
namely € K™ such that

(18) us(@™) at P|leS()
(19) ue(Kg)<Cs VvV a)>; BlpeS—S().
Let us put
a=u€K*; 8§ = 1420+ +no"'€Z[G(K|k)] .
Then

@7 =yt o+ gy mod (K)”

and a ssatifies (12). Let us extend o € G(k{x, y} /k) to an element of G(K {u” |i=
0,1, ---, n—1} [k) in arbitrary way. Since €K we have &/ "' = /%" "1=1,
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so
o" =1id.  as an element of G(M/k)

which implies (13) immediately. The condition (15) follows from (18). When
B|peS—S()), using d=d, we reform 8 like as

n/d . n d-1 -1
$ = glo'l—l(l.z—}— z.zl); S = go PR , S — 2=o]°'rn/d .

We can put "’ =ut, mod (Kg)"; ¢|d using (19). Then
(20) wW=u LD = 4'=1mod (Kg)"<x) .
When specially /+3, we have also
(21) ¥ =yfE-DR.EIE-D@I-DB =1 mod (Kg)" +<x @D .
Thus
(22) a=1mod (Kg)" -{x>; BlpeS—S())
which implies (16) when /22 nor 3. When /=3 the last will become
(22)"  a=(ud ¥ )iror-+a"/4i= ) mod (Kg) +<x>; BlpeS—S()
using an 7(p)=0, 1, or 2. Tale any element AEL* such that
h={3"® mod (ky)"; pS—S(3), =1mod(%7)"; 1I(3)
and multiply a by this &. Then, ah, instead of a, will satisfy (12)~(16).
Let next /=2. Only when n=2, there may exist a p&.S—.S(2) such that

E4&ky, but such a p is unramified in K/k because of (7). We fix a local unit
element §,EKgp; pES—S(2), such that NKsp/"pEp:_l if d>1, t,&k,, and

V/—xEk, ie. in the special case of (16) and & =1 otherwise. We know
VE,EKgp at each P|pe.S—S(2) because it is evident from the first if d<n,
from (7) if K|k is totally ramified, and in the remained cass k(\/y)/k is intertial at
this p. By (8) “/—x is in Ky therefore so is %/ x, and (17) can be replaced by
(17) % = Nignp &,"*v/E%

where 4« indicates —x only when d>1 and /—x& kp and does +x in the
other case. Because, at first when fx= —x, Nigu, v/ —a= —x-{i¢ P =x.
When next +x=x and {,Ek,, d=1 or k,(v/x)=k, so [k("\/x): k]=c<<d and
NKﬂ;ﬂpd\/sz-g“j(”“)ﬂzx. When +x=x and {,&k, this is evident from our
choice of &,. This time we define J %z by

w0y E(Kg)" <> 5 BpeS(c0)
]IS“: nggE]K xs,BE(QIX)” > %IPES«Z))
g € (K5)" <84, &'/ ExD; BlpeS—S(2)) .
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Using again Theorem H we can find € Pg§,=J £, N Px such that

x= Ngpu
satisfying (18) and

(19) ue(Ky)" <Lu &V ExD; BlpeS—S(2)
u>0 at P|p&S(oo) if P isreal in k{x, y}.

The powers of &, in (20) and (21) can take the value 1 or —1 in this time so
(22) becomes here

(22 a=¢,mod (K§)"-{—1, V&>; BIpeS—S(2)
which implies (16). (v/Fx"*=1 is known by (8).) q.ed.

We have an alternative proof for Proposition 1. Namely, from the ortho-
gonality of x and y, using Theorem H in its original type (i.e. J'=]x) we can
find aK satisfying (12) and (13). For giving the local conditions (14), (15),
and (16), we may multiply a by a suitable element of £*, so as it is done in the
case /=3 in the above proof. This method will be much easier than that in
the body and moreover we can obtain the same conclusions starting from slightly
lighter conditions than the strict orthogonality. But we dare take this present
step for the convenience of the forthcoming Proposition 4.

Let x and y be /-independent and k{x, y} =L so G/(L/K) =z Z(n) X Z(n).
We shall call a group extension

1 — 2y L G- GLE — 1

a fundamentally non-abelian central extension (abbrev. an FNAC-extension) if
it is central, i.e., Imf is in the center of G, and f(1+nZ)=[s,, 5,]=
o;'0y'0.5,, ot=ay=id. taking some (accordingly any) &,Eg7¥o.) and
o,Eg"(a,). Take an a€L*, not an Ith power, and put L{a} =M. We define
f: Z(n)=G(M|L) by f(i+nZ)=oi;i=0,1, ,n—1, where o,:z/a—~tz/a.
If M/k is Galois and the canonical exact sequence
1 —» Z(n) 1> GO0 5 G R — 1

is an FNAC-extension, we say Mk is an FNAC-extension and {x, y, a}
generates it. Then {y, x,a™'} generates the FNAC-extension M/k and vice
versa. The Galois group G(M|k) has the structure G(M[k{x})=G(M|k{y})=<
Z(n) X Z(n) and extending the actions of o, and o, arbitrarily in Mk, G(M|k)=
o.>*G(M|k{x})=<o,>-G(M[k{y}) are semi-direct.

Proposition 2. Let {x,y} be an Il-independent pair in k* and ay < L*;
L=Fk{x,y}. Put M=L{a}. Then M|k is'an FNAC-extension and {x,y, a;}
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generates it if and only if there is an ac K> ; K=k{y} which is in a,+(L*)" and
satisfies (12) and (13).

Proof. Puto,=p and 0,=o. Assume M|k is an FNAC-extension generat-
ed by {x,y,a;}. Since G(M|K)=<p>*x<[p, o]P>==Z(n)X Z(n), from Kummer
theory there is an a€K™ such that z/a™1={.z/a, therefore a€a,+(L*)",
and z/a’=z/a. Noting (»/a=°) '=2/a®PCD=pn/g P11 = and
z/a="1"°1"1=1 we obtain (12). The condition (13) is given from the first. The
converse will be evident. q.e.d.

Let a and K be as in Proposition 1 and S, be the set of all the K-exten-
sions of pES. For the principal ideal (a) in K we can put

(23) (a)=a (mod n-th power, mod S)

i.e., (@)=a except n-th power K-ideal and Sk-factor, where a is a k-ideal
having no S-factor, because the ramification group of any p&S is in G(M/L)
so in the center of G(M/k) by Proposition 2. From the next proposition a
tripling symbol (x, y, 2) <) is well-defined by

2

(%, 3, z; k), (or simply (x, y, 2) etc.) = (Z>”

where (%)” is the power residue symbol defined by (@): /7 —>(-§) .

/%, using Artin symbol (’%}ﬂ‘)ec;(k{z} iy

Proposition 3. Let {x,y} in k* be l-independent and {x,y, =z} in k* be
strictly orthogonal. Let SDS’'(x,y,2) be a finite set of k-primes and a be as

above. Then (%) does not depend on the choices of S and of a and depends
only on {x,y, 2} mod (k*)".

Proof. Take another S’ and another &’ than S and a respectively. We
may assume SC.S’. We assume at first that {a, a’} in K* are /-independent.
Denote L=Fk{x,y}, M'=L{a'} and o}, o5, o, =G(M'[E) be the analogues of
G 0y 0, G(M[E). From (16), (a’) has no (S'—S)-factor except n-th power
S0 we can put

(¢")=a’ (mod n-th power mod S); a’ having no S’-factor.

By Proposition 2, we can construct a row-exact commutative diagram

1—> G(M/L) nj, G(MJk) —> G(LJk) —> 1

1 restr. ¢ l ¢ id.

1 — G(M|L) 2 G(M'|k) —> G(L|K)—> 1
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using an isomorphism ¢ such that ¢: o,—0c%, o,~0c), a,~0,. So, putting
~1
M"=L{aa’" "} the exact sequence

1 —> G(M"|L)—> G(M"[k) —> G(L[k) —> 1
is split because G(MM'|L)=G(M|L)x G(M'|L) and M"'=(MM’)<=">_ So

we can put
(24) aa’'=a,mod (L*)" by a suitable a,Ek>.
From (14)~(16), M"” C MM’ satisfies

M”|L is unramified at P|pe.S(e0)
M’cQ' at 1|())
L M"(&) {x, v} ' [R(E,) {x, y} ' is fully decomposed at peS—S(J).

Therefore, noting to ({—1, &7, " >+(kx)")" " =&, y>+ (K} ),

a,E(ky)"+<x, y>; PES(0)
(25) {1 aws@™); ()
ayrelx, y>- (k)" peS—S().

Since (a,)=aa’"" (mod n-th power, mod .S) from (24), we have

(2. = Gam) = Momsers(19), = Moes(®e 7)1

from (25) and orthogonality of {x,y,2}. When {a, a’} are not l-independent,
take a principal prime b=(4) in & such that be(k;)"' at any peSUS(a).
Then ab satisfies the conditions of a in Proposition 1, in fact (13) follows
from the [/-independence of {a, b} in L. Since {a, ab} and {ab, a’} are
l-independent respectively, using the former arguments again we have

(D@~

Later on we shall know that our (x,y, 2) can have a non-trivial value, in
fact we may use the forthcoming Theorem 2. But here we show this fact
directly when [#2. Take %, y, S, a, and M in Proposition 1. Multiplying
a suitable element in 2* to a if necessary, we may assume that a in (23) is not
an [-th power ideal in k. By means of the class field theory we can pick up a
2€k™ such that (2)=3 is a prime principal ideal outside S, fully decomposed

in Mk, ze(kX)" at peS but (2 ) =&, because k{x, y}/k is the maximal
) a/n J

abelian subextension in M/k. Then {x, y, 2} are strictly orthogonal, /-indepen-
dent, and
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(% 3, 2) = (—i—)“—-— E+1.

The strict orthogonality of {x, y, 2} is not entirely required in the proof of
Proposition 3. Namely, let {x, y} be strictly orthogonal and /-independent,

{», y, 2} orthogonal, and (&, z|k)),=1 for E€k N (Q™)" be satisfied, then (%)

is also uniquely determined after investigation of the proof. So, set Q'=the
maximal unramified /-extension over & for every I|(]). We denote the unit
group of % by U, and put

U = {2€k*|S(z)CS(l) and =z Up(E:)"; (D} -

Then the definition of (x, y, 2) can be extended to any triple elements {x,y, z}
such that {x, y} are strictly orthogonal and /-independent, {x, y, 2} are orthogonal,
and z€U,,. Let us think the symbol in this extended meaning. We have
U2 (F*) and [U,,: (k*)"]<<co. Let {x, y} be an l-independent strictly or-
thogonal pair such that pe.S(x, y)—S((/)) are all fully decomposed in k{U,,}.
Then we can see that

L=~Fk{x, y} has an unramified FNAC-extension if and only if (x,y, 2)=1 for
any 2EU,,.

Because, if this last condition is satisfied for {x, y}, we have (i—) =1 for a fixed

asL* and a given by Proposition 1 and (23). Using the class field theory we
can pick up @,EE* such that (a¢p)=a (mod n-th power), >0 at p| oo if n=2,
and a,€kF N (Q™)" for every I|(]). Replacing a by aaz?, {x,y, aay'} generates
an FNAC-extension by Proposition 2 and it is unramified over L. Conversely
let M/L be an unramified FNAC-extension generated by {x,y,a}. Then
a satisfies all the conditions of Proposition 1 and (¢)=1 mod (n-th power). So,
(%, 9, 2)=1; z€U,,.

2. Properties of (x, y, z)
Theorem 1. We assume that each tripling symbol can be defined:

I Our symbcel is multiplicative with respect to each component

(26) 1) (2, 3, 2) = (%, 3, 2) (&', 3, 2)
ii) (%, yy,s %) = (x! ¥ 2) (% ¥, 2’)
if) (2,3, 22") = (%, 9, 2) (%, 3, 2') .

II  When we substitute § by U'; t(Z[nZ)* at our definition,
27) (%3, 28)=(xy 25",
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II1  When an isomorphism r: k=K CEk which can be extended to Q'=Q" at each
[ over (1) is given, then puiting §"=t*; t&(Z[nZ)*, we have the following conjugacy
relation

(28) (%3, 2 CIR) = (2", ¥, &; LK) = (&7, 5", 275 CIRT) .
IV When k'|k is a finite extension, we have the following transgression relation

(29) 1) (x,r Y ZIk’) = (Nk’/kx,a Y ZIk)
ll) (x, y,, zlkl) = (x’ Nk’/ky,, Zlk)
iii) (x, 5, 2" |R") = (%, y. Nyp2' | k)

for x,y, 2k and x',y’, 2' €k’ the definition of the left hand sides being given
by the replacement of Q' to QV=k'Q'CEk],, at each k'-prime V|1|(l). Here we
need some assumptions for i) and ii) only when [=3: We assume for i)

{ L Eky at every PE Sy(x) N Sy(y) N S5(2)—S(3)
S Eky at every p'ESys(x") N Sws(¥) N Sis(2)—Sk(3)

and for ii)

{ L€k, at every PESy(x) N.Sy(y) N Sy(2)—S(3)
CanEky at every ' ESyy(x) N Sys(y") N Sws(2)—Sw(3)

Proof. Ii) Letl#2. Let L=k{x,y} and acK=k{y} be the ones in
Proposition 1, {x,y, a} generating an FNAC-extension M/kDL and samely
L'=Fk{x', y}, a’€K an analogue of a, {x’, y, a’} generating an FNAC-extension
M'[kDL'. Put M"=K{xx', aa’}. Then (aa’)'""=xx' mod (K*)", o=a,, so

G(M"|K)e=Z(n) X Z(n) .

From the splittings of two exact sequences 1—>G(M|K)—>G(M|k)—>G(K|k)—1
and 1->GM'|K)—G(M'[k)— G(K[k)—1 we know that 1—-G(MM'|K)—
G(MM' [k)—G(K[k)—1 is, accordingly 1-G(M"”|K)—G(M" |[k)—G(K[k)—>1 is
split. So

G(M" |k{xx'} )= Z(n) X Z(n) .

Thus, from Proposition 2, {xx’, y, aa’} can become the generator of the FNAC-
extension M”[k. We may assume S is taken in common. Since /52, the local
conditions (14)~(16) for aa’ are evident. So, aa’ is the one for {xx’, y} in the
meaning of Proposition 1. Using (a)=a, (a’)=a’, so (ea’)=aa’ (mod n-th
power, mod S), we obtain i). Use the forthcoming (47) and iii) if /=2.

ii) is obtained from i) using forthcoming (45) without vicious circle.

iii) is from the multiplicativity of power residue symbol directly.
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I By the replacement of { to ¢, =ao, in Proposition 1 is changed to o' be-
cause { is in k therefore {°=¢. For a satisfying (12)~(16),

1-af a(l—rr)(1+¢r+---+tr"‘1)

= x o+ +' 7 = o mod (R{y})".

a

Thus we know a'”" is that for (%,9,2;¢*) and
(x: ¥, 2 gt) = (fl‘x)n = (x, Y, %, L‘)‘—l .

IIT By this 7, the entries {x,y, 2}, o, @, and a of Proposition 3 are sent to
{«",y", 2"}, 7707, ", and a” respectively. Here a" becomes that for (x7, y", 2")
about ¢ and (12)~(16). Namely

@y a5t =(5) = (2) =@y =0y

a/a a

IV We shall show iii) at first. Take M of Proposition 1 for (x,y,2). Since
x and y are l-independent in k2’ by the assumption, M Nk'=k. By Proposition
2, MF' can be that for (x,y, 2'|k’). Then the assertion follows from the trans-
gression theorem of power residue symbol

(=55, = (Feah).

Samely as the proof of I, i) and ii) are derived from this applying the forth-
coming Theorem 3. q.e.d.

As we have seen, the conditions for Theorem 1, IV, i) and ii) come from
Theorem 3 (the reciprocity law). The following Proposition is used for the
norm theorem and the reciprocity law.

Proposition 4. Let {x,y, 2} in k* be strictly orthogonal, {x,y} be l-inde-
pendent and the set S contain S’(x, y)U S,2(2). Put k{y}=K and o,=o.

I We can find veE K™ satisfying the following conditions
(30) 2= NK/k k%

(31) ve(Kg) <> at P|peS(eo)

(32) ve(@Q™)" at BILQ)

(33) (v, Kg(Cw)ix, y}'[Kg) = id. at B|peS—S())
(34) (v)=B'"" (mod n-th power, mod S),

B being a K-divisor such that Sg(B)N Sg=0 .

II For any such v,
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35) (x, 9, 2) = (’igg)'l .

III We can make further B prime in K and outside anmy given finite set of
prime K-divisors.

Proof. We use J£. given in the proof of Proposition 1, replacing x in J§,
by 2. Then we know again 2& N/, PZ. so we can find vEK* satisfying (30)
~(32) and, instead of (19) and (19)’,

vE(Kg)" KLs &V ED; BIPES—S(), d=[Ky: k],

where & is the same one given there and +=z indicates —=2 only when /=2, d>1,
and \/—2z &k, and does -z in the other general case. When d>1 at this p,
we have \/¢, €EKgp because of (7) specially if /=2 and p is ramified, therefore
/%, as well as %/, is in Kg and

(x) gd]Kﬁs)n’ =1 ’ (y: ngKB)n’ =1
and noting that A,({y) {x, y}'[k, is an abelian extension,
(ep'd\/;z’ KSB(En’) {x) 3'} ,/KQS) == (2, kp(tn’) {x; y} '/kp) = id.

by the strict orthogonality of {2, x} and {2, y} and by Corollary 1 of Lemma 2.
So we obtain (33). When d=1, v&(K#)" +<z> so (33) can be obtained from
the same Corollary. Next take a P& Sx(v)—Sk, if any. The semi-local theory
of cohomology says that for the subgroup P3Z of the divisor group of K,

HY(G(K[k), TLp|,(B%/B"2)=H(G,(K|F), Z|n*Z)
— %2_ ZRZCnZinZ; d = [Ky: k).

Since evidently
Ngn(v)=(2)=1 (mod 7*-th power, mod S),

the p-factor of (v) represents an element of the above (—1)-cohomology group,
so we have
(2)=B'""C" (mod n’-th power, mod S)

using K-divisors B and € accordingly we have (34).

II Let a and a be as stated in Propositions 1 and 3. Choose a b&&* such that
(8)=(S(B)-factor of a)x(a product of peS(B)) and b (k;)” at pES, S(B)
being the k-projection of S(B). Taking ab~! instead of a from the first, we
may assume S(a) N S(B)=¢@. From (14) and (15), as(Kg)" -{x> if PESk(o0)
and ac(Q™)" if B|I|()). So, using (31), (32), and (2) we have
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(a, v|Kp), =1, for BIpeS().

At P Sy — Sx(l), we have a""<<x,y)>-(K§)” (or occasionally a, ve
Us~ (K3 ), n=2) from (16) therefore using (33) we have (v, Kg{a"""} '|Kg)=id.
and can obtain the same identity as above. Thus

(5 = (T55), = (). = Meescwn(245),

= IIges( (‘i%l—{), = <M>, = (gﬂe)”

a a
= (x, 9, 2).
III From the class field theory, we can find an element 5& K* such that =1

mod (K §)”/; Ks=>,e5 K,, and (b) is B times a K-prime which is outside any
given finite set of K-divisors. Substituting v by v6°~* the conditions can be
satisfied. g.e.d.

The next lemma is a variation of Theorem H, useful specially in the case
I=2.

Lemma 3. Let {x, y} be l-independent pair in k* and L=*k{x, y}. Let
S DT be two finite sets of k-primes and J' be an open G(L|k)-subgroup of J, con-
taining T1q gLy Puts J" =]+ L3 C J1; Ly =3 Ly, and then P'=J NPy,
P’'=]"NP,. We assume
(36) [Lp:ky)=n at P|peT.
Then
(37) NL/I:P”nNL/k]' = Ny P'.

Proof. At first we remark that, when G=Z(n)xX Z(n)DH and [G: H]=n,
the restriction map Resg,z: HYG, Z)—H3H, Z) is the nil-map, accordingly
about the injection map also

(38) Injgse: H3(H, Z)—> H™¥G, Z) is the nil-map

(see 3, vii)). Now, we put J'/P'=C" and J”/P”=C", then there are canonical
identifications
C'=C, and C”" =C;.

The class field theory says that there is commutative column-isomorphic

HAGER), ) L mewm, ¢

0

H™(G(L|k), Z) —> H™(G(L|k), Z),
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therefore from (36) and (38)
(39) (can.)*: H"Y(G(L/k), LT)—H"Y(G(L/k), C”) is the nil-map .

Let us consider the commutative row-exact diagram of cohomology groups with
respect to G(L/R),

B £ moe) — me) Lo m)
| o |

H(J") £ HY(0")—s B B7),
the columns being induced from inclusions. From (39) we have
Img' = Img"”
therefore (remembering the so-called Five-Lemma)
(KerZ)N(Kerf')=1.
This means (37) q.e.d.

Theorem 2. Let {x,y} be l-independent and {x,y, 2} be strictly orthogonal
in k*. We put L=k{x,y}. Define

JP =Tl xp= ], |xp(@™)" at P|leS((D))}
and PP=JPNP,. Then
(%, 9,2)=1
if and only if
2EN,, PP .

Proof. “If”-part. We put k{y}=K, z2=Nw; weE PP, and Ny zw=
veK*., Put S=S8'(x, y)U S,x(2). For p& S, L[k is unramified and
2 2
H"YG(L/k), ILp» PZ|P"?) = - Z|*Z CnZ|n’Z; e = [Lp: k)]
e
therefore we can put
40) (w)=scewnBi™ (mod n-th power, mod S) in L.
So, using the class field theory, we may assume from the first that
B,; p=G(LJk), are all L-primes fully decomposed in L[k

multiplying a suitable element in [T,cqm (LX)™" to w if necessary (see the
method of Proposition 4, III). Then we obtain

(41) (v)=%B"" (mod n-th power, mod S) in K
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taking N, /x of (40), where ®B is a product of G(L/k)-conjugates of B,’s and o=a,,
so

When I32, (32) and (33) are satisfied for this v by itself, so (x,y, 2)=1 by (42)
and (35). When /=2, we put

xpE(LF)"-<z>; P|pES(c0)

If, = { Il 2p€J? |(%p, /% | Lp); = (%p,%/y | Lp); =1 and

(xp, gILP)Z - 1; HESL—SL(Z) .
Since z/x mod (L})? and z/y mod (L3)? are Gp(L/k)-invariant at P€.S;—S,(2)
from (7), we know that I7, is an open G(L/k)-subgroup of J, containing
ITj¢sLy- Now Proposition 4 shows

RENg(PxNNyxli)CNpli, .
We apply Lemma 3 for J'=I3, and J”=]{ putting T=S—S((2)). Then
zENL/kP(LZ)nNL/kIEz = NL/kPls.z; sz == IfznPL

and we can make wE P}, from the first. Let us make p run on a representative
system of G(L/K)/Gg(L/K); BE Sx—Sk(2). Thenv=Nyxw=Np/xy (II, %),

and, since

1

(wp’ Lp{x, y} ,/LP) = (w, Ly {x, y} ’/Lpf)p =1;P = P
because of we P, (33) follows from

(v, Knp{x, y}'|Ks) = (Il @, Le{x, 3}'[Lp) = 1.

Thus in this case again (%, y, 2)=1 from (42).
“Only if”’-part. We put again S=S'(x, y)U S,2(2) and take v€K* as in
Proposition 4, specially B being a K-prime. From Proposition 4 and assump-

tion (x, y, 2)=1 we have
x| KY _
(e )=t

so, using further (31)~(33) and (3), we known v €N,/ J$’. By Theorem H we
can make vE Ny g PP, q.e.d.

Let us apply Lemma 3 on S=T=5(())), J'=J%, and J”=];. Then under
the assumption [Lp: k)]<n; P|p|(!) we have Ny4,P, N Ny, J’=N 4, P$. Thus
Theorem 2 becomes

Theorem 2a. Let {x, y} be l-independent and {x,y, 2} be strictly orthogonal
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ink*. We put L=k{x, y}. If

(43) [Lp: ky]=n at every P|p|(l)

or more sufficiently if

(44) rank G(Q'/k) =0o0r 1 at every 1|(1),

then (x, y, 2)=1 is necessary and sufficient for &N, L>
The next theorem was used in the proof of Theorem 1 already.
Theorem 3. Let {x, y, 2} be strictly orthogonal and l-independent.

I Then

(#5) ® 3,27 = (3% 3).

II We assume only when =3,

(46) L3 Ek, at any PE.Sy(x) NS5 y) NS3(2)—S(3) .

Then, for any I,

(47) (%3, 2)7 = (2,9, %).

Proof. I We use the notations of Proposition 1, so {x, y, a} generates an
FNAC-extension M/k over L=*Fk{x, y}. Since acL=k{y, x} and [o,, o,]=
[e,, o.]7" in G(M]E), from Proposition 2 there is an element bk{x} such that
{y, x, b} generates the FNAC-extension M/k and b=a"' mod(L*)". From this

(b)=a"! (mod n-th power, mod S) in L
for a of (23), so noting that (b) is in k{x},

(b)=a"! (mod n-th power, mod S) in k{x}
which means (45).

II To prove (47), we let at first [3=3. Let us take vE€Pg,, K=k{y}, such that
Ngpv=z2 and put

c=1v,8=1420+44ns"" o =o0,.
Then ¢ behaves on (2, y, x) as a did on (x, y, 2) in Proposition 1. Further, this
v was the very one in Proposition 4 and satisfies all the conditions there. So
we can put (v) =B'"7 (mod n-th power, mod S) in K, then we have (¢)=Ng,B
(mod #n-th power, mod ) in K and

= (L), ).
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The last is equal to (x, y, 2)™! by (35) in Proposition 4.
Let finally /=3. In this case ck instead of ¢ behaves as a% did in Proposi-
tion 1, where A€k was ‘
(48) heELL5>+(ky)" at pES and specially A& (k)" at 1| (3).
We investigate this condition in detail and will obtain

(49) (h,Txlk)"=1 at every peS

by a choice of . * If P& Sy(x) N Si(y) N Sy(2), (49) at this p is evident from (46)
and the latter half of (48). If pe=Sy(x), k(s x)/k is unramified at this p so also
(49) at this p is easy. If (beSy(y) and) ko( </ y )=k, n/d is divisible by 3 for
d=[k,{y}: ky] and we can obtain

e= (oot 2 mod (K )+
seeing the analogeous formula (22)” of @ in Proposition 1. This means that we
cake make AE£* N (k;)" so have (49) at p. If peE Sy(y) and ky(§/ y ) Rkp so it is
unramified,  can not lie in Sy(x) from the orthogonality of x and y at p so we
are induced to the previous case e Sy(x). If (PeESy(2) and) k(¥ 2 )=k, we
have again [k,(*\/ 2 ): k,]<<d so (21) becomes about our v
2*¥ =1 mod (Kp)'+<x>

and % can be in B N (ky)". If peESy(=) and ky(< 2) Rk, we have pesSy(x) as
we have seen before. Thus (49) is proved. From the product formula of
power residue symbol we have

).~ T3 =1
and we have again

9= (k). = (518) (314), - (214,
— (5,9, %) q.e.d.

In Theorem 3, we have settled the condition (46) only for the proof. Whe-
ther it is indispensable or not is a problem for future discussion. Of course
if &3,k then we can skip it and the statements of this theorem and accordingly
of Theorem 1-IV will become the simpler. Anyway (46) is not weakest pos-
sible for (47). For example, if

(50) {pESy(x)|Lamkt CSy(y) N Sy(z),
then the vanishing of the product of terms of (49)

s (), T c(5), =1
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can be checked investigating the above proof, which is equivalent to az—}ll-)—k) =1
and sufficient for (47). The condition (46) implies that the left hand side of (50)
is outside S3(y) N S3(z)—S(3), so different from (50).

We shall give a rather noteworthy example for application of the reciprocity
law. Before it we remark a matter. Denote the set of Q'/k’s by Q®. When
another set Q{"={Qi/k|1|(!)} of free pro-I extensions Qi/k, is given, the strict
orthogonality will be defined replacing Q® by Q" in (5). Then we say it
specially Q{"-strictly orthogonal. When a Q{"-strictly orthogonal pair {x, y} in
k* are given, the a of Proposition 1 will be called P1-element about Qf", x, ,
and S (or merely about #, y, and S if Q{’=Q®). Using this a, by means of
Proposition 3 we can define a tripling symbol for further element k™ if
{x, y, 2} are Q{"-strictly orthogonal, which will be denoted by (x, y, 2| Q{").
If ! cQ' at each 1| ({), the definition of (x, y, 2| Q{”) can be extended to zEk*
such that {x, y, 2} are Q®-strictly orthogonal, using (2) as we stated after Pro-
position 3. So, suppose like this and let @, be a P1-element about Q§", x, y, and
S(x, y, 2). Put

(4)=a, (mod n-th power, mod S(x, y, 2)) in K = k{y},

a, being a k-prime. By definition, a, is a Pl-element about x, y, and S(x, y, 2)
as it were and (¥, y, 2)=(2/a,),=(x, y, 2| Q§"). Namely, for such Q{’, l-inde-
pendent Q{P-strictly orthogonal pair {x, y}, and Q®-strictly orthogonal triple
{x, 3, 2},

(%, 3, 3) = (%, 3, leS”) ’

the right hand side being extended the confine of definition.

Now, let n=3, k=Q({), {=(—1++/—3)/2. Let \().Il/kI be the maximal
unramified 3-extension at the unique [|(3) and Q!/k, be a free pro-3 extension of
rank 2 containing Q} and the cyclotomic Z;-extension k({.)=R(,|m=3"; p=
1, 2,--). Let 2 be the set of the prime ideals £=(x) in & such that x&(Q}*)?
(note that the class number of k2 is 1). We take always the generator x of (x) so
that x&(Q*)’. Fix an t€¥ and put

Y= {9 = (y)€X—{x} | {x, y} is Q{"-strictly orthogonal mod (k*)%}
Z = {(y)=Y|the class number of k{x, y} is divisible by 3}.

Then {x, y, £}are strictly orthogonal mod (k*)? and 3-independent for any ye Y.
If we check the vanishing of values (¢, Ylk)s= (3, Clkp)s and (%, y|ky)s=
(¥, x| k); we know that a k-prime (y) is in ¥ if and only if Y is fully decomposed
in k{x, ¢}. In our case we have U=<¢>-(k*)3 so from the discussion after
Proposition 3, the reciprocity law (47) (note here the set of (46) is vacant), and
the aforementioned remark we can say that
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(%) (*&y)=1 if and only if (y)eZ
(Use standard knowledges of /-groups and genus fields.)
Let b be a P1-element about #, {, and S(x, §) (=S(x)). Put
(6)=Db (mod cubic power, mod S(x)) in k= k(&)
b being in k. After b and b are fixed, we can show, for any Yy=(y)& S(b) in ¥,

() x&y)=1 if and only if (Q’I’)_k)a - (b__| k{;’ &t >3

for some (so, any) Y |y. Because, let b’k be a Pl-element about x, {, and
S(x, £, y) (=8(=, y)) and put

(6")=V (mod cubic power, mod S(x, y)) in k

b’ being in k. As in the proof of Proposition 3, we can assume b and b’ are
different k-primes and can put bb’'~'=4, mod (¥*)?, bjyk*. Then from (15) and
(16)

bk N(Q™)
bo=>b mod (k{x, £} ) k{x, t}, = Symkix, L}y

over evident relation (b,)=bb"~! (mod cubic power, mod S(x)). So

5= (208), ~ (),

- (Bl (tt

by product formula. Here (b°’glk)=(yt|)k>, (b°’ -})Ik>=l by (2), and since

b is fully decomposed in k{x, ¢},

<b°,;vlk> _ (y, I;,|k>-1 _ (g%gyl _ <b|k{;c, c})".
Thus (*%) is proved.

Next, take a b,k such that (b,)=b. Since k(+/y)/k is unramified at I
and b=l

(),

so there is the reciprocity law of power residue symbol
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(218) — (Blk) .
b /s h /s

Put M,=Fk{x, {, bbi'} which is the unique FNAC-extension ovre k{x, {}/k
unramified except at [ such that MOCQI-kI{ Ut over canonical inclusion kCk,
because of Proposition 2. From the last equality, the right hand side condition

of (**) is equivalent to saying that 9 is fully decomposed in M /k{x, £}, accor-
dingly in M/k. Thus we obtain the next conclusion:

Take aveY. ThenyeZ if and only if it is fully decomposed in M|k .
From T'schevotareff density law,
(density of £)/(density of ) = 1/[M,: k{x, t}] = 1/3

as we alluded in Introduction.

3. Remarks and simple applications

1) In the above discussions k can be also an algebraic function field of one
variable over finite constant field of characterestic ==/, because we have used
only the class field theory here.

il) We can extend the definition of our triple symbol to any strictly orthogonal
{x,y, 2}, of not necessarily l-independent {x, y}. Namely, if x and y are in &%,
using the class field theory we can pick up two principal prime k-ideals (x")=z’
and (y')=Y’ outside S'(x,y) so that &’ €k* N (k¥e,,»)" and y €k*N
k¥ tey0en)” - Then we can define

(1) (%9, 2) = (=, 39", 2)(x", 33", 2) 7', ¥, )7, ¥, 2) .

In fact it is easy to check that the entries of each tripling in the right hand side
are /-independent and strictly orthogonal, using Corollary 2 of Lemma 2. From
Theorem 1-1, the value of this product does not depend on the choice of x’
and y’ and (x, y, 2) conserves its value if {x, y} is l-independent from the
first. When <{x, y>E (k*), say ye&=(k*)’, taking only x’ and defining (x, y, 2)=
(x’y v, 2)(x', ¥, 2)7" we have the same situation.

iii) After this extension of definition, the reciprocity law (Theorem 3) can remain
unchanged because each triple symbol in the right hand side of (51) admits this
theorem. But, the norm theorem (Theorem 2, 2a) can not hold any longer.
For example, let {x, ¥} be l-independent pair in £* such that {x, y, 1} is strictly
orthogonal mod (£*)" and let n=mn?, i.e., v=2u, m=I1"*. 'Then {x, y, 1} is strictly
orthogonal mod (). Using the same method in the end of section 1, we can
find 2€k* such that {x,y, 2} is strictly orthogonal mod (k*)" accordingly so
mod ()" and (%, ¥, 2)u=Cn (cf. Lemma 2 and Corollaries). Then

(xm) ym9 )= (%, 2)a=1
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but, from (x, y, 2), 31, setting all the matters in Theorem 2a
REN L L=k("V 2",V y")=k("V 2,V 7).

Nevertheless we can say that when <, y>d (k*)!, the norm theorem for
the extended (x,y,2) can hold good because, we may assume y& (k*)’ from the
reciprocity law, then it is easy to see that Proposition 4 can be available as it
is, which was essential for the proof of the norm theorem.

iv) For our purpose, the condition on Q' that G(.QI/kI) is a free pro-I group
was too methodical. In fact, we have used Lemma 1 only when Fjkt and F'[F
are abelian extensions with Galois groups of exponent at most #.  So, any Q'/k;
can be adopted in our arguments only if G(Q'/k)=®/®", where @ is the free
pro-I group and &"=(&Y, &'=[6, 8]-&", e.g. Q'/k, is a cyclic extension of
degree n*. When §={,, &, =+, £, in k' are l-independent and orthogonal at
I, we can find such Q'/k, containing k {&,, ---, £} [1], [8].

v) - We fix some finite set R of k-primes. When x, y in & satisfy

(52) one of x and y is in (%] ) at each peR

and all the conditions (4)~(8) outside R, we say x and y are R-strictly orthogonal.
Let us substitute S(o0), S((J)), and S by RU S(e), S((/))—R, and SUR (so
S(l) by RUS(l)) respectively in the conditions (14)~(16). Then, after the
accordant modification of J%., the Proposition 1 can stand for R-strictly orthog-
onal {x, ¥} and the Proposition 3 for R-strictly orthogonal {x, y, 2z}. Itis not
difficult to see Theorem 1 and Porposition 4 accordingly Theorems 2, 2a, and
3 will do for R-strictly orthogonal {x,y, 2} because it needs only the same
routine. We shall omit detailed discussions.

vi) Let k=@ and n=2. Furuta [3] defined also symbol [d}, d;, a]=+1 on @*
which has similar properties as ours, but there the reciprocity law is uncompleted.
Further his definition requires the full decomposition of each prime factor of a
in some genus field DQ(\/d;, V/d;) so defferent from ours. Let R be any finite
set of prime natural number. We fix Q?/Q, arbitrarily if 2&€R but such that
0%/@Q, is Galois and there is a surjection G(Q?/Q,)—>®/®&” for the free pro-I
group & if 2¢eR. When we extend the definition of (x, y, 2) to R-strictly
orthogonal {x, y, 2}, the confines of the definition of (x, y, 2)’s covers properly
Furuta’s. Anyway both are essentially the same when the symbol is defined in
both senses.

vii) Here we shall establish (38) in Lemma 3 in short. Let N be a commuta-
tive group on which G=Z(n) X Z(n) acts trivially. Take a group extension

1-—>N—f>(_;———g—->G—>1

and take &, 7 G such that g(z)=(1, 0), g(¥)=(0, 1).
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The class of this group extension is determined by
(fTE™) f71), f 7o, TD)ENXNXN .
When N=Z(n), by such a way we can identify
H*(G, Z(n)) = Z(n)X Z(n)x Z(n) ,

in fact the group of Proposition 2 provides, for example, a generator of the third
factor. When N=Z on the other hand, we know H%G, Z)=G therefore G is
always commutative and

'
Im (HX(G, Z) = HY(G, Z(n))) = Z(n)x Z(n)x0.
For our H CG such that [G: H]=n, we have easily
f(Py PD)EN"; P, P, EH=g"(H)CG .
We apply all these facts on the commutative row-exact diagram

H*G, Z) — H*G, Z(n)) - H¥G, nZ) — 1 (=nH3G, Z))
Res 1Res lRes
H%H, Z) — H¥H, Z(n)) > HX(H, nZ) — 1 (=nHH, Z)).

Then the right-most vertical map becomes the nil-map, so using the isomor-
phism nZ =Z, we have

(53) Im(Resgry: HYG, Z) - HYH, Z)) = 0.

Now, using the canonical exact sequence 0—Z—>R—>R/Z—0 of the
additive group of the real numbers R, we define the isomorphism 3, ,:
H*"YG, R|Z)=H*G, Z), g Z, for a general G and this §,_, , commutes with
Injz,¢ and with Resg,z for any HCG. By means of the cup product of
cohomology group

U: (HYG, Z), H"YG, R|Z)) - HYG, R|Z) = Z|[G: 11Z
we determine an identification H™*"YG, R/Z)=Hom((HYG, Z), R/Z). Since
Injizso (Reses2(@) U S) = @ U Iniyg (8); @€ HY(G, ¥), BEH'(H, %)
in general (see [9], espcially p 160), we obtain from (53)
Im(Injg,e: H3H, Z) - H™¥G, Z)) =0

(in fact both image groups of this and of (53) are isomorph for general G and
HcCG).
viii) Let {x, y, 2} be strictly orthogonal in 2* and 7 be an automorphism of &
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such that Q" =(Q")" at every I|(J), and
"=x", Y=y, 2'=2"mod(F)" and (" ={'
by natural numbers a, b, ¢, . Then, from Theorem 1,

(x: Y, 2")‘ = (x: Y, z)f = (x) Y, z)a‘m“1 .

Thus we know

Proposition 5. Ir such a case
(%, 9, 2|R")yELmy; m = ($—abc, n) (= g,.c.m. (F—abc, n))
for any k' Dk.
Apply Theorem 2a further. Then we obtain an example of Hasse principle:

Corollary. Let x,y, 2EQ* and they be strictly orthogonal in K and further
<z, y>E(B). Let Q'|Q, be a trivial or Z,-extension, i.e. rank G(Q'|Q))<1 and
put .QI=Q’kIC7éI for every U|(l). Then

2#MEN,, L if 2ENunjL
where L=k {x, y}.

Because, if /32, (#—1, n)=(3, n) for the generator = of G(Q(£)/Q) and if
I=2, G(Q(t)/@) has T such that =5 so (’—1, n)=(8, n).

We can show an example. Let n=5 and k=Q(¢;). Let QYk, be the
maximal unramified 5-extension, I|(5). In this case we can put Uu=<E;, &>+
(k*)%, é=(1++/5)/2 the fundamental unit. Fix the generator = of G(k/Q),
¢'=t? &'=&mod(k*)°. Let x and y in &* be 5-independent and strictly
orthogonal. Assume that k{x} and k{y} are Galois over @, in other words
{x>+(k*)® and {y)>+(k*)® are G(k/Q)-invariant, so we can put

¥'=x" and y'=y" mod (&*)’; a, bEZ .
Then we have the next sufficient condition for the divisibility of the class num-
ber, not coming from the genus theory:
When (a, b) = (1, 3), (1, 4), (2, 2), (2, 4), or (3, 3),
k{x, y} has unramified quint extension, being nonabelian over k
because (x, ¥, {)=1 and (x, y, E)=1 from Proposition 5, so k{x, y}/k is con-

tained in an FNAC-extension which is unramified over k{x, y} as stated in the
end of Section 1.
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