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Let R be a hereditary noetherian prime ring (an HNP ring for short) and
let F be a non-trivial right Gabriel topology on R, i.e., F consists of essential
right ideals of R (see §1 of [9]). Then R is a topological ring with elements
of F as a fundamental system of neighborhoods of 0. Let M be a topological
right R-module with a fundamental system of neighborhoods of 0 consisting
of submodules. Then M is called F-linearly compact (F-l.c. for short) if
(i) it is Hausdorff,

(i) if every finite subset of the set of congruences x=m, (mod N,), where
N, are closed submodules of M, has a solution in M, then the entire set of the
congruences has a solution in M.

This paper is concerned with F-/.c. modules over HNP rings in the case
F is special. Let 4 be a maximal invertible ideal of R and let F, be the right
Gabriel topology consisting of all right ideals containing some power of A.
Then we give, in §2, a complete algebraic structure of F,-lc. modules by
using Kaplansky’s duality theorem and basic submodules. From this result
we get: “Fy-lc. modules”=“F-pure injective modules”. This implication
is not necessary to hold for any right Gabriel topology as it is shown in §3.
It is established that there is a duality between F,-Lc. modules and left R,-
modules, where R, is the completion of R with respect to 4 (see Theorem 2.6).
Main results in this paper were announced without proofs in [11].

Concerning our terminologies and notations we refer to [8] and [9].

1. Throughout this paper, R denotes an HNP ring with quotient ring
Q and K=@Q/R=+0. Let F be any non-trivial right Gabriel topology on R;
“trivial” means that either all modules are F-torsion-free or all modules are
F-torsion. Then F consists of essential right ideals of R (see [9, p. 96]). Let
I be any essential right ideal of R. Define (R: I),={¢=Q|¢/SR}. Similarly
(R: J),={9=@Q| Jg<R} for any essential left ideal J of R. An ideal X of R
is called invertible if (R: X); X=R=X(R: X),. In this case we have (R: X),
=(R: X),, denoted by X~'. For any right Gabriel topology F, put Q,=U
(R: I); (IEF), the ring of quotients of R with respect to F. The family F; of
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left ideals J of R such that @, =@ is a left Gabriel topology on R, which is
called the left Gabriel topology corresponding to F. It is clear that Qp=QF =U
R: ]), (JEF;). Define Ry=lim R/I (I€F), the inverse limit of the modules
R/, and Ry, =lim R|] (JEF)). “Then both R, and Ry, are rings (see [16, §4]).
Let M be an F-torsion module. Then it is an Re-module as follows; for any
meM and i’z([r,—k]])EIéF, we define mp=mr,, where L is any element in F
contained in O(m)={r&R|mr=0}. Similarly, an F;-rotsion left module is
an R ,-module. In [7], we studied F-Lc. modules over a Dedekind prime ring.
All results in [7, §2] are carried over F-l.c. modules over any HNP rings with-
out any changes of the proofs. Here we pick up some of them which are fre-
quently used in §2. Let »: R— R, be the canonical map and F={L: right
ideals of R,|L> (I )I%F for some IEF}. Then Ry is a topological ring with
elements of F as a fundamental system of neighborboods of 0. For any Ry-
module, we can define the concept of F-l.c. modules.

(1.1) A module is an F-l.c. module if and only if it is an Re-module and
is an F-l.c. module (see Proposition 2.10 of [7]).

Let M be an F-lc. module. Then M* means the left module of all con-
tinuous homomorphisms from M into K, (=Qg/R), where K is equipped
with the discrete topology. It is evident that an element f&Homg(M, Ky) is
continuous if and only if Ker f is open. Let G be a left R ,-module. Then
we denote by G* the right module Hom#, (G, Ky) and define its finite topology
by taking the submodules Ann(N)={feG*|(N) f=0} as a fundamental system
of neighborhoods of zero, where N runs over all finitely generated R ,-sub-
modules of G.

(1.2) (Kaplansky’s duality theorem) Let M be an F-l.c. module. Then M*
is a left ]épl—module and M is isomorphic to M** as topological modules, where M**
is equipped with the finite topology induced by M* as the above (see Lemma 2.11
and Thecrem 2.12 of [7]).

2. Let A be a maximal invertible ideal of R and let F,={I: right ideal
of R|I2A4" for some n>0}, a right Gabriel topology. Then F,={]; left
ideal of R| J 2 A" for some m>0}. We denote the inverse limit of the modules
R/A" (n=1, 2, ) by R. Then R,,=R=R;, and it is an HNP ring with
the Jacobson radical A=AR=RA and with quotient ring Q=Q®R:R (see
Lemma 1.2 and Theorem 1.1 of [8]). F,-l.c. modules and F,-torsion modules
are said to be A-lc. modules and A-primary modules, respectively. We note
that K, =Q/R, because Kr,— UA"/R=(UA"|R)Q=R=UA"|R=Q/R.

In this section, we shall give a complete algebraic structure of 4-Il.c. mod-
ules. We can see from (1.1) that a module is A-Lc. if and only if it is an R-
module and an A-Lc. module. If 4 is a maximal ideal of R, then R is a Dede-
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kind prime ring with unique maximal ideal A. Thus, in this case, the alge-
braic structure of A-lLc. modules has been characterized in Theorem 3.4 of
[7]. If 4 is not maximal ideal, then 4=M,N ‘- N\ M,, where M,, ---, M, are
all maximal idempotent ideals of R and is a cycle, i.e., O, (M;)=0,(M,), -+,
0,(M,)=Oy(My), where O,(M;)—{g€Q| Mq= My} and O,(M,)— € Q| ¢M,S
M,}. Furthermore, we have the following (see Theorem 1.1 of [8] and Lemma
4 of [10]):
ks k»

— — S
(a) Ié—(elléea - Be,R)D-- @(epl/i)EB @el,lé), where each e;R is a uniform right
ideal of R, ¢, is idempotent in R, ¢, R/e Aisa simple module annihilated by M; and
k; is the Goldie dimension of R/M;.
(b)y A=M,n - nM,,, where M, -- M are all maximal idempotent ideals of R
and is a cycle, andM M;R=RM, for each 1 (1<i<p).

Lemma 2.1. Under the same notations as in (a) and (b), we have the follow-
ing
(1) (e A+ - +e; A+ R=0,(M,,,)=0,M,) (1 <i<p and p+1=1).
2) Re; /Ap, is left M-primary, i.e., each element of Re, /Ap is annihilated by M;.

Proof Flrstly we note that A‘lu(e A - EBel 1)EB @(e,,A’l@

@®e,A™) and A'=O,M))+ - +0,(M,), because O(M;)=(R: M;),. Thus
we have
() AYR=(eA+ - +e A"+ R)RD -+ B(e,A™+ + +e, A+ R)/R, and
(@) A-l/zé O((M)[RD -+ DOLM,)/R.
It is clear that O,(M )/Ié is M;-primary. Since eé/eA is a uniform and in-
jective R-module, it is a uniform and injective R-module by Lemma 2.4 of [8].
Thus we have eA‘l/e R is M,+1-pr1mary by periodicity theorem and (a) (see
Theorem 22 of [4]). It follows that (e;A")M,,,Se, RS R and e,A"'S O,(M,,,).
Thus (1) follows from (c) and (d).

(2)  Since O,(M)=0,(M,,,), we have M(e,A)SR by (1) and hence
M,e;S Ae;. This implies that Re;/Ae, is M, ;~primary as left modules.

Let M be an R-module. Then write M t=Homg(M, K ).

Lemma 2.2. Under the same notations as in (a) and (b), we have
(1) for any positive integer n and any i (1<i<p), (e;R/e;A")= IA?ej/A"ej for
some j (1= j=<p).
(2) (e,ﬁ)’zée;/]@ei=E(1?ei_l/Ae,~_l), the injective hull of ﬁei_l/Ae;_l, where
1=<:i<p and i—1=p if i=1.
3) (e,-é)’:ée,. for each 1 (1<i<p).
(4) (e;@)e;R)t=Re, for each i 1<i<p).

These modules are all A-l.c. modules.
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Proof. (1) Cleatly (¢;R/e;A")i=A""¢,+R|R=A""¢,| Re; by left multiplica-
tions of elements in fi"‘e;. A"‘e,-/l/i)e,- is a uniserial module of length # with
composition factor modules A~*e,[A~¢-De, (1<k<n and A-°=RK). There is
j (1= j=<p) such that A="¢;/A=*-Y¢,= Re;/Ae; and then Re;|A"¢;= A-"¢;| Re, by
the periodicity theorem.

(2) The first isomorphism is also obtained by left multiplication of ele-
ments in Q¢;. The second isomorphism follows from the periodicity theorem.

(3) Let x=xe; be any element of Qe,-. Then a mapping \,: ,Q—Kp,
given by A,( y)=[xy—|—ﬁ] ( yEe,Q) is a homomorphism. Assume that A,=0
and x=0. Then xé=xe,-é; IAQ, that is, xeR. Hence RxRQ<R. But
RxR contains a regular element in R and so I@xé@:é, a contradiction. Hence
we may assume that ée,-;(e,é)*. Conversely, let f be any non zero element
in (e,-é)" and let f(e,-):[q—}—ﬁ], where q:qe,-eé. Since (f—2\,) (e,-ﬁ):O, f—2,
induces an element f—n, in (¢;Q/e;R)!. Since Q/R=e,Q/e, RD(1—e,)Q/(1—e;)
R, we may consider that f—x,&(Q/R):. By Proposition A.3 of [8], R=(Q/R)*.
Hence f—a,=, for some reR and f—2=2\,. So we get that (e,-(f))*cée,-
and therefore (e,-@)’zée,-.

(4) The exact sequence 0—>e,-1?—->e,-@—>e,-é/e,~]?—>0 induces the exact
sequence 0——>(e,-é/e,.1%)"—>(e,0)’—>(e‘-RA)“—>0, because Ky, is injective. 'The as-
sertion follows from (2) and (3). The left modules in (1) and (2) are artinian
and A-primary. So they are 4-/c. modules in the discrete topology by Lemma
2.1 of [7] (as it has been pointed out in §1, all results in [7, §2] hold in F-lc.
modules over any HNP rings). R is an A-lc. modules by Lemma 2.4 of [7].
Thus it follows that Re; is also an A-Lc. module. Finally consider the exact
sequence 0—>ée,-—>@e,-—>QAe,-/Iée,-—->0. ée,- is a topological module by taking as
a fundamental system of 0 the submodules {A”e,-ln=0, +1, £2, ---}. Hence
ée,- is an A-I.c. module by Proposition 9 of [20].

Following [9], a submodule L of a module M is called F*-pure if MJ N L=
L] for any JEF,. Let F, be the right Gabriel topology of all essential right
ideals of R. Then “an Fj-pure submodule” is merely called a pure submodule.

Consider the following condition:

(e) all finitely generated F and F,-torsion modules are a direct sum of cyclic mod-
ules.

This condition is satisfied by any topologies F and F; on R if R has enough
invertible ideals and so, especially, if R has a non zero Jacobson radical (see
Corollary 3.4 and Theorems 4.12, 4.13 of [3]). If all F and F)-torsion modules
are of bounded orders, i.e., unfaithful modules, then this condition is satisfied,
because every factor ring of an HNP ring is serial (Corollary 3.2 of [1]). Note
that [9, Lemma 1.2] is still valid for topologies F and F; on any HNP ring R
satisfying the condition (¢). Furthermore, if R has a nonzero Jacobson radical,
then a submodule L of a module M is pure if and only if McN L=Lc for any
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regular element ¢ in R by Proposition 3 of [19] and the remark to Theorem
3.6 of [15].

Lemma 2.3. Let R be an HNP ring with the Jacobson radical A and A be
a maximal invertible ideal of R. If as hort Jexact sequence 0—->L—>M->N-—>0 is

pure, then 0—Hompg(N, K)~>HomR(M K)—>HomR(L K)—0 is pure as left R-
modules.

Proof. Let ¢ be any regular element of R and let ¢f=g@B be any element
in cHomg(M, K)N (Homg(N, K))B*, where f&Homg(M, K) and g&Hom,
(N, K). Since gBa(L)=0, we have a(L)CKer gB@=Ker ¢f. There is a nature
number 7z such that ReD A4". It follows that 0=Rcfa(L)2A"fa(L). Put fa(L)
=X/R, where X is a submodule of @ containing R. Then A"XSR and so
XS (R: A"),=A7"=(R: A");. 'Thus we have XA"SR. This implies that for
(L)A"=0. Put M=M]/a(L)A". Then L=a(L)/a(L)A" is pure in M, because
L is pure in M. It follows from Theorem 3 of [13] and Theorem 1.3 of [14]
that L is a direct summand of M, because L is of bounded order. Thus we have
the following sequence;

MAH=LemSmik,
where 7 is a natural homomorphism, 7 is a projection map from M to M, (M, is
a submodule of M) and f; is the map induced by f (note that fa(L)A"=0).
Put h=fzn and let x be any element of M. Write X=%+%, (x,Sa(L) and
x,€M,). Then ch(x)=cfirn(x)=cf|(®,)=cf(x,). Since x—x,ea(L)+a(L)A"<
a(L) and ¢f a(L)=0, we have ch(x)=cf(x,)=cf(x). Therefore ch=cf. By the
construction of s, h(a(L))=0. This entails that % induces a map k: N—K
such that k3=h. Hence we have ¢f=ch=ckB & c(Homg(N, K)) B8*, as desired.

Theorem 2.4. Under the same notations as in (a) and (b), a module is an A-
l.c. module if and only if it is isomorphic to a direct product of modules of the fol-
lowing types:

e;Rle; A (n=1, 2, «++), E(ei}%/e,-fi), the injective hull of e,R/e;A, e;,R and e;
(@Q®:k) (1i=p).

Proof. 'The sufficiency follows from Proposition 1 of [20] and Lemma 2.2.
Conversely let M be an A-Lc. module. Then M* is a left R-module by (1.2).
So M* has a basic submodule B by Theorem 2.1 of [8]. Then B is a direct
sum of modules of types; Re; /A e; and Re; (1=i<p) and n=1, 2, -+), and
M*|B is a direct sum of modules of types; E I%e,/Ae, and (Q®Ré)e,~ (see
Theorem 2.2 of [8]). Then from pure exact sequence 0—B—M*—M*/B—0,
we derive the pure exact sequence 0—(M*/B)t—>M**—Bt—( (as right R-
modules) by Lemma 2.3. By Lemma 2.2, (M */B)* is a direct product of mod-
ules of types; e,(Q®Rl?) and ¢;R. Here ¢(Q®zR) is an injective R-module.
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Since R=Hom(K; o Kr A)QHomﬁ(QA/k, é/]@) (see Lemma 1.5 and Proposition
A.3 of [8]), R is a pure injective R-module by Propositions A.5, A.6 of [8] and
Theorem 3.5, the remark to Proposition A.5 of [9], i.e., R has the injective
property relative to the class of pure exact sequences and so is e;R. Hence
(M*|B)* is also pure injective. This entails that M**=(M*/B}*® B¢, and the
assertion follows from (1.2) and Lemma 2.2.

Lemma 2.5. Let M be a left R-module and let m be any non zero element
of M. Then there is an element f in M* such that (m) f==0.

Proof. Rm is a finite direct sum of modules of types; I@e,./fi"e,- and Re
by Theorems 2.1 and 2.2 of [8]. Thus the assertion follows from Lemma 2.2,
because K, is an injective R-module.

Theorem 2.6. Let R be an HNP ring and let A be a maximal invertible
ideal of R. Then

(1) Let M be any A-Lc. module. Then M* is a left R-module and M=M*.

(2) Let M be any left R-module. Then M? is an A-lLc. module in a certain
topology and M==M** (M?* is equipped with the finite topology).

Proof. (1) is clear from (1.2).

(2) Let M be any left R-module. 'Then M? is a direct product of modules
of types in Theorem 2.4 (this is proved in the same way as in Theorem 2.4 by
using basic submodules). Thus M?* is an A-l.c. module. Now M?* is equipped
with the finite topology (it is not requested that M?* is an A-I.c. module in the
finite topology). Let B: M—M?* be the natural map given by ((m) B) (f)=
(m)f, where meM and feM?* Note that (m)BeM**, because Ker(m)B=
{geM*?|(m)g=0}. By Lemma 2.5, 8 is a monomorphism. To prove that
B is an epimorphism, let ¢ be any element in M**. Since Ker g is open in M¥,
there is a finitely generated left module N of M such that Ker g2Ann(N).
Write

(%) N=3., 3@ Re)/ A" e D Re, (1Sk=p),

where #;;=0. Thus N is a left A-/.c. module by Lemma 2.2. Consider the
following commutative diagram;

M
7
g g
Ni{=M*!Ann(N) —> Ky,

where » is a natural map, 2 is a map induced by g and & ([f+Ann(N)])=f|N,
the restriction map of f tc NV (f&M?®). Let h be any element of N¥. Then
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there is a natural number #z such that A”(N ) k=0, because N is finitely generated.
This entails that Ker h237?_, Zj@fi"e;/fi""f DDA, open in N (in the
topology given in Lemma 2.2). Thus we have A& N* and hence N*=N%
It follows from (1.2) that a: N=N*®. So, for the element g8-'N* there is
an element &N such that (n)a=gd7}, i.e., (n) @) 8=g. Now let x be any ele-
ment in M*. Then we have g(x)=gn(x)=((n) a) dn(x)=(n){8n(x)} =(n) {5 [x
+Ann(N)]} =(n)x=((n) B) (x). Hence g=(n) B, as desired.

3. In this section, we study relationships between F-l.c. modules and
F®-pure injective modules in case F is special. A module G is F“-pure injective
if it has the injective property relative to the class of F“”-pure exact sequences.
Let A be a maximal invertible ideal of R. Then Fj-pure injective modules are
just called A-pure injective modules. 'The cancellation set of 4, C(A4), is defined
to be {tER|cx€A=>xcA}={cER|cxcA—>xcA}. By [6], R satisfies the
Ore condition with respect to C(4) and the local ring R, of R at 4 is an HNP
ring with Jacobson radical AR,=R,A. Note that a module 7' is A-primary
if and only if it is an R,-module and torsion as R,-modules (see the proof of
Lemma 2.4 of [8]). Since R, is R-flat and the inclusion map: R—R, is an
epimorphism, we have the following

Lemma 3.1. (1) An exact sequence 0—L—->M—->N—0 is A-pure, then
the induced sequence 0—>LQ@pR,—>MQrR,—~>NQrR,—0 is exact and is pure
as R ,-modules.

(2) if an exact sequence 0—>L—M—->N—>0 of R, -modules is pure as R,-
modules, then it is A-pure.

Proof. Use (3) in Lemma 1.2 of [9].

Lemma 3.2. Let F be a right Gabriel topology on R satisfying the condi-
tion (e) and let G be any F°-pure injective module. Then G=D@H, where D
is an injective module, and H is F-reduced, F°-pure injective and F7-complete.
In particular, H is an R ~module.

Proof. The proof of Theorem 3.2 of [9] may be used unaltered to yield
this lemma.

Proposition 3.3. Let G be a reduced module, i.e., G has no non zero in-
Jjective submodules. Then

(1) G is A-pure injective if and only if G is an R -module and is pure in-
jective as R ~modules.

(2) G is A-pure injective if and only if G== é=ll<_r_n G|GA".

Proof. (1) Itis clear from Lemmas 3.1 and 3.2. (2) follows from Theo-
rems 3.2.4 and 3.3.3 of [18] and (1), because R, is a bounded HNP ring.
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From Theorem 2.4 and Proposition 3.3, we have
Corollary 3.4. A-l.c. modules are A-pure injective modules.

In general, it is not necessary to hold that (F-Lc. modules)=>(F“-pure
injective modules). We will end up this paper with giving a counter example.
To do this, let B be an idempotent ideal of R. Then write

(f) F,= {I|IO/(B) = O,(B), I: right ideal of R} .
F, = {I|I0,(B) = O((B), I right ideal of R} .

Then Fy={J |O,(B) J=0,(B), J: left ideal of R}, and F,={] |O,(B) J=0,(B),
J: left ideal of R}. Since BO,(B)=B, O,(B)B=0,(B), BO,(B)=0,B) and
O,(B)B=B, we have F,,={J|J 2B}, F,={I|I2B}, F,»B and F,®B.

Proposition 3.5. Under the same notations as in (f), let G be any module.
Then

(1) G is an Fy-l.c. module if and only if it is a direct product of modules of
types (R: J),/R, where J is a left ideal of R containing B.

(2) G is an Fy-l.c. module, then it is a direct sum of modules of types R|I
(I 2B).

Proof. (1) The sufficiency is evident from Proposition 1 of [20], Pro-
position A.1 of [8] and Lemma 2.1 of [7]. Let G be an F}-l.c. module. Then
G* is a left I@FU(=R/B)-module by (1.2). Since R/B is a serial ring, G* is
a direct sum of cyclic modules (see Theorem 1.2 and Corollary 3.2 of [1]). Write
G*=31BR/]; (J;=2B) and then G=G*=II(R: J;),/R by (1.2).

(2) is clear, because any F,-/.c. module is an I?Fz (=R/B)-module.

Let C be an idempotent ideal of R such that
(8) O.(B) = 0(C).

Then F,={I|I 2C, I; right ideal of R}. Note that there exists an idempotent
ideal C of R satisfying the condition (g) for any idempotent ideal B of R if R
has enough invertible ideals. In the absense of the condition of having enough
invertible ideals, we can easily find a pair of idempotent ideals B and C satisfy-
ing the condition (g) (see [4]).

Lemma 3.6. Under the same notations as in (f) and (g), let 0—L—>M—
N—>0 be an exact sequence. Then it is Fi-pure if and only if the induced sequence

(¢) 0—-L/LB—M|MB
is splitting exact.

Proof. The sufficiency is clear. To prove the necessity, assume that
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the sequence is Fi-pure. Then (¢) is exact and is Fi-pure. Since a module is
a finitely presented R (=R/B)-module if and only if it is a finitely generated and
F,-torsion module, (¢) is pure as R-modules in the sense of [19] by Proposition
3 of [19] and Lemma 1.2 of [9]. Furthermore, since M=M/MB satisfies
Singh’s conditions (I), (II) and (III), L is A-pure in the sense of Singh (see
Theorem 1.3 of [14]). Hence L is a direct summand of # by Theorem 3 of
[13], because L is of bounded order.

Proposition 3.7. Under the same notations as in (f) and (g), a reduced
module is Fi-pure injective if and only if it is an R|B-module.

Proof. This is clear from Lemmas 3.2 and 3.6.

ExampLE 3.8. Under the same notations as (f) and (g), R/C' is an F-Lc.
module in the discrete topology. But it is not an Fi-pure injective module.

Proof. R/C is an artinian and Fj-torsion module. So it is an Fj-l.c. mod-
ule in the discrete topology by Lemma 2.1 of [7]. Assume that it is F{-pure
injective. Then it is an R/B-module by Proposition 3.7. This implies that
BSC and so O(C)=0,B)=(R: B),D(R: C),=0,(C). Thus we have C=
0,C)C>20,(C)C=0,(C)DR, a contradiction.
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