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Let R be a hereditary noetherian prime ring (an HNP ring for short) and
let F be a non-trivial right Gabriel topology on Ry i.e., F consists of essential
right ideals of R (see §1 of [9]). Then R is a topological ring with elements
of F as a fundamental system of neighborhoods of 0. Let M be a topological
right Λ-module with a fundamental system of neighborhoods of 0 consisting
of submodules. Then M is called F-linearly compact (F-l.c. for short) if
(i) it is Hausdorff,

(ii) if every finite subset of the set of congruences x^m^ (mod ΛΓΛ), where
NΛ are closed submodules of M, has a solution in M, then the entire set of the
congruences has a solution in M.

This paper is concerned with F-Lc. modules over HNP rings in the case
F is special. Let A be a maximal invertible ideal of R and let FA be the right
Gabriel topology consisting of all right ideals containing some power of A.
Then we give, in §2, a complete algebraic structure of FA-Lc. modules by
using Kaplansky's duality theorem and basic submodules. From this result
we get: "FA-Lc. modules''=^".F5-pure injective modules'*. This implication
is not necessary to hold for any right Gabriel topology as it is shown in §3.
It is established that there is a duality between FA-l.c. modules and left &A-
modules, where RA is the completion of R with respect to A (see Theorem 2.6).
Main results in this paper were announced without proofs in [11].

Concerning our terminologies and notations we refer to [8] and [9].

1. Throughout this paper, R denotes an HNP ring with quotient ring
Q and K=Q/RΦO. Let F be any non-trivial right Gabriel topology on R;
"trivial" means that either all modules are F-torsion-free or all modules are
F-torsion. Then F consists of essential right ideals of R (see [9, p. 96]). Let
/ be any essential right ideal of R. Define (R: I) t={q^Q \qlSiR}. Similarly
(R: J)f= {q<=Q \JqSR} for any essential left ideal / of R. An ideal X of R
is called invertible if (R: X)tX=R=X(R: X)r. In this case we have (R: X)t

=(R: X)ry denoted by X'1. For any right Gabriel topology F, put QF= U
(R: /)/ (I^F), the ring of quotients of R with respect to F. The family Ft of
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left ideals J of R such that QFJ=QF is a left Gabriel topology on R, which is
called the left Gabriel topology corresponding to F. It is clear that QF=QFι= (J

(R: J)r (/ejFj). Define J$F=lim Rjl (7eF), the inverse limit of the modules

R/I, and fcF= lim R/J (/eί1/). *~Then both RF and J?F/ are rings (see [16, §4]).

Let M be an -F-torsion module. Then it is an jf?F-module as follows; for any

m^M and ^— (!//+/]) ̂ /?F, we define mϊ=mrL, where L is any element in F
contained in O(m)= {r^R\mr=0}. Similarly, an F/-rotsion left module is
an 7eF/-module. In [7], we studied F-Lc. modules over a Dedekind prime ring.

All results in [7, §2] are carried over F-Lc. modules over any HNP rings with-
out any changes of the proofs. Here we pick up some of them which are fre-

quently used in §2. Let η\ R-^Kp be the canonical map and F={L: right

ideals of RF\L^η(I)RF for some I^F}. Then RF is a topological ring with
elements of F as a fundamental system of neighborhoods of 0. For any KF-

module, we can define the concept of F-Lc. modules.

(1.1) A module is an F-Lc. module if and only if it is an RF-module and

is an P-l.c. module (see Proposition 2.10 of [7]).

Let M be an F-Lc. module. Then M* means the left module of all con-

tinuous homomorphisms from M into KF (=QF/R)> where KF is equipped
with the discrete topology. It is evident that an element /G=HomΛ(Λf, KF) is

continuous if and only if Ker / is open. Let G be a left JxF/-module. Then

we denote by G* the right module Hom^^Gr, KF) and define its finite topology

by taking the submodules Ann(ΛΓ) = {/e G* | (JV) /— 0} as a fundamental system
of neighborhoods of zero, where N runs over all finitely generated ^^sub-
modules of G.

(1.2) (Kaplansky's duality theorem) Let M be an F-Lc. module. Then
is a left RF -module and M is ίsomorphic to M** as topological modules, where Λf **

is equipped with the finite topology induced by M* as the above (see Lemma 2.11
and Theorem 2.12 of [7]).

2. Let A be a maximal invertible ideal of R and let FA={I: right ideal
of R\lSAn for some n>0}, a right Gabriel topology. Then FA={J'9 left

ideal of R \ J 3Am for some m>0} . We denote the inverse limit of the modules

R/A" (w=l, 2, — ) by J?. Then &FA=R=JRFAί and it is an HNP ring with

the Jacobson radical A=AR=RA and with quotient ring Q=Q®RR (see
Lemma 1.2 and Theorem 1.1 of [8]). FA-Lc. modules and ^-torsion modules
are said to be A-Lc. modules and A-pήmary modules, respectively. We note

that KFA=$IRy because KFA= VA-nIR=(\jA-nIR)®κR^vΆ-nIR=QIR.
In this section, we shall give a complete algebraic structure of A-Lc. mod-

ules. We can see from (1.1) that a module is A-Lc. if and only if it is an J?-
module and an A-Lc. module. If A is a maximal ideal of R, then R is a Dede-
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kind prime ring with unique maximal ideal A. Thus, in this case, the alge-
braic structure of A-l.c. modules has been characterized in Theorem 3.4 of
[7]. If A is not maximal ideal, then A=M1Γ( ••• ΓlMp, where Λ/i, •••, Mp are
all maximal idempotent ideals of R and is a cycle, i.e., Or(M1)=Ol(M2), •••,

Or(Afί)=Ol(M1), where Or(M1)={jeQ|M1?SM1} and O,(M2)={qeQ\qM2£
M2}. Furthermore, we have the following (see Theorem 1.1 of [8] and Lemma

4 of [10]):
_ kι _ kp

(a) &=(ejί® @el&)@ ®(ep&@ "®eptl), where each e^ is a uniform right
ideal of J?, e{ is idempotent in J?, ejR/egA is a simple module annihilated by M, and
kf is the G oldie dimension of R/M{.
(b) A=Mι Π *•• Γ\MP, where Mh •••, Mp are all maximal idempotent ideals of R
and is a cycle, and rfti=Mi&=JRMifor each i

Lemma 2.1. Under the same notations as in (a) and (b), we have the follow-
ing

(1) M-̂  - +eiA-l)+&=Ol(ώi+l)=Or(lfri) (Ifi^P andp+l = l).
(2) RefIAet is left Mi-primary, i.e., each element of Re^Ae^ is annihilated by M,-.

Proof. Firstly we note that A~1=(e1A~1® ••• θ '̂1)® •" ®(epA~l® •••

®epλ-1) and A-1=Ol(lti1)+ - +Ot(Mp\ because O/(JOΓ

ί)=(J&: M,-)/. Thus
we have
(c) A-1l&=(
(d) A^I^

It is clear that O^M^/R is Λfrρrimary. Since ef^le^A is a uniform and in-
jective .R-module, it is a uniform and injective Λ-module by Lemma 2.4 of [8],
Thus we have βfA^/efR is Mί+1-primary by periodicity theorem and (a) (see

Theorem 22 of [4]). It follows that (^"1)M'f.+1£^^S^ and ̂ "^O/ί^+i)-
Thus (1) follows from (c) and (d).

(2) Since Or(Λ3r

/)=O/(Λ2rί+1), ^we have ffri(eiA-1)£ί& by (1) and hence
Miβi^Aef. This implies that Re^Acf is M^-primary as left modules.

Let M be an R -module. Then write M*^Hom£(M, KF^.

Lemma 2.2. Under the same notations as in (a) and (b), we have

(1) for any positive integer n and any i (l^i^p), (ei&leiA
n)*=ReJIAnej for

somej (l^j^p).

(2) (ei&f^eil&ei^Efaf-jAei.j), the injective hull of ϊie^lAe^ where
l^i^S p and i — l=p ifi=ί.

(3) (*,$)*=&, /or each i (1 ^i^p).
(4) (βiόlei&^&ei for each i (l^i^p).
These modules are all A-l.c. modules.
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Proof. (1) Clearly (ei&leiAy=A~*ei+&l&=Jh"*,/^ bY l e f t multiplica-
tions of elements in A~ne^ A~neilKei is a uniserial module of length n with
composition factor modules A~kei/A~(k~1)ei (ί^k^n and A~Q=R). There is

j (l^j^p) such that λ"nei\λ'(ίΛ"^ei^ίίei\Aβj and then ίίej\frejdA-*ei\ίlβi by
the periodicity theorem.

(2) The first isomorphism is also obtained by left multiplication of ele-

ments in Q£, . The second isomorphism follows from the periodicity theorem.
(3) Let x=xβi be any element of Qe{. Then a mapping λΛ: efi-^Kp^^

given by ^x(y)=[xy+R] (y^ejQ) is a homomorphism. Assume that λΛ—0

and #Φ0. Then x($=xe$£&, that is, #ej?. Hence &x&QS=R. But
j£#J? contains a regular element in /? and so RxίiQ=Q9 a contradiction. Hence
we may assume that Qei^(eiQ)^. Conversely, let / be any non zero element

in (e$)* and let f(e4)=\s+^]9 where q=qei<Ξ& Since (f-\) (*,φ=0, f-\q

induces an element f—\ in (ί>, $/6?, J?)*. Since όl&=ei($lei&(&(l—

j£, we may consider that/—λffe($/$)*. By Proposition A.3 of [8],

Hence /— λ9—λr for some r^jfi! and f—\q=\. So we get that (#,£?)*cQtf,-

and therefore (eiQY=Qei.

(4) The exact sequence 0->eiR->ei(j-*ei(JleiR-*0 induces the exact
sequence 0-+(eiQ/eiR)*-*(eiQ)*-*(eiR)*-+0, because KFA is injective. The as-

sertion follows from (2) and (3). The left modules in (1) and (2) are artinian

and ^4-primary. So they are A-l.c. modules in the discrete topology by Lemma

2.1 of [7] (as it has been pointed out in §1, all results in [7, §2] hold in F-lx.

modules over any HNP rings). J? is an A-l.c. modules by Lemma 2.4 of [7].
Thus it follows that Ke{ is also an A-l.c. module. Finally consider the exact
sequence 0-»ί?£t—>Qer̂ Qe^Re^>0. Qet is a topolcgical module by taking as

a fundamental system of 0 the submodules {Anei\n=0, ±1, ±2, •••}. Hence
Qe{ is an A-l.c. module by Proposition 9 of [20].

Following [9], a submodule L of a module M is called Fω-pure if MJΓ)L=
LJ for any J^Ft. Let F0 be the right Gabriel topology of all essential right

ideals of R. Then "an .F^-pure submodule" is merely called a pure submodule.
Consider the following condition:

(e) all finitely generated F and Frtorsίon modules are a direct sum of cyclic mod-
ules.

This condition is satisfied by any topologies F and Ft on R if R has enough

invertible ideals and so, especially, if R has a non zero Jacobson radical (see
Corollary 3.4 and Theorems 4.12, 4.13 of [3]). If all F and ^-torsion modules

are of bounded orders, i.e., unfaithful modules, then this condition is satisfied,

because every factor ring of an HNP ring is serial (Corollary 3.2 of [1]). Note

that [9, Lemma 1.2] is still valid for topologies F and Ft on any HNP ring R

satisfying the condition (e). Furthermore, if R has a nonzero Jacobson radical,

then a submodule L of a module M is pure if and only if Me Π L=Lc for any
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regular element c in R by Proposition 3 of [19] and the remark to Theorem
3.6 of [15].

Lemma 2.3. Let R be an HNP ring with the Jacobson radical A and A be

a maximal invertϊble ideal of R. If as hort exact sequence 0-+L-+M-+N-+0 is
#* α*

pure, then 0-+Homχ(N, K)-+HomR(M, K)-^HomR(L, K)-*Q is pure as left R-
modules.

Proof. Let c be any regular element of R and let cf=gβ be any element
in cHomR(M, K) Π (HomΛ(JV, K))β*9 where /eHom*(Af, K) and ^eHom*
(N, K). Since gβa(L) = 0, we have α(L)cKer £/3=Ker cf. There is a nature
number n such that Rc^An. It follows that 0=Rcfa(L)SAnfa(L). Putfa(L)
=XIR, where X is a submodule of Q containing R. Then AnXS=R and so
X^(R: A*)r=A-^=(R: An\ Thus we_have XAnSR. This implies that/α
(L)An=0. Put M=Mla(L)A*. Then L=a(L)/a(L)An is pure in AT, because
L is pure in M. It follows from Theorem 3 of [13] and Theorem 1.3 of [14]
that L is a direct summand of M, because L is of bounded order. Thus we have
the following sequence;

where η is a natural homomorphism, π is a projection map from M to Ml (Ml is
a submodule of M) and /x is the map induced by / (note that fa(L)A*=0).
Put h=fλπη and let x be any element of M. Write Λ=Λ1+Λ2 (xλ^a(L) and
Λ?2eΛfi). Then ch(x)=cflπτj(x)=cfl(x2)=cf(x2). Since Λ:— ̂ eα^+^L^C
α(L) and gf a(L)=0, we have ch(x)=cf(x2)—cf(x). Therefore ch=cf. By the
construction of /?, h((x(L))=0. This entails that A induces a map &: N-*K
such that kβ=h. Hence we have cf=ch=ckβ^c(lΪQmR(Ny K)) β*, as desired.

Theorem 2.4. Under the same notations as in (a) and (b), (2 module is an A-
l.c. module if and only if it is isomorphic to a direct product of modules of the fol-
lowing types\

efileiA" (n=l, 2, •••), E(ei^leiA\ the injective hull of <?,$/*?,- A e{P. and e{

Proof. The sufficiency follows from Proposition 1 of [20] and Lemma 2.2.
Conversely let M be an A-l.c. module. Then M* is a left J$-module by (1.2).
So M* has a basic submodule B by Theorem 2.1 of [8]. Then B is a direct
sum of modules of types; ReijA

nei and .Re£ (l^i^p) and n= 1, 2, •••), and

M*IB is a direct sum of modules of types; E^βf/Ae^ and (Q®li^)ei (see
Theorem 2.2 of [8]). Then from pure exact sequence 0-^5-»M*-Wkf*/5-»0,
we derive the pure exact sequence 0->(M*/J3)*-»M*#-*jB*~-*0 (as right R-
modules) by Lemma 2.3. By Lemma 2.2, (M*/J3)* is a direct product of mod-
ules of types; ei(Q®RK) and £t j?. Here e^Q^^R) is an injective 7?-module.
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Since R^HomR(KFA, KFA)^Homft(QIR, Q/R) (see Lemma 1.5 and Proposition
A.3 of [8]), R is a pure injective J?-module by Propositions A.5, A.6 of [8] and
Theorem 3.5, the remark to Proposition A.5 of [9], i.e., fa has the injective
property relative to the class of pure exact sequences and so is CfR. Hence

(Af*/5) is also pure injective. This entails that M**^(M*/5)*®£*, and the
assertion follows from (1.2) and Lemma 2.2.

Lemma 2.5. Let M be a left fa-module and let m be any non zero element
of M. Then there is an element f in M* such that (m)/Φθ.

Proof. Km is a finite direct sum of modules of types; Ke^Άβ^ and Ref
by Theorems 2.1 and 2.2 of [8]. Thus the assertion follows from Lemma 2.2.
because K.FA is an injective J?-module.

Theorem 2.6. Let R be an HNP ring and let A be a maximal invertίble
ideal of R. Then

(1) Let M be any Λ-l.c. module. Then M* is a left fa-module and M^M**.
(2) Let M be any left R-module. Then M* is an A-l.c. module in a certain

topology and M^M** (M* is equipped with the finite topology).

Proof. (1) is clear from (1.2).

(2) Let M be any left Jx-module. Then M* is a direct product of modules
of types in Theorem 2.4 (this is proved in the same way as in Theorem 2.4 by
using basic submodules). Thus Λf* is an A-Lc. module. Now M* is equipped
with the finite topology (it is not requested that M* is an A-l.c. module in the
finite topology). Let β: M-̂ M1* be the natural map given by ((m) β) (/)—
(ra)/, where m<=M and /eM*. Note that (w)/3eΛf**, because Ker(m)β=
{g^M*\(ni)g=0}. By Lemma 2.5, β is a monomorphism. To prove that
β is an epimorphism, let g be any element in Λf*. Since Ker g is open in M*,
there is a finitely generated left module N of M such that Ker g
Write

where n^^O. Thus N is a left A-l.c. module by Lemma 2.2. Consider the
following commutative diagram;

M*

where η is a natural map, g is a map induced by g and δ ([/+Ann(ΛΓ)])= f\N,
the restriction map of / to N (/eM*). Let h be any element of N9. Then
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there is a natural number n such that Ά*(N) h=0, because N is finitely generated.

This entails that Ker &2Σ?=ι Σ, θ^n^w'v*, ΘΣΘ^%, open in N (in the
topology given in Lemma 2.2). Thus we have AeΛ/"* and hence N*=N*.

It follows from (1.2) that a: N^N®. So, for the element gS^^N* there is
an element n^N such that (wjα^δ"1, i.e., ((n) a) S=g. Now let x be any ele-

ment in Λf*. Then we have g(χ)=gη(x)=((n) a) 8η(x)=(ri){δη(x)} =(n) {S [x
+A.nn(N)]}=(ri)x=((ri)β) (x). Hence g=(n) /3, as desired.

3. In this section, we study relationships between F-l.c. modules and
.Fω-pure injective modules in case F is special. A module G is Fω-pure injective
if it has the injective property relative to the class of Fω-ρure exact sequences.
Let A be a maximal invertible ideal of R. Then .F^-pure injective modules are
just called A-pure infective modules. The cancellation set of A, C(A), is defined
to be {c^R\cx^A=>x<^A} = {c<=R\cx^A==ϊχ^A}. By [6], R satisfies the
Ore condition with respect to C(A) and the local ring RA of R at A is an HNP
ring with Jacobson radical ARA=RAA. Note that a module T is -4-primary
if and only if it is an jR^-module and torsion as Λ^-modules (see the proof of
Lemma 2.4 of [8]). Since RA is Λ-flat and the inclusion map: R-*RA is an
epimorphism, we have the following

Lemma 3.1. (1) An exact sequence 0-+L-+M-+N-+0 is A-pure, then
the induced sequence 0->L®RRA-^M®RRA-^N®RRA-^0 is exact and is pure
as RA-moduIes.

(2) if an exact sequence 0-^>L-*M->N-*0 of RA-modules is pure as RA-
modules, then it is A-pure.

Proof. Use (3) in Lemma 1.2 of [9].

Lemma 3.2. Let F be a right Gabriel topology on R satisfying the condi-
tion (e) and let G be any Fω-pure injective module. Then G=Dξ£)H, where D
is an injective module, and H is F-reduced, Fω-pure injective and F^-complete.
In particular, H is an RF-module.

Proof. The proof of Theorem 3.2 of [9] may be used unaltered to yield
this lemma.

Proposition 3.3. Let G be a reduced module, i.e., G has no non zero in-
jective submodules. Then

(1) G is A-pure injective if and only if G is an RA-module and is pure in-
jective as RA-modules.

(2) G is A-pure injective if and only if G^G^lim G/GAn.

Proof. (1) It is clear from Lemmas 3.1 and 3.2. (2) follows from Theo-
rems 3.2.4 and 3.3.3 of [18] and (1), because RA is a bounded HNP ring.



842 H. MARUBAYASHI

From Theorem 2.4 and Proposition 3.3, we have

Corollary 3.4. A-l.c. modules are A-pure ίnjective modules.

In general, it is not necessary to hold that (F-l.c. modules)=^(Fω-pure
injective modules). We will end up this paper with giving a counter example.
To do this, let B be an idempotent ideal of R. Then write

(f) F, = {I I IO,(B) - Or(B\ /: right ideal of R} .
F2= {I\ IOt(B) = Ot(B\ I: right ideal of R} .

Then Flf= {/ 1 Or(B)J=Or(B), J: left ideal of R}9 and F2l= {J \ Ol(B)J=Ol(B)t

J: left ideal of R}. Since BOr(B)=^By Or(B)B=O,(B), BOl(B)=Ol(E) and
Ol(B)B=Bί we have Fu= {J \ J SB} , F2={I\I3B}, F^B and

Proposition 3.5. Under the same notations as in (f), let G be any module.
Then

(1) G is an F^I.c. module if and only if it is a direct product of modules of
types (R: J)r/Ry where J in a left ideal of R containing B.

(2) G is an F2-Lc. module, then it is a direct sum of modules of types Rjl
(I SB).

Proof. (1) The sufficiency is evident from Proposition 1 of [20], Pro-
position A.I of [8] and Lemma 2.1 of [7]. Let G be an FΓl.c. module. Then

G* is a left $Fl/(=Λ/fi)-module by (1.2). Since R/B is a serial ring, G* is
a direct sum of cyclic modules (see Theorem 1.2 and Corollary 3.2 of [1]). Write

G*=ΣΘ#//, (Ji^B) and then G^G**=Π(Λ: J^R by (1.2).
(2) is clear, because any F2-l.c. module is an RFz (=-R/.B)-module.

Let C be an idempotent ideal of R such that

(g) 0,(B) =

Then Fi= {I \I Ξ>C, /; right ideal of R}. Note that there exists an idempotent
ideal C of R satisfying the condition (g) for any idempotent ideal B of R if R
has enough invertible ideals. In the absense ot the condition of having enough
invertible ideals, we can easily find a pair of idempotent ideals B and C satisfy-
ing the condition (g) (see [4]).

Lemma 3.6. Under the same notations as in (f) and (g), let 0-*L-*M^>
N-*0 be an exact sequence. Then it is F"-pure if and only if the induced sequence

(L) 0-+L/LB-+M/MB

is splitting exact.

Proof. The sufficiency is clear. To prove the necessity, assume that
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the sequence is F?-pure. Then (t) is exact and is ί^-pure. Since a module is
a finitely presented R (=J?/JB)-module if and only if it is a finitely generated and
ί\-torsion module, (i) is pure as /2-modules in the sense of [19] by Proposition
3 of [19] and Lemma 1.2 of [9]. Furthermore, since M=MIMB satisfies
Singh's conditions (I), (II) and (III), L is A-pure in the sense of Singh (see
Theorem 1.3 of [14]). Hence L is a direct summand of M by Theorem 3 of
[13], because L is of bounded order.

Proposition 3.7. Under the same notations as in (f) and (g), a reduced
module is F'ϊ-pure infective if and only if it is an R/B-module.

Proof. This is clear from Lemmas 3.2 and 3.6.

EXAMPLE 3.8. Under the same notations as (f) and (g), R/C is an F^Lc.
module in the discrete topology. But it is not an .Ft-pure injective module.

Proof. R/C is an artinian and ί\-torsion module. So it is an F^-Lc. mod-
ule in the discrete topology by Lemma 2.1 of [7], Assume that it is ί^-pure
injective. Then it is an Λ/S-module by Proposition 3.7. This implies that
BCC and soO l (C)=O r (B)=(R: B\H(R: C),=Or(C). Thus we have C=
O/(C)CZ)Or(C)C-=Or(C)Z)JR, a contradiction.
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