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Let R be a regular ring with a pseudo-rank function. The collection of
all pseudo-rank functions of R (See [2, Ch. 17]) is denoted by P(R) which is
a compact convex set, and the extreme boundary of P(R) is denoted by 9,P(R).
Our main objective is to study a crossed product R*G of a finite multiplicative
group G over a regular ring R. A crossed product R*G of G over R is an as-
sociative ring which is a free left R-module containing an element 2&R*G
for each =G and the set generated by the symbols {®: x&G} is a basis of
R*G as a left R-module. Hence every element a€R*G can be uniquely
written as a sum @=>.,,7,% with »,€R. The addition in R*G is the obvious
one and the multiplication is given by the formulas

xy = t(x, Y)Xy %= 2"

for all ¥, yG and r&R. Here the twisting ¢: GXG— U(R) is a map from
GXG to the group of units of R and for fixed xEG, the map X: r—7* is an
automorphism of R. We assume throughout this note that the order |G| of
G is invertible in R. The Lemma 1.1 of [9] implies that R*G is also a regular
ring. First we will study the question whether a pseudo-rank function P of
R can be extended to one of R*G. We shall show that P is extensible to R*G
if and only if P is G-invariant, i.e., P(r)=P(r*) for all r&R and x&G. More
precisely for a G-invariant pseudo-rank function P, put P%(a)=|G |23t P(r;)
for a €R*G if z(R*Ga)=P1? Rr;, where r;,&R. Then P¢is a desired one of P.

R admits a pseudo-metric topology induced by each P€P(R). In [2,
Ch. 19], K.R. Goodearl has studied the structure of the completion of R with
respect to P-metric. Let R be the P-completion of R, let P be the extension
of P on R and let ¢: R— R be the natural ring map, Our theorems are follow-
ing:

(1) There exists a crossed product R*G and a ring map ¢: R¥*G— R*G
such that the following diagram commute
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¢

R— >R

and P is also G-invariant and we have P¢=(P)¢

(2) If Pis in 8,P(R), then R*G is a P°-completion of R*G and (P)S is
an extension of P¢. We have that P°=3{ a;N;, where N;c0,P(R*G) and
O0<a;<1and 33 a;=1.

Let §: P(R*G)— P(R) be the natural restriction-map and we use N | to
denote the image of N&P(R*G) by 0. We shall show that for any Ne
9.P(R*Q), there exists some positive real number ®<1 and some N'&P(R*G)
such that (V| z)¢=aN-+(1—a)N".

In the second section we study types of crossed products of finite groups
G over directly finite, left self-injective, regular rings R. We shall show that
R*G is of Type II, if and only if R is of Type I1,.

In the final section we study the fixed ring of a finite group of automor-
phisms of a regular ring. We shall show that for any P&3,P(R), P|ge is a
finite convex combination of distinct extremal elements in 9,P(R€). Under the
assumption that R is a finitely generated projective right R°~-module, we shall
show that for any extremal element Q €0,P(RC), there exist some P & P(R) some
Q'€ P(RS) and some real number 0<a =1 such that P|ze=aQ-+(1—a)Q’.

1. Extensions of pseudo-rank functions

Let R be a regular ring and we use FP(R) to denote the set of all finitely
generated projective left R-modules. For modules 4, B, A<B implies that
A is isomorphic to a submodule of B.

DEFINITION [2, p. 226]. A pseudo-rank function on R is a map N: R—[0, 1]
such that

(1) N(1)=L1.

(2) N(rs)=N(r) and N(rs)<N(s) for all , s&R.

(3) N(e+f)=N(e)+N(f) for all orthogonal idempotents e, f ER.

If, in addition

(4) N(r)>0 for all non-zero rER,
then NV is called a rank function. We use B(R) to denote the set of all pseudo-
rank functions on R.

DEFINITION [2, p. 232]. A dimension function on FP(R) is a map D: FP(R)
— R* such that
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(1) D(zR)=1
(2) 1If A, BEFP(R) and A<B, then D(4)<D(B).
(3) D(A+B)=D(A)+D(B) for all 4, BEFP(R).

Let D(R) denote the set of all dimension functions on FP(R).
Pseudo-rank functions on R and dimension functions on FP(R) ate equiva-
lent functions as follows.

Lemma 1 [2, Prop. 16.8]. There is a bijection Tx: P(R)— D(R) such
that T x(P)(Rr)=2P(r) for all P=P(R) and r=R.

We always view R as a subring R*G via the embedding r—71. Then
there exists a restriction-map ¢: P(R*G)—P(R). We consider the same con-
nections between D(R*G) and D(R). For all DeD(R*G) and A=FP(R),
define (D|z)(A)=D(R*GQrA). We can easily see that D|; is a dimension
function on FP(R) and Tgs(INV) | z=T2(IV | 2)-

Lemma 2. Let N be in P(R*G) and D be in D(R*G). Then we have that
(N | ))=(N | 2)(r*) and that (D|)(Rr)=(D|)(Rr*) for all rR and all x<G.

Proof. Since R*G ®p Rr = R*Gr = R*Gx 'rx=R*Grx=R*GQy Rr*, we
have (D] g)(Rr)=(D|z)(Rr") and (N | g)(r)=( | 2)(r")-

Now we shall define an extended dimension function on R*G for a G-
invariant DED(R). Note that for 4= FP(R*G), A= FP(R).

Proposition 3. Let D be a G-invariant dimension function on FP(R).
Put DS(A)=|G | 'D(zA) for all A= FP(R*G). Then D€ is a dimension function
on FP(R*G) and D°| z=D.

Proof. Since {(R*G) isomorphic to |G| copies of R, D®(R*G)=1. We
can easily check that DS satisfies the properties (2) and (3). Since f(R*Gr)=
@.cc R and D is G-invariant, then we have DE(R*Gr)=|G | 'X),cc D(RFF)=
D(Rr) for all r&R. Every A€FP(R) is isomorphic to a finite direct sum of
cyclic left ideals of R. 'Therefore we have (D] g)(4)=D(A) for all A= FP(R).

Corollary 4. Let P be a G-invariant pseudo-rank function on R. Define
PS(a)=(Tx(P))°(R*Ga) for all a € R*G, then

(1) P€is a pseudo-rank function on R*G and P¢| =P

(2) We have P%(a)=|G|~' X3t P(r;), if x(R*Ga)=@®*% Rr;, where r;ER.

Proof. (1) is clear by lemma 1 and Proposition 3. Recall that T'yx(P) is
G-invariant dimension function on FP(R) by Lemma 1. Since P%a)=
|G| " TR(P)((R*Gat)) = | G | 33 Ta(P)(Rri)=| G | ™ 3 P(ry), we have com-
pleted the proof.
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Lemma 5. Let N be a pseudo-rank function on R*G. Then we have
that N(a)< |G |(N | z)%(a) for all a € R*G.

Proof. Put N|z=P. Since I'pe(N)|z=T%(P), then we have
Tr(P)(x(R*Ga))= (Tao(N) | 2)((2(R*Gt)) = Trec(IV)(R*G @z R*Gar). On the
other hand, there exists a natural epimorphism (R*G @ R*Ga)—R*Ga. Since
this map splits, we have N(a)=Tp+s(IN)(R*Gat) ST p+e(IN)(R*G Q@ R*Ga).
We have obtained that N(a)< |G | P(a) by Corollary 4.

DerFiNiTION [2, Ch. 19]. Let P be in P(R). R admits a pseudo-metric
8 by the rule: &(r, s)=P(r—s). Note that & is a metric if and only if P is a
rank function. We call § the P-metric. Let R be the completion of R with
respect to 8 and we call it the P-completion of R. R is a unit-regular, left and
right self-injective ring by [2, Th. 19.7]. There exists a natural ring map
¢: R—R and a continuous map P: R—[0, 1] such that P¢=P. By [23,
Th. 19.6], P is a rank function on R. Put ker P={r&R: P(r)=0}, which
is a two-sided ideal. P induces the rank function P on R/ker P. Then R is
equal to the P-completion of R/ker P and ker ¢p=ker P.

Now let R*G be a given crossed product of a finite group G over a regular
ring R and let P be a G-invariant pseudo-rank function. Since P is G-invariant,
ker P is G-invariant ideal and therefore each automorphism X induces an auto-
morphism % of R/ker P and #% is uniformly continuous with respect to the induced
metric. Consequently we have an automorphism of R, which is again denoted
by % such that ¢(r)*=(r) for all rER. Let a map #': GXG— U(R) be
t'(x, y)=(#(x, y)) for all x, yeG. Here of course t: GX G—U(R) is the given
map for R*G. We define a crossed product R*G of G over R using multiplica-
tion formula (a%®) (b;V):(ab’7 “t'(x, y))xy for a, b€R and x, yEG, and define
a map ¢: R*G—R*G by the rule: ¢(3,cq?:8)=Diec ¢(7:)®. Then ¢ is a
ring homomorphism and the following diagram is commutative

R——¢>R
| 5l
R*G — R*G

Proposition 6. Let P be a G-invariant pseudo-rank function on R, let R
be a P-completion, let P be a continuous extension of P and let ¢: R—R the
natural map. Then we have the relationship between P® and (P)® such that the
following diagram is commutative

PG
R*G —> [0, 1]

¢ D\G
ElG SN [0, 1]
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Proof. For a=R*G, we assume that (R*Ga)=@! Rr;, where r;ER.
We have

Tz(P)(2(R®x R*Ga) = Tx(P)(®1R(:))
= S TR(P)R(r)
= 201 Tx(P)(Rry)
= T(P)(z(R*Ga)) -+ (¥)

Consider the natural map v: R Ok (R*Ga)—>R(R*Ga)=(R*G)d().
Since v is an epimorphism as a R-module, we have

2(R*G)d(a) < R, (R*Gay) .
Therefore we have

(P)(d(@)) = (Tr(P))(R*G)(cx))
= |G| Tx(P)((R*G)$(a))
< |G| Tr(P)(z(R®g (R*Ga))
= |G| T(P)(z(R*Ga)) - (by (%))
= P%(a).

Since (P)%(¢p(a))<PS) for all aeR*G, we have (P)°¢=PC¢ by [2, Lemma
16.13].

DerFiniTION [2, Ch. 16 and Appendix]. For a regular ring R, we view
P(R) as a subset of the real vector space R¥, which we equip with the product
topology. Then P(R) is a compact convex subset of R® by [2, Prop. 16.17].
A extreme point of P(R) is a point P& P(R) which cannot be expressed as a
positive convex combination of distinct two points of P(R). We use 9,P(R)
to denote the set of all extreme points of P(R). The important result is that
P(R) is equal to the closure of the convex hull of 8,P(R) by Krein-Milman
Theorem.

Theorem 7. Let R*G be a crossed product of a finite group G over a regular
ring R with |G| €R. Let P be a G-invariant extreme point of P(R), let R be
the P-completion of R, let ¢: R—R be the natural ring map and let P be the con-
tinuous extension of P over R.

(1) The crossed product R*G of G over R defined above, is the completion
of R*G with respect to P®-metric.

(2) The extension PC can be expressed as a positive convex combination of
finite distinct elements in 9,(R*G), ie., P°=3t a;N,, where N,=09,P(R*G),
O<a;<1 and 23t a;=1.

Proof. Since P €06,P(R), R is a simple, left and right self-injective, regular
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ring by [2, Th. 19.2 and Th. 19.14]. Since |G| is invertible in R, we can easily
check that R*G is self-injective on both sides by the routin way. Since R is
a simple ring, R*G is a finite direct product of simple rings by [8, Cor. 3.10].
Therefore, by [2, Cor. 21.12 and Th. 21.13], R*G is complete with respect to
the metric induced by any rank function and so is especially with respect to
the (P)%-metric. We have already shown that (P)°¢=P¢ by Proposition 6.
Finally we shall show that Im ¢ is dense in R*G with respect to (P)S-metric.
For any a=3>1,¢ a2 R*G and any &>0, there exist r,ER for each a, such
that P(a,—¢(r:))<€|G|™. Put B=3],.;7.®% Then we have that

(P)(a—d(B)) = (P)*(Zsec(a:—¢(r:))%)
= Ezec (P)G((ax_¢'(rz))x)
=< Shec(P)((a:— (7))
<€.

Thus we have completed the proof of (1). Since the PS-completion R*G
of R*G is a finite direct product of simple rings, PC is a positive convex com-
bination of finite distinct extreme points in P(R*G) by [2, Th. 19.19].

A simple, left and right self-injective, regular ring R has a unique rank
function N and it is complete with respect to N-metric and these rings are
classified into two types according to the range of IV, namely

(1) R is artinian if and only if the range of N is a finite set.

(2) R is non-artinian if and only if the range of N equal to [0, 1] ([4]).

For a given Q,P(R), the Q-completion R of a regular ring R is a simple,
left and right self-injective, regular ring by [2, Th. 19.14]. Hence we call
O to be discrete if R is artinian and to be continuous if R is non-artinian.

DerFINITION. Let P be a G-invariant pseudo-rank function on R. If
Pé=3> a;N,;, where N;€3,P(R*G), 0<a;<1 and X} a=1, then we call
N,, -+, N, to be associated with P.

Proposition 8. For a given crossec product R*G, let P be a G-invariant
extremal pseudo-rank function on R and let N, ---, N, be extremal pseudo-rank
functions associated with P. Then the following conditions are equivalent:

(1) P is discrete.

(2) N; is discrete for some i.

(3) N is discrete for all j=1, -+, t.

Consequently the following conditions are also equivalent:

(1) P is continuous.

(2) N; is continuous for some 1.

(3) N, is continuous for all j=1, ---, t.
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Proof. Let R be the P-completion of R and let P be the extension of P
on R. By Theorem 7, the crosseds product R*G is the P°-completion of R*G
and (P)¢ is the extension of PS. Let N, be the continuous extension of N;
on R*G. The each ker N; is a maximal two-sided ideal and each R*G/ker N;
is a regular, left and right self-injective ring by [2, Th. 9.13]. Since O=ker(P)¢
=N !_, ker N, then we have R*G=T]}., E*G/ker N.. :

And R*GJker N; is isomorphic to the N;-completion of R*G. We assume
that P is discrete. So R=R/ker P is a simple artinian ring. Then the
crossed product R*G is semi-simple by [9, Lemma 1.1]. 1In particular each
R*GJker N; is an artinian ring, and thus N; is discrete for all j. Next we
assume that some NN; (say i=1) is discrete. Let N, be the induced rank func-
tion on R*GJker N, by N, and let z: R—R*G/ker N, be the map obtained by
compositing R—R*G — R*G/ker N,. 'Then 7 is monomorphism and we have
Nz=P. By the assumption, the range of /N, is a finite set and so is the range
of P. Then P is discrete. Since each extremal pseudo-rank function is either
discrete or continuous, latter assertion is clear.

For N &3,P(R*G), we have the following relationship between NN and
(N | g)°.

Theorem 9. Let R*G be a crossed product of a finite group G over a regular
ring R with |G |'€ R and let N be extremal pseudo-rank function on R*G.
Then we have (N | g)¢=aN+(1—a)N' for some N'&P(R*G) and some positive
real number a0 < 1.

Proof. Put N|z=P, then P is G-invariant by Lemma 2. Let T be the
PC-completion on R*G and let P% be the extension of P¢ on T. Since N is
uniformly continuous with respect to P¢-metric by Lemma 5, we have the
continuous extension N of N on T. By [2, Th. 19.22], there exists a non-zero
central idempotent e T such that ker N=(1—e)T and Te is a simple ring.
Since Te has the unique rank function, P¢ and N induce the same rank func-
tion @ on Te, i.e., Q(te)=P%(e)"'P%(te)=N(te)=N(t) for all tec Te. Put L(t)=
PS(1—e)7'PS(t(1—e)) for any tET, then L is a pseudo-rank function on 7.
We have

PS — PS(¢)N+P¢(1—e)L

by investigating the decomposition T'=Te@T(1—e). Let ¢: R*G—T be
the natural map and let N'=L¢ and let «=P%¢). Then we have that (N | ;)¢
=aN+(1—a)N'.

ReMARK. For a G-invariant element P €9,P(R), let Ny,-+, N, be elements
in 9,P(R*G) associative with P. We can easily prove that {N,, ---, N;} is
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equal to the set {N<9,P(R*G): O(N)=N | =P}, where §: P(R*G)—P(R),
by theorem 7 and Theorem 9. Unfortunately we don’t know whether N | is
always extremal for any extremal pseudo-rank function N on R*G or not.

Now we consider a pseudo-rank function P which is not necessarily G-
invariant. For each x&G, put P*(r)=P(* ) for all 7&R. Then P* is also
a pseudo-rank function and ker P*=(ker P)*. Put #(P)=3,c;| G| 'P*, then
t(P) is G-invariant pseudo-rank function with P< |G |#(P). We call #P) to
the trace of P.

Proposition 10. Let R*G be a crossed product of a finite group G over
a regular ring R whit |G |'€R. Let P be in 0,P(R) which is not mnecessarily
G-invariant and let 1(P) be the trace of P. Then the extension t(P)¢ can be ex-
pressed as a positive convex combination of finite distinct elements in 9,P(R*G).

Proof. Let R be the #(P)-completion of R. Since #(P) is a finite convex
combination of extreme points in P(R), R is a finite direct product of simple
regular self-injective rings by [2, Th. 19.19], R*G is also a finite direct product
of simple regular self-injective rings. In the same way as in the proof of
Theorem 7, we can prove that R*G is the #(P)¢-completion of R*G and that
H(P)°=>11 a;N;, where N;€0,P(R*G), 0<a;<1 and X3 a;=1.

Corollary 11. Let R*G be a crossed product of a finite group G over a
regular ring R with |G |7'€R. If 3,P(R) is a finite set, then 3,P(R*G) is also
a finite set.

Proof. Let 8,P(R)={P,, ---, P;} and let {N;;: j=1, -+, s(¢)} be extremal
pseudo-rank functions associated with #(P;) for each i=1, -+, ¢ by Proposition
10. We shall show that 9,P(R*G)={N,;: i=1,-,t j=1, -+, s(2)}. We
choose N €3,P(R*G) and put P=N |;. Since P(R) is equal to the convex-hull
of {P, -+, P} by [2, A.6], P=>) a;P;, for some 0 <a,; <1 and X} a;=1.
Put Q=3 a#(P;), then @ is G-invariant and Q¢= 3} «;#(P;)°. Since
P, <|G|YP;) for each i=1, ---,¢, P<|G|Q and so P°<|G|Q° LetT be
the Q°-completion of R*G and Q° (resp. P°) be the extension of QC (resp. P°)
on T. Since N<|G|P® on R*G by Lemma 5, N<|G | P® on T, where N is
the extension of N on T. Since N<|G|%Q° on T, ker Q°Cker N. Let IV,-j
be the extension of INV;; on T for each 7, j. Since Q¢ is a convex combination
of {N;;:i=1, -, ¢t j=1,-,s()} in 8,P(R), @° is a convex combination of
{N;:i=1, -, ¢t j=1,-,5@)} in P(T). Then we have N;;ker N,;=ker Q¢
and therefore ker N;;Cker N for some 7, j by primeness of ker N. Since
ker N;; is also a maximal ideal by [2, Th. 19.22], ker N,;=ker N. Con-
sequently we have N,;=N by [5, Prop. II. 14.5] and hence N,,=N.
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2. Directly finite left self-injective regular rings

In this section, we consider a crossed product of a finite group G over a
directly finite, left self-injective, regular ring Rwith |G |'€R. K.R.Goodearl
has constructed a structure theory on self-injective regular rings. Now we
refer to [3, Ch. 10] for definitions and notations. We study types of crossed
products R*G. We begin with the following lemma.

Lemma 12 [4, II. 14.5]. Let R be a directly finite, left self-injective, regular
ring. We define a map v: 3,P(R)—Max(R) by the rule: v(P)=Xker P. Then

v 15 a bijection.

Theorem 13. Let R be a directly finite, left self-injective, regular ring
and let G be a finite group such that |G |™*R. Then the following conditions
are equivalent.

(1) A crossed product R*G of G over R is of Type I1,.

(2) Risof Type 11,.

Proof. We know that R*G is a directly finite, left self-injective, regular
ring.

(1)=(2). It suffices to prove that R has no simple artinian homomorphic
images, by [3, Th. 7.10 and Th. 10.24]. Assume that there exists M & Max(R)
such that R/M is artinian. By Lemma 12, we have P & §,P(R) such that
ker P=M. Let H be the stabilizer of M in G and let A be a transversal for H
in G with 1€A. Let J= N ,cp M’, then J is G-invariant and R/J =TI, R/M°.
Since each ¥ induces an automorphism on R[], there gives rise to a crossed
product (R/J)*G of G over R|J with the natural map ¢: R*G—(R/])*G.
Since R/J is a semi-simple ring, so is the crossed product (R/J)*G by [9,
Lemma 1]. Since ¢ is epimorphism, R*G has a simple artinian homomorphic
image. This contradicts that R*G is of Type II; by [2, Th. 10.29].

(2)=(1). Assume that there exists N €9,P(R*G) such that R*G/ker N
is artinian. Put P=N|,. Since ker P=ker N N R and ker N is a maximal ideal
of R*G, ker P= N, 1 ;, where I is a maximal ideal of R by [7, p. 295]. Let
K be the stabilizer of I in G and let A be a transversal for K in G with 1€A.
Then R/ker P==TI,c R/I’, where R/I” is a simple, left and right self-injective,
regular ring. We claim that all R/I” is artinian. Since ker P is a G-invariant
ideal, there exists a crossed product (R/ker P)*G of G over R/ker P such
that R*G/(ker P)*G = (R/ker P)*G. By [8, Cor. 3.10], R*G/(ker P)*G is a
finite direct of simple, left and right self-injective, regular rings. Since
(ker P)*G C ker P¢ C ker N, R*G/ker N is isomorphic to a simple component
of R*G|(ker P)*G = (R/ker P)*G. By considering II,cx R/I? = R[ker P C
(R/ker P)*G, we find a ring homomorphism f: II,cs R/I ¥ R*G/ker N.
Then we have a ring-monomorphism f’: T=1I,c R/I>—>R*G/ker N for some
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A'CA. Let N be the unique rank function of R*G/ker N and let P, be the
unique rank function of R/I¥ and put @=Nf’. This is a rank function on 7.
Let e, be a central idempotent of T which is identity element for R/I 7. By
the uniqueness of rank function on R/I’, we have P,(a)=Q(e,)"'Q() for all
a€R|I’. By our assumption, the range of N'is a finite set and so is the range
of Q. Consequently the range of P, is a finite set. Therefore R/ 7 is a simple
artinian ring by [4]. This is a contradiction by [2, Th. 10.29].

Even when R is a self-injective regular ring, IV | ; is not necessarily extremal
for N<9,P(R*G). If each maximal ideal of R is G-invariant, then N | is
extremal. In fact, since ker(V | z)=ker N N R is a maximal ideal by [7, p. 295],
N | is extremal by Lemma 12. Hence we shall consider the map : 9,P(R*G)
—0,P(R). We denote the set of all central idempotents of R by B(R).

Lemma 14. Let R be a directly finite, left self-injective, regular ring and
let G be a finite group of automorphisms of R. The following conditions are equi-
valent;

(1) Every maximal ideal of R of G-invariant.

(2) Ewvery extremal pseudo-rank function on R is G-invariant.

(3) Every central idempotent of R is G-invariant.

Proof. (1)=(2) Itis clear by Lemma 12.

(1)=>@3) Take e=B(R) and g G. For Me Max(R), we have
eeM or 1—eeM by [3, Th. 8.20]. Since e—ef=(1—ef)—(1—e), e—efc
N{M: M eMax(R)}. By [3, Cor. 8.19], we conclude e=¢®.

(3)=(1). Let M be any maximal ideal of R and let g be any element in
G. By [3, Th. 8.20 and Cor. 8.22], (B(R)NM)R is a G-invariant, minimal
prime ideal. Since any minimal prime ideal of R is contained in a unique

maximal ideal by [3, Cor. 8.23], M=M?*.

In [4], the Grothendieck group Ky(R) of a regular ring R is investigated
as a partially ordered abelian group with order-unit. We refer to [4, 8] for
the terminologies of partially ordered abelian groups.

We shall study conditions under which @ is a homeomorphism.

Theorem 15. Let R be a left self-injective, regular ring of Type 11, and
R*G be a crossed product of a finite group G over R with |G |"'€R. We assume
any M eMax(R) is G-invariant. Let 6: 0,P(R*G)—0,P(R) be a natural re-
striction map. Then the following conditions are equivalent:

(1) @ is a homeomorphism.

(2) The natural map f: K(R)— K(R*G), defined by f([A])=[R*GRrA4]
for ASFP(R), is an isomorphism as a partially ordered abelian group with order-
unit.
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(3) B(R)=B(R*G).

Proof. We know that R*G is a left self-injective regular ring of Type II,
by Theorem 13.

()=(2). By Lemma 12, 3,P(R) and 9,P(R*G) are compact. Combining
[8, Th. 3.6] with [9, Prop. II. 3.13], we see that (Ky(R), [R])=(C(3,P(R), R), 1)
and (K,(R*G), [R*G]) = (C(3,P(R*G), R), 1), where 1 is the constant function
with value 1. Therefore we have that f: (Ky(R), [R])=(K(R*G), [R*G]) is
an isomorphism.

(2)=(3). Let e be any element in B(R*G). For the element [R*Ge]e
K(R*G), we choose an element [4]€ K((R), such that f([A])=[R*Ge], where
AEFP(R). First we shall show that A<CR. In fact, since [R*GQ A]=
[R*Ge], R*GQ®r A= R*Ge by [3, Prop. 15.2]. Let A=®1} Rr;, where r,ER.
For any P€4,P(R)

21 P(r;) = i TR(P)(Rry)
= Tx(P)(4)
= Dpe(P)(R*G Q4)
= T'pe(P°)(R*Ge)
=1

Then we have A <R by [8, Cor. 2.7]. We may assume that R*Ge=R*Gh
for some idempotent ,ER. As e is central, we have e=h. On the other hand,
since any A’ € B(R) is G-invariant by Lemma 14, %’ is central in R*G.

(3)=(1). In general, § is a continuous epimorphism. We shall that
0 is a monomorphism. Assume that there exist N,+N,€9,P(R*G) such
that O(N,)=0(N,). By Lemma 12, ker N;==ker N, and so B(R*G)Nker N=
B(R*G)Nker N, by [3, Th. 8.25]. Then there exists eB(R*G) such that
Ny(e)=0 and N,(e)=1. However since e B(R) and §(N;)=0(N,), we have a
contradiction. Hence 6 is a monomorphism. Next let W be any clopon set
in 0,P(R*G). Then W={N €9,P(R*G): N(e)=0} for some e B(R*G). Now
it is easy to see that O(W)={P &8.P(R): P(e)=0}. Therefore §(W) is an
also clopon set in 9,P(R) and so 6 is a homeomorphism.

3. Fixed subrings of a finite group of automorphisms

In this section, let R be a regular ring and let G be a finite group of auto-
morphisms of R with |G|™&R. We shall consider a relationship between
P(R) and P(R®). For any P &P(R), the restriction of P on R®, which is de-
noted by P |z, is also a pseudo-rank function on R®. If P is extremal, then
we have the following result.
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Proposition 16. For P<0,P(R), P|ze can be the expressed as a positive
convex combination of finite distinct elements in 9,P(RE).

Proof. Since P is not necessarily G-invariant, we consider the trace #(P)
of P instead of P. Let R be the #(P)-completion of R. Since #(P) is a finite
convex combination of extreme points in P(R), R is a finite direct product of
simple regular self-injective rings by [2, Th. 19.19]. Let #P) be the extension
of #(P) on R. Since P|g=1(P)|z# on RS, (R)S is the P|ze-completion of
RS. By [8, Cor. 3.10], (R)S is also a direct product of simple regular self-
injective rings. Therefore P |z¢ can be the expressed as a positive convex
combination of finite distinct elements in 9,P(R®) by [2, Th. 19.19].

In this section, R*G implies the skew group ring of G over R. Put
e=|G |7 X, £ in R*G, then e is an idempotent. Between eR*Ge and RS,
there exists an isomorphism by the rule: a—ea. Put X=eR*G, then X is a
(R®, R*G)-bimodule. Throughout this section, we assume

(¥*) R is a finitely generated projective right R°-module

Since Hompss(X, R¥G)==R*Ge=<R as a right R°-module, Hom (X, 4)
is a finitely generated projective right R6-module for all A€ FP(R*G). There-
fore, for D D(R®), D(Homg(X, A)) gives an unnormalized dimension func-
tion on FP(R*G). We note that D(Rz¢)=1, because Rg¢DRS. We define

DF'S(A) = D(Rgs)"'D(Hom(X, 4))  for ASFP(R*G),

then D®*¢ is a dimension function on FP(R*G). For a given pseudo-rank
function @ on RS, put De=T"¢(Q). We define

No(x) = Do(Rgs) 'Do(Hom (X, xR*G)) for x=R*G.

Then by Lemma 1, Ny is a pseudo-rank function on R*G. Especially for an
idempotent x & R*G, we have

No(%) = Do(Rge) ™" Do((xR*Ge)ze) »

because Hompgso(X, *R*G)=xR*Ge as a right R°-module. For the induced
pseudo-rank function No&P(R*G) by Q& P(RC), the restriction-function on
R, denoted by P,, is also a pseudo-rank function on R. Py|ze is not neces-
sarily equal to @, but we have the following relations between them.

Lemma 17. Let R be a regular ring, let G be a finite group of automor-
phisms of R with |G| '€R and let R*G be a skew group ring of G over R. We
assume that R satisfies the condition (%). Then for a given Q = P(RC), we have the
Sfollowing relation;

Q(a) = Do(Rge)(Pql z¢)(@)  for all a=RE.
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Proof. For any idempotent b& RS,
Q(b) = Do(bRC) = Dqo(beR*Ge) = Dq(ebR*Ge) .

Since there exists a natural epimorphism bR*Ge—>ebR*Ge as a R°-module, we
have ebR*Ge << bR*Ge. Then we have

Q(b)=Dq(bR*Ge) = Do(Rz#)(Pa | z¢)(b) -

Proposition 18. Let R be a regular ring and let G be a finite group of auto-
morphisms of R with |G|*&R. We assume that R satisfies the condition (%).
Then, for a given extremal pseudo-rank function @ on RC, we have

Polge = aQ+(1—a)Q’
for some Q' P(R€) and some 0<a=1.

Proof. We consider R as a ring with Py| ge-metric. By Lemma 17, @ is
continuous with respect to the metric. Therefore there exist some @’ & P(R°)
and some real number 0<a =<1 such that Pg|ge=a@Q+(1—a)Q’, using the
same way as Theorem 9.
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