Nomura, K. Osaka J. Math. 22 (1985), 767–771

MULTIPLY TRANSITIVITY OF PERFECT I-CODES IN SYMMETRIC GROUPS

Dedicated to Professor Hirosi Nagao on his 60th birthday

KAZUMASA NOMURA

(Received September 27, 1984)

1. Introduction

Let *n* be a positive integer, S_n be the symmetric group on $X = \{1, \dots, n\}$, *T* be the set of all transpositions in S_n and $U = T \cup \{1\}$. A subset *Z* of S_n is a 1-code in S_n if $Ug \cap Uh = \phi$ holds for any distinct two elements *g* and *h* in *Z*. A 1-code *Z* in S_n is perfect if $S_n = \bigcup_{g \in Z} Ug$ (see [1]). Let $X^{(k)}$ be the set of all ordered *k*-tuples of distinct elements of *X*. We consider the natural action of S_n on $X^{(k)}$. A subset *Z* of S_n is *k*-transitive if the following condition holds.

For any x and y in $X^{(k)}$, there exists some z in Z that moves x to y, and the number of such elements in Z is a constant that is independent of the choice of x and y.

In this paper we shall prove the following result.

Theorem. Perfect 1-codes in symmetric group of degree n are k-transitive for $0 \leq k < (n/2)$.

From the above theorem we easily get the following corollary by counting the number of elements of Z that move x to y for fixed x, $y \in X^{(k)}$.

Corollary. If S_n has a perfect 1-code then $\binom{n}{2}+1$ divides $\lfloor (n/2)+1 \rfloor!$.

In [4] Rothaus and Thompson proved that if S_n has a perfect 1-code then $\binom{n}{2}+1$ is not divisible by any prime exceeding $\sqrt{n}+1$. Their proof is based on the theory of group characters. In this paper we will give a combinatorial proof without using group characters.

Throughout this paper we assume that n is a fixed positive integer and S_n has a perfect 1-code Z. We shall use the following notations.

NOTATIONS $X = \{1, \dots, n\}.$

 $G=S_n$ the symmetric group on X. T: the set of all transpositions in G. $U=T \cup \{1\}$, where 1 denotes the identity in G. S_Y : the symmetric group on a subset Y of X. We regard S_Y as a subgroup of G. $T_{\mathbf{Y}} = T \cap S_{\mathbf{Y}}.$ Z: a perfect 1-code in G. $p_{\kappa} = |K \cap Z|$ for a subset K of G. X^k : the set of all ordered k-tuples of elements of X. $X^{(k)} = \{(a_1, \dots, a_k) \in X^k | a_i \neq a_j \text{ if } i \neq j\}.$ For $a = (a_1, \dots, a_k)$, $b = (b_1, \dots, b_k)$ in $X^{(k)}$ and g in G: $ag=(a_1g, \cdots, a_kg).$ $a(i) = (a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_k) \text{ for } 1 \leq i \leq k.$ $\overline{a} = \{a_1, \dots, a_k\}$ a subset of X. $[a; b] = \{g \in G \mid ag = b\}.$ Proof of the theorem is based on the following equation.

Proposition. Let 0 < k < n and $a, b \in X^{(k)}$. Then

$$\left\{ \binom{n-k}{2} + 1 - k \right\} p_{[a;b]} + \sum_{u \in T_{\bar{b}}} p_{[a;bu]} + \sum_{i=1}^{k} p_{[a(i);b(i)]} = (n-k)! .$$

2. Proof of the proposition

Throughout this section we assume 0 < k < n and $a = (a_1, \dots, a_k)$, $b = (b_1, \dots, b_k) \in X^{(k)}$. We divide the proof into several steps.

Step 1. |[a; b]| = (n-k)!.

Proof. If $g \in [a; b]$ then $a_i g = b_i$ for $1 \le i \le k$ and $(X-\overline{a})g = X-\overline{b}$. Since $|X-\overline{a}| = |X-\overline{b}| = n-k$, the number of such permutations is (n-k)!.

Step 2. $[a; b] = \bigcup_{g \in \mathbb{Z} \cap U(s;b)} ([a; b] \cap Ug)$.

Proof. We have $G = \bigcup_{\substack{g \in Z \\ g \in Z}} Ug$ since Z is a perfect 1-code. Then $K = \bigcup_{\substack{g \in Z \\ g \in Z}} (K \cap Ug)$ for any subset K of G. If $h \in K \cap Ug$, then h = ug for some $u \in U$, and $g = uh \in UK$. This implies $K \cap Ug = \phi$ when $g \notin UK$. Therefore we have $K = \bigcup_{\substack{g \in Z \cap UK \\ g \in Z \cap UK}} (K \cap Ug)$.

Step 3. $U[a; b] = \bigcup_{u \in \sigma} [a; bu]$.

Proof. Note that U[a; b] = [a; b]U since U is invariant under conjugation. Since [a; b]g = [a; bg] holds for $g \in G$, we easily get step 3.

Let $Y = \overline{b} = \{b_1, \dots, b_k\}$. We divide U into three subsets.

768

Perfect 1-Codes in Symmetric Groups

$$\begin{split} T_1 &= \{ (i, j) \in T \mid i, j \in X - Y \} \cup \{1\} , \\ T_2 &= \{ (i, j) \in T \mid i, j \in Y \} , \\ T_3 &= \{ (i, j) \in T \mid i \in Y \text{ and } j \in X - Y \} . \end{split}$$

Then $U=T_1 \cup T_2 \cup T_3$ (disjoint). Also we set

$$V_i = \bigcup_{u \in T_i} [a; bu] \quad (1 \le i \le 3) \,.$$

Step 4. $V_1 = [a; b]$.

Proof. If $u \in T_1$ then bu = b since u fixes all points in Y.

Step 5.
$$V_3 = \bigcup_{i=1}^{k} ([a(i); b(i)] - [a; b]).$$

Proof. Take $g \in V_3$. Then $g \in [a; bu]$ for some $u \in T_3$. By definition of T_3 we have $b_i u \in X - Y$ for some *i*. Then $a_i g = b_i u \neq b_i$ and $g \notin [a; b]$. Hence we have $g \in [a(i); b(i)]$. To show the converse take any $g \in [a(i); b(i)] - [a; b]$. Let $u = (b_i, a_i g) \in T$. Then $a_i g \neq b_i$ and $a_i g \in X - Y$. This implies $u \in T_3$. Moreover $a_i g = b_i u$ implies $g \in [a; bu]$. Hence $g \in V_3$.

Step 6. If $g \in V_1$ then $|[a; b] \cap Ug| = \binom{n-k}{2} + 1$.

Proof. We have $|[a; b] \cap Ug| = |[a; b]g^{-1} \cap U|$ since right translation by g^{-1} is a bijection on G. Since $g \in [a; b]$ from step 4, $[a; b]g^{-1} = [a; bg^{-1}] = [a; a]$. Hence $|[a; b] \cap Ug| = |[a; a] \cap U| = \binom{n-k}{2} + 1$ since $[a; a] \cap U$ contains 1 and all transpositions on $X - \overline{a}$.

Step 7. If
$$g \in V_2$$
 or $g \in V_3$ then $|[a; b] \cap Ug| = 1$.

Proof. In either case we have $g \notin [a; b]$. As in the proof of step 6 we have $|[a; b] \cap Ug| = |[a; bg^{-1}] \cap U|$. Let $c = bg^{-1} = (c_1, \dots, c_k)$. Then $c \neq a$ since $g \notin [a; b]$. Hence $a_i \neq c_i$ for some *i*. If $u \in [a; c] \cap U$ then $a_i u = c_i$ and $u = (a_i, c_i)$. Since *u* is uniquely determined, we have $|[a; c] \cap U| \leq 1$. We also have $[a; c] \cap U \neq \phi$ since $g \in V_2 \cup V_3$.

Step 8.
$$\left\{\binom{n-k}{2}+1\right\}p_{v_1}+p_{v_2}+p_{v_3}=(n-k)!$$
.

Proof. From step 1 and step 2 we have

$$\sum_{\substack{g \in \mathbb{Z}_{\cap} \mathcal{T}[a;b]}} |[a;b] \cap Ug| = (n-k)!.$$

From step 3 and definition of V_i we have

$$U[a; b] = V_1 \cup V_2 \cup V_3.$$

769

K. Nomura

This implies

$$Z \cap U[a; b] = (Z \cap V_1) \cup (Z \cap V_2) \cup (Z \cap V_3).$$

Then from step 6 and step 7 we get step 8.

Now the proposition follows from step 4, step 5 and step 8.

3. Proof of the theorem

We shall prove that $p_{[a:b]}=p_{[c:d]}$ holds for a, b, c, d in $X^{(k)}$ by induction on k. We assume 0 < k < (n/2) and the above equality holds for k-1.

Let a, $b \in X^{(k)}$ and $Y = \overline{b} = \{b_1, \dots, b_k\}$. Then from the proposition we have

$$r p_{[a;b]} + \sum_{u \in T_{\mathcal{T}}} p_{[a;bu]} = s ,$$

where $r = \binom{n-k}{2} + 1 - k$, s = (n-k)! - kq and $q = p_{[a(i); b(i)]}$. Note that q is independent of a, b and i by induction.

Then for $g \in S_Y$ we have

$$r p_{[a; bg]} + \sum_{u \in T_{\mathcal{Y}}} p_{[a; bgu]} = s.$$

For simplification we write $p_g = p_{[a; bg]}$, then the above is

(1)
$$r p_g + \sum_{u \in T_Y} p_{gu} = s \qquad (g \in S_Y).$$

We regard (1) as a system of linear equations with unknowns $p_g(g \in S_r)$. Then (1) has a solution

$$p_{g} = s / \left\{ r + \binom{k}{2} \right\} \qquad (g \in S_{Y}) \,.$$

Since r and s are constants which depend only on n and k, we must only show that (1) has a unique solution.

Let $S_Y = \{g_1, \dots, g_m\}$, m = k!, and let $D = (d_{ij})$ be the coefficient matrix of (1). Then

$$d_{ij} = \begin{cases} r & \text{if } i = j \\ 1 & \text{if } g_i u = g_j \text{ for some } u \in T_Y \\ 0 & \text{otherwise} \end{cases}$$

Now we consider the graph structure on S_r defined by

" g_i is adjacent to g_j if $g_i u = g_j$ for some $u \in T_r$ ". Let A be the adjacency matrix of the graph S_r . Then D = A + rE, where E denotes the unit matrix of degree m. We must show that $\det(A + rE) \neq 0$. By way of contradiction, we assume that $\det(A + rE) = 0$. Then (-r) is an eigenvalue of A. But the

770

absolute value of any eigenvalue of regular graph cannot exceeds its valency (see [3]). Therefore we have $r \leq \binom{k}{2}$. This implies $n^2 - (2k+1)n + 2 \leq 0$ and $2k \geq n$. This is a contradiction.

References

- [1] J.H. van Lint: Introduction to coding theory, Springer, New York, 1982.
- [2] E. Bannai and T. Ito: Algebraic combinatorics, Benjamin, 1984.
- [3] N. Biggs: Finite groups of automorphisms, Cambridge, 1971.
- [4] O. Rothaus and J.G. Thompson: A combinatorial problem in the symmetric group, Pacific J. Math. 18 (1966) 175-178.
- [5] M. Hall: The theory of groups, Macmillan, New York, 1959.

Faculty of General Education Tokyo Medical and Dental University Ichikawa, Chiba 272, Japan