MULTIPLY TRANSITIVITY OF PERFECT I-CODES IN SYMMETRIC GROUPS

Dedicated to Professor Hirosi Nagao on his 60th birthday

Kazumasa NOMURA

(Received September 27, 1984)

1. Introduction

Let n be a positive integer, S_{n} be the symmetric group on $X=\{1, \cdots, n\}$, T be the set of all transpositions in S_{n} and $U=T \cup\{1\}$. A subset Z of S_{n} is a 1-code in S_{n} if $U g \cap U h=\phi$ holds for any distinct two elements g and h in Z. A 1-code Z in S_{n} is perfect if $S_{n}=\bigcup_{g \in Z} U g$ (see [1]). Let $X^{(k)}$ be the set of all ordered k-tuples of distinct elements of X. We consider the natural action of S_{n} on $X^{(k)}$. A subset Z of S_{n} is k-transitive if the following condition holds.

For any x and y in $X^{(k)}$, there exists some z in Z that moves x to y, and the number of such elements in Z is a constant that is independent of the choice of x and y.
In this paper we shall prove the following result.
Theorem. Perfect 1 -codes in symmetric group of degree n are k-transitive for $0 \leqq k<(n / 2)$.

From the above theorem we easily get the following corollary by counting the number of elements of Z that move x to y for fixed $x, y \in X^{(k)}$.

Corollary. If S_{n} has a perfect 1-code then $\binom{n}{2}+1$ divides $[(n / 2)+1]$!.
In [4] Rothaus and Thompson proved that if S_{n} has a perfect 1-code then $\binom{n}{2}+1$ is not divisible by any prime exceeding $\sqrt{n}+1$. Their proof is based on the theory of group characters. In this paper we will give a combinatorial proof without using group characters.

Throughout this paper we assume that n is a fixed positive integer and S_{n} has a perfect 1-code Z. We shall use the following notations.

Notations

$$
X=\{1, \cdots, n\} .
$$

$G=S_{n}$ the symmetric group on X.
T : the set of all transpositions in G.
$U=T \cup\{1\}$, where 1 denotes the identity in G.
S_{Y} : the symmetric group on a subset Y of X. We regard S_{Y} as a subgroup of G.
$T_{Y}=T \cap S_{Y}$.
Z : a perfect 1-code in G.
$p_{K}=|K \cap Z|$ for a subset K of G.
X^{k} : the set of all ordered k-tuples of elements of X.
$X^{(k)}=\left\{\left(a_{1}, \cdots, a_{k}\right) \in X^{k} \mid a_{i} \neq a_{j}\right.$ if $\left.i \neq j\right\}$.
For $a=\left(a_{1}, \cdots, a_{k}\right), b=\left(b_{1}, \cdots, b_{k}\right)$ in $X^{(k)}$ and g in G :
$a g=\left(a_{1} g, \cdots, a_{k} g\right)$.
$a(i)=\left(a_{1}, \cdots, a_{i-1}, a_{i+1}, \cdots, a_{k}\right)$ for $1 \leqq i \leqq k$.
$a=\left\{a_{1}, \cdots, a_{k}\right\}$ a subset of X.
$[a ; b]=\{g \in G \mid a g=b\}$.
Proof of the theorem is based on the following equation.
Proposition. Let $0<k<n$ and $a, b \in X^{(k)}$. Then

$$
\left.\left\{\binom{n-k}{2}+1-k\right\} p_{[a ; b]}+\sum_{u \in T_{\vec{b}}} p_{[a ; b u]}+\sum_{i=1}^{k} p_{[a(i)} ; b(i)\right]=(n-k)!.
$$

2. Proof of the proposition

Throughout this section we assume $0<k<n$ and $a=\left(a_{1}, \cdots, a_{k}\right), b=\left(b_{1}\right.$, $\left.\cdots, b_{k}\right) \in X^{(k)}$. We divide the proof into several steps.

Step 1. $|[a ; b]|=(n-k)!$.
Proof. If $g \in[a ; b]$ then $a_{i} g=b_{i}$ for $1 \leqq i \leqq k$ and $(X-\bar{a}) g=X-\bar{b}$. Since $|X-\bar{a}|=|X-\bar{b}|=n-k$, the number of such permutations is $(n-k)!$.

Step 2. $[a ; b]=\underset{g \in Z \cap U[a ; b \leq}{\cup}([a ; b] \cap U g)$.
Proof. We have $G=\bigcup_{g \in Z} U g$ since Z is a perfect 1 -code. Then $K=\bigcup_{g \in Z}$ ($K \cap U g$) for any subset K of G. If $h \in K \cap U g$, then $h=u g$ for some $u \in U$, and $g=u h \in U K$. This implies $K \cap U g=\phi$ when $g \notin U K$. Therefore we have $K=\underset{g \in Z \cap U K}{\cup}(K \cap U g)$.

Step 3. $U[a ; b]=\underset{u \in \sigma}{\cup}[a ; b u]$.
Proof. Note that $U[a ; b]=[a ; b] U$ since U is invariant under conjugation. Since $[a ; b] g=[a ; b g]$ holds for $g \in G$, we easily get step 3 .

Let $Y=\bar{b}=\left\{b_{1}, \cdots, b_{k}\right\}$. We divide U into three subsets.

$$
\begin{aligned}
& T_{1}=\{(i, j) \in T \mid i, j \in X-Y\} \cup\{1\} \\
& T_{2}=\{(i, j) \in T \mid i, j \in Y\} \\
& T_{3}=\{(i, j) \in T \mid i \in Y \text { and } j \in X-Y\}
\end{aligned}
$$

Then $U=T_{1} \cup T_{2} \cup T_{3}$ (disjoint). Also we set

$$
V_{i}=\bigcup_{u \in T_{i}}[a ; b u] \quad(1 \leqq i \leqq 3)
$$

Step 4. $V_{1}=[a ; b]$.
Proof. If $u \in T_{1}$ then $b u=b$ since u fixes all points in Y.
Step 5. $\quad V_{3}=\bigcup_{i=1}^{k}([a(i) ; b(i)]-[a ; b])$.
Proof. Take $g \in V_{3}$. Then $g \in[a ; b u]$ for some $u \in T_{3}$. By definition of T_{3} we have $b_{i} u \in X-Y$ for some i. Then $a_{i} g=b_{i} u \neq b_{i}$ and $g \notin[a ; b]$. Hence we have $g \in[a(i) ; b(i)]$. To show the converse take any $g \in[a(i) ; b(i)]-[a ; b]$. Let $u=\left(b_{i}, a_{i} g\right) \in T$. Then $a_{i} g \neq b_{i}$ and $a_{i} g \in X-Y$. This implies $u \in T_{3}$. Moreover $a_{i} g=b_{i} u$ implies $g \in[a ; b u]$. Hence $g \in V_{3}$.

Step 6. If $g \in V_{1}$ then $|[a ; b] \cap U g|=\binom{n-k}{2}+1$.
Proof. We have $|[a ; b] \cap U g|=\left|[a ; b] g^{-1} \cap U\right|$ since right translation by g^{-1} is a bijection on G. Since $g \in[a ; b]$ from step $4,[a ; b] g^{-1}=\left[a ; b g^{-1}\right]=[a ; a]$. Hence $|[a ; b] \cap U g|=|[a ; a] \cap U|=\binom{n-k}{2}+1$ since $[a ; a] \cap U$ contains 1 and all transpositions on $X-a$.

Step 7. If $g \in V_{2}$ or $g \in V_{3}$ then $|[a ; b] \cap U g|=1$.
Proof. In either case we have $g \notin[a ; b]$. As in the proof of step 6 we have $|[a ; b] \cap U g|=\left|\left[a ; b g^{-1}\right] \cap U\right|$. Let $c=b g^{-1}=\left(c_{1}, \cdots, c_{k}\right)$. Then $c \neq a$ since $g \notin] a ; b]$. Hence $a_{i} \neq c_{i}$ for some i. If $u \in[a ; c] \cap U$ then $a_{i} u=c_{i}$ and $u=\left(a_{i}, c_{i}\right)$. Since u is uniquely determined, we have $|[a ; c] \cap U| \leqq 1$. We also have $[a ; c] \cap$ $U \neq \phi$ since $g \in V_{2} \cup V_{3}$.

Step 8. $\left\{\binom{n-k}{2}+1\right\} p_{V_{1}}+p_{V_{2}}+p_{V_{3}}=(n-k)!$.
Proof. From step 1 and step 2 we have

$$
\sum_{g \in Z} \sum_{[a ; b]}|[a ; b] \cap U g|=(n-k)!.
$$

From step 3 and definition of V_{i} we have

$$
U[a ; b]=V_{1} \cup V_{2} \cup V_{3} .
$$

This implies

$$
Z \cap U[a ; b]=\left(Z \cap V_{1}\right) \cup\left(Z \cap V_{2}\right) \cup\left(Z \cap V_{3}\right) .
$$

Then from step 6 and step 7 we get step 8 .
Now the proposition follows from step 4 , step 5 and step 8.

3. Proof of the theorem

We shall prove that $\left.p_{[a ; b]}=p_{[c} ; d\right]$ holds for a, b, c, d in $X^{(k)}$ by induction on k. We assume $0<k<(n / 2)$ and the above equality holds for $k-1$.

Let $a, b \in X^{(k)}$ and $Y=\bar{b}=\left\{b_{1}, \cdots, b_{k}\right\}$. Then from the proposition we have

$$
r p_{[a ; b]}+\sum_{u \in r_{Y}} p_{[a ; b u]}=s,
$$

where $r=\binom{n-k}{2}+1-k, s=(n-k)!-k q$ and $q=p_{[a(i) ; b(i)]}$. Note that q is independent of a, b and i by induction.

Then for $g \in S_{Y}$ we have

$$
r p_{\left[a ; b_{g}\right]}+\sum_{u \in r_{Y}} p_{\left[a ; b_{g u}\right]}=s
$$

For simplification we write $p_{g}=p_{[a ; b g]}$, then the above is

$$
\begin{equation*}
r p_{g}+\sum_{u \in T_{Y}} p_{g u}=s \quad\left(g \in S_{Y}\right) \tag{1}
\end{equation*}
$$

We regard (1) as a system of linear equations with unknowns $p_{g}\left(g \in S_{Y}\right)$. Then (1) has a solution

$$
p_{g}=s /\left\{r+\binom{k}{2}\right\} \quad\left(g \in S_{Y}\right)
$$

Since r and s are constants which depend only on n and k, we must only show that (1) has a unique solution.

Let $S_{Y}=\left\{g_{1}, \cdots, g_{m}\right\}, m=k!$, and let $D=\left(d_{i j}\right)$ be the coefficient matrix of (1). Then

$$
d_{i j}= \begin{cases}r & \text { if } i=j \\ 1 & \text { if } g_{i} u=g_{j} \text { for some } u \in T_{Y} \\ 0 & \text { otherwise }\end{cases}
$$

Now we consider the graph structure on S_{Y} defined by
" g_{i} is adjacent to g_{j} if $g_{i} u=g_{j}$ for some $u \in T_{Y}$ ". Let A be the adjacency matrix of the graph S_{Y}. Then $D=A+r E$, where E denotes the unit matrix of degree m. We must show that $\operatorname{det}(A+r E) \neq 0$. By way of contradiction, we assume that $\operatorname{det}(A+r E)=0$. Then $(-r)$ is an eigenvalue of A. But the
absolute value of any eigenvalue of regular graph cannot exceeds its valency (see [3]). Therefore we have $r \leqq\binom{ k}{2}$. This implies $n^{2}-(2 k+1) n+2 \leqq 0$ and $2 k \geqq n$. This is a contradiction.

References

[1] J.H. van Lint: Introduction to coding theory, Springer, New York, 1982.
[2] E. Bannai and T. Ito: Algebraic combinatorics, Benjamin, 1984.
[3] N. Biggs: Finite groups of automorphisms, Cambridge, 1971.
[4] O. Rothaus and J.G. Thompson: A combinatorial problem in the symmetric group, Pacific J. Math. 18 (1966) 175-178.
[5] M. Hall: The theory of groups, Macmillan, New York, 1959.

Faculty of General Education
Tokyo Medical and Dental University
Ichikawa, Chiba 272, Japan

