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0. Introduction

The notion of infinite prime introduced by Harrison [3] was investigated in
[1], [2], [7] and [9] which were concerned with ordering on a field. In this note,
we study about signatures on rings as some generalization of infinite primes and
signatures of fields in [2]. In the section 1, we introduce notions of U-prime
and signature of a ring which are generalizations of infinite prime and signature
of field. In the section 2, we show that a U-prime of a commuative ring defines
a signature on the ring. In the sections 3 and 4, we consider the category of
signatures and a space of signatures on a ring which include notions of extension
of signature and space of ordering on fields (cf. [2] and [8]), and investigate them.
Throughout this paper, we assume that every ring has identity 1.

1. Preliminaries, definitions and notations

Let S be a multiplicative semigroup, and 7' a normal subsemigroup of S,
(cf. [6], p- 195), denoted by T'<].S, that is, T'is a subsemigroup of S which satisfies
1) for x, yES, xye T implies yx T, 2) if there is an x& T with xy& T, then
y&€T, and 3) for every xE S, there exists an ¥’ S with x'x&T. We can define
a binary relation ~ on S; for x, yE S, x~y if and only if there is a 2& .S such that
both zx and zy are contained in 7. Then, the relation ~ is an equivalence
relation on S, and is compatible with the multiplication of S, so the quotient
set S/~, denoted by S/T, makes a group such that the canonical map Jr: S—S/
T; x+— [x] is a homomorphism with Ker y»=T.

Let R be any ring with identity 1, and P a preprime of R ([3]), that is, P is
closed under addition and multiplication of R and —1&P. We put p(P)=PN
—P, Ry= {xER|xp(P)U p(P)xC p(P)}, RE = RA\p(P) (:= {xE Ry | xéE p(P)}),
P*=P\p(P)(=P\—P). We shall say'a preprime P to be complete quasi-prime,
if it satisfies the following conditions;

1) p(P) is an ideal of Rj such that Rp/p(P) is an integral domain,

2) P*<Rj under the multiplication of Rp.
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3) P is complete in Rp, that is, for x&Rp, ¥*€ P implies x &P U —P.

A multiplicative semigroup F with unit element 1 and zero element 0 will
be called a f-semigroup, it F* == F\{0} makes a group with a unique element of
order 2, denoted by —1, under the multplication of F. If P is a complete
quasi-prime of R, then the quotient group G(P)=R3/P* has a unique element
[—1] of order 2, and the formally composed semigroup F(P) = G(P) U {0} makes
an f-semigroup under the multiplication of G(P) and a0=0a=00=0 for
asG(P). Furthermore, we can define a map o: R,—F(P) by o(a) =0 or [a] for
ac p(P) or ac R}, respectively. Then, it can be verified that 1) o(—1)=[—1], 2)
o(ab) = o (a)a(b) for every a,bER;p, and 3) for a, bER,, either o(a)=0 or
o(a) = a(b) implies o(a+b) = o(d).

Let = be a set of prime numbers, and suppose 2&z. A complete quasi-
prime P will be called a z-complete quasi-prime, if for each gE=, there isa {,E€
Rp\P such that {,’eP and for any xR, with ¥’EP, yx& 1§u§a§ P for some
yeP*, '

Remark 1.1. If R is a commutative ring and P is a z-complete quasi-
prime, then for each gEx, the g-torsion subgroup G(P),={acsG(P)|?n>0;
a?"=[1]} of G(P) is isomorphic to a subgroup of Z(¢~). Because, since G(P),
has a unique minimal non trivial subgroup {[¢,]>, G(P), is indecomposable, so
by [4], p. 22, Theorem 10, G(P), is isomorphic to Z(q") or Z(q™).

Let R be a ring with identity 1, and F an abelian f-semigroup. A partial map
o: R—F will be called a signature of R with domain of definition R,, if o is a
map of a subset R, of R into F satisfying the following conditions;

(S1) —1€R, and o(—1)=—1,

(S2) a, beR, implies abE R, and o(ab) = o(a)a(b),

(S3) for a,bER,, if o(a) =0 or o(a) = (b) then a+bER, and o(a+b)=
a(b),

(S4) for aeR, if a: R,, then there exists a bR, such that o(b) =0 and
either o(ab)=1 or o(ba) = 1.

Let o: R—F be a signature. For a€F, we put p,(c) ={xER,|c(x) =},
P(c) =po(o) U pi(o) and G(o)=Im o N F*.

Lemma 1.2. Let o: R—F be a signature of a ring R.

1) R, is a subring of R with prime ideal py(c) such that R,|py(c) is an integral
domain.

2) P(o) is a preprime of R, and R, = Rp(,).

3) If G(o) is a subgroup of F*, then P(c) is a complete quasi-prime of R, and
G(P(c)) and G(o') are group isomorphic.

Proof. 1) If R, is closed under the addition of R, then it is easy to see
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that R, is a subring of R. Suppose a+b& R, for some @ and b in R,. There is
a ¢ER, such that o(c) =0, and o(c(a+b))=1 or o((a+b)c)=1. Since a(ca)
=o(ac)=oa(a)a(c)=0 and o(ch)=oa(bc)=0, we get o(ca+cb)=o(ac+bc)=0
which is a contradiction. Hence, we get R,+R,CR,. It is easy to see that
Do) is an ideal of R,, and R,/p,(c) is an integral domain. 2) From the de-
finition of signature, it follows that P(c) is a preprime of R and p,(c)=P(c) N
—P(c). We shall show R,= R,(y. Since R,CRp, is clear, it suffices to show
R,DRp,y. If x&R\R,, then there is a yE py(o) with xyE py(o) or yxE pi(o),
so xpy(a) U po(a)xE po(a), that is, xERpy. 3) If G(o) is a group, then it is
easy to see that P(o)" =pi(a), P(o)" ARpg), o(Rpi)=G(s), and P(s) is
complete. Furthermore, a map G(P(c))=Rp})/P(c)" — G(o); [¥] W o(x) is
a group isomorphism.

RemARk. 1) If Ris a field, then a signature o: R—F with py(c)={0} and
F=p U {0} coincides with the notion of signature defined by Becker, Harman and
Rosenberg [2], where y is the group of all roots of unity in the complices. 2)
Let F be a finite field with characteristic #=2. The multiplicative semigroup F
is an abelian f-semigroup. For a signature o: R— F, let = be the set of all
prime factors of order |G(c)|. Then, it is easy to see that P(c) is a z-complete
quasiprime of R.

Let R be a ring with identity 1, and U a non empty multiplicatively closed
subset of R satisfying UN —U=¢. A preprime P of R will be called a U-pre-
prime of R, if UCP and PN —U=¢. A maximal U-preprime of R will be
called a U-prime of R. Any Harrison’s infinite prime is a {1}-prime.

Lemma 1.3. Let U a non empty multiplicatively closed subset of R with
UN—U=¢, and P a U-prime of R. If either R is commutative or Px = xP and
Ux=xU hold for every x&R§, then P is a complete quasi-prime of R.

The proof of this lemma is obtained by checking the following facts;

(1.3.1) U+PcCP*.

(1.3.2) For x&R, (*&R, if R is commutative), if there are u€ U and y€P
with (u+y)xE P, then x&P. Hence 1€P.

(1.3.3) For x€R, (xR, if R is commtative), if x€E p(P), then there is an
x'€(4+P)[x] with ¥'xe U+P, where (£P)[x]={3; a;x'€R|a;&PU —P}.

(1.3.4) Rp/p(P) is an integral domain.

(1.3.5) For x, yERp, xysP* implies yx&P™.

(1.3.6) P is complete in Rp.

(1.3.7) For any x&P", there is an x'€P* with x'xc U+P.

(1.3.8) For xR, (xR, if R is commutative), if there is a yEP* with
yx & P*, then x&P*.

The proofs of these statements are obtained similarly to the case of Harrison’s
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infinite prime; (1.3.1): Since U N —P = ¢, it follows that U C P* and U+PCP*.
(1.3.2): Asubset P’={xER,|"uc U, yeP; (u+y)x& P} of R is closed under
addition and multiplication. Because, if x,, x,&P’, there are »;& U and y,EP
with (u,+y,)x,€P, i=1, 2. If either x, or x, belongs to p(P), then it is trivial
that x,+x, and x,x, belong to P’. Otherwise, by assumption, there are usc U
and y3EP such that xu,=ujx; and xy,=yx. Then (w+y) (v+y,) and
(ti+y) (ws+y5) belong to U+P, and (u+y) (y+y2) (01+%,) and (u4y1)
(u4+yt)xix, are in P. Furthermore, it is immeadiately seen that PCP’ and
P'N—U=¢, so we get P=P’'. (1.3.3): For xER,, if x& p(P), then either x&E P
or —xe&P. By assumption, a subset P[x]=P-+Px-+Px*+ -, (resp. P[—x]
=P+ P(—x)+P(—x)*4-++) of R is closed under addition and multiplication.
Since P& P[x] or P&<P[—x], we get P[x]N—U=*=¢ or P[—x]N—U=*¢, so
we can find an element y&(34-P) [x] such that yx& U+P holds. (1.3.4): For
x, yERp, suppose that xy < p(P) and xe: p(P). By (1.3.3), there is an ' (L P)
[*] (S Rp) with x'x& U+ P, and (1.3.2) derives that x'xy & p(P) implies y € p(P).
(1.3.5): For x, yERjp, suppose xyEP*. (xy)x is in Px=xP, and for an element
x' in (£ P)[x], also in Rp, with x'x& U+P, we get (x'x)yxEx'xPC P, so yx& P+
by (1.3.2) and (1.3.4). (1.3.6) is easy. (1.3.7): If x&P*, then P[—x]=P—Px
is closed under addition and multiplication, and P& P[—x]. Hence, there are
ue U and x’, ye P with —u=y—x'x, so we get x'x=u+ye U+P and x'€P*.
(1.3.8) is immeadiately obtained from (1.3.2) and (1.3.7).

2. The connection between U-prime and signature

Theorem 2.1. Let R be a commutative ring with identity 1, and U any non
empty multiplicatively closed subset of R with UN—U=¢. If P is a U-prime
of R, then there exists a signature o : R— F with P(c) = P and group G(c) = G(P).

Proof. By Lemma 1.3, U-prime P is a complete quasi-prime of R, so it
defines a map o: Rp,—F(P). Then, we put R,=R, and F=F(P). The con-
ditions (S 1), (S 2) and (S 3) of signature were verified. (S 4) is proved in the
following proposition. Then we have a signature o: R—~ F with P=P(¢) and
G(c)= G(P)=R3|P*.

Proposition 2.2. Let P be a U-prime of a commutative ring R, and let
Ap={a=R|%bycU+P, ?b,=PU—P, i=1, 2, ---, n; "0 bja"  =0}.

1) (Rp, p(P)) is a valuation pair of R, (cf. [3], Proposition. 2.5).

2) If x=R\p(P) then there is an ac Ap with ax< U+ P.

3) If x and y are elements of R with xy & U~-P, then x&: p(P) implies y = Ap.

4) Rp=4,.

Proof. The proof of 1) is quite similar to [3], Proposition 2.5. 2) If
x€R\p(P), by (1.3.3) there is an as(4-P) [x] with axe U+ P, then a can be
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represented as — (b, +b,x+ -+ +b,4"") for some b, PU —P. If we put ax =1b,,
then a satisfies an equation bya”+bbya" '+ -+ +b,b5 =0 with b, U+P and
bbicsPU—P,i=1,2, -+, ns0acA4p. 3) Suppose that x and y are in R and
xye U+P. If x& p(P), by 2), there is a 24, with :xe U+P. Since 2€4p,
there are gy U+-P and a;&PU —P,i=1,2, ---, m, with 3);% a;s" " =0. Put
xy=by and 2x = ¢,, so we get that 33;%o(a;c5 ' b3)y™ ™ = (2i% a;2" *)b§ = 0, aycd’
€U+P and a;cd~'bisPU —P, hence y=A4,. 4) In the first place, we show
ApDRp: Let x be any element in Rp. If x& p(P), x4, is obvious. Otherwise,
by (1.3.3) there is a y&(+P)[x] with xye U+P, so y& p(P) and by 3) we get
xEAp. Now, we show 4p,=R;: Let (U+P)7'R be the ring of quotients of
R with respectto U+ P, and yr: R—(U+P)™'R the canonical ring homomor-
phism. Then, (U4P) 'R, may be regarded as a subring of (U4P)™'R. By
B’, we denote the integral closure of (U+P)™ 'R, in (U+P)'R. There is a
prime ideal Q' of B’ which lies over (U-+P)™'Rpp(P), (cf. [5], (10.8)). It follows
that B=+/"1(B’) is a subring of R with BDA4,DR;, and Q =+"}(Q’) is a prime
ideal of B with QNR,=p(P). By 1), we get B=Ap,=R,.

Lemma 2.3. Let R be a commutative ring, and o: R—F a signature. If
G(o) is a torsion group, then R,={a<=R|a" €P(c) for some integer n>>0}.

Proof. Since G(o) is a torsion group, it is clear that any element a in R,
has a positive integer n with a"€P(s). Conversely, suppose that an element
a€R does not belong to R,. There is a bE py(a) with @b p(s). Then a”
is not contained in P(g) for every positive integer n. Because, if a"&€P(c) for
some #n>0, it derives a contradiction 1= o((ab)")=o(a")o(b")=0.

Let R be a ring with identity 1. By [1], a preprime P is called a torsion
preprime (resp. 2-torsion preprime) of R, if for each aER there exists a positive
integer n such that a" P (resp. @ €P) holds. From Theorem 2.1 and Lemma
2.3, the following corollaries immeadiately follow;

Corollary 2.4. Let R be a commutative ring with 1 and U a non empty
multiplicatively closed subset of R with 1€ U and UN —U=¢.

1) If P is a torsion U-prime of R, then p(P) is an ideal of R, i.e. Rp=R,
50 there is a signature o: R— F such that P=7P(c), R=R, and G(c) is a torsion
group.

2) If Pis a 2-torsion U-prime of R, then there is a signature o: R— F such
that P="P(c), R=R, and F*=Z(2~).

In particular, on a field, we have

Corollary 2.5. Let K be a field.
1) For any signature o: K—F, K, is a valuation ring of K with maximal
ideal py(c), and the residue field k(c) = K,|py(c) has an induced signature : k(o)
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— F with k(c): = k(a") and py(c)= {0}, and P(3) is a preordering on k(o).

2) Let U be a non empty multiplicatively closed subset of K with UN —U = ¢.
If P is a U-prime of K, K, is a valuation ring of K with maximal ideal p(P). If
P is a torsion U-prime of K, then K= K, p(P)= {0}, and P is a preordering, i.e.
P* = P\{0} is a subgroup of K* = K\{0}, (cf. [1], (3.3)).

3) If O is a real valutation ring of K with maximal ideal p, i.e. the residue
field Ofp is a formally real field, then there is a signature o: K— GF(3) with
K,=O0 and py(c)=p, where GF(3)= {0, 1, —1} is a multiplicative semigroup of
prime field with charcteristic 3.

Theorem 2.6. Let R be a ring with identity 1, and o: R— F a signature
of R. Assume that G(a) is a torsion group and xp(c)= pu(a)x holds for all x&
R\p|(c) and a=G(c)U {0}. Then, there exists a signature v: R—F' of R
satisfying the following conditions;

1) P(7) is a p\(c)-prime of R and P(t)DP(a),

2) R.=R, and Po(7) =Po(°’)’

3) there is a subgroup H of G(o) such that p(v)=o '(H), —1&H and
G(o)/H=G(7) hold.

Proof. Since P(c) is a pi(c)-preprime of R, by Zorn’s Lemma there exists
a py(o)-prime P of R containing P(s). From the facts that PN —pi(o)=¢
and py(o)Cp(P), we can derive that py(c)=p(P) and Rp=R,; If there is an
element x& Rp\R,, then there exists a y & py(o) such that either xy or yx belongs
to pi(o). However, xy and yx are also contained in p(P), so these are contrary
to p(c)Np(P)=¢. Hence, we get Rp,CR,. Furthermore, if there is an
element xE p(P)\p(c), we have x" € p,(c) N p(P) for some integer n>>0, which
is a contradiction. Therefore, we get py(a)=p(P) and R,=R,. Now, we put
H = o(P*),so H isasubgroup of G(c). We shall show P* = o7 (H); If x€o™'(H)
then there is a yEP" with o(x)=o(y). Since y"Ep,(c) for some integer
n>0, we have xy" = (xy"')yExp,(c)NP*. Hence, for any xER, it follows
that xo~(H) if and only if xp,(¢) N P*#¢. On the other hand, we can show
that P={xER,|xp\(c) N P*¢}; The set P’={x&R,|xp,(c) NP+ ¢} is closed
under addition and multiplication: Because, for x, y&P’, there are x;, y,E pi(o)
such that both xx, and yy, are in P. Since we may suppose that y is not in py(o),
there is an x{ € p\(o) with x,y=yx{, and it follows that both (x+v) (¥;y:) and
(xy) (x1y,) are contained in P. Hence, both x4y and xy belong to P’. Further-
more, it is derived that PCP’ and P'N —p,(c)=¢, because of PN —p,(c)=¢.
Hence, we get P=P’. Accordingly, we conclude that ¢ (H)=P"* =¢LEJHP,,(0).

From the assumption xp,(c0)= p,(c)x for xR, \p,(c) and a=G(s)U {0}, P
is a complete quasi-prime of R. Therefore, we can define a signature 7: R—
F(P) such that R.=R,=R,, py(7)=p(P)=7py(o) and G(7)=G(P)=G(s)/H.
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It is easy to check the conditions of signature for 7.

Corollary 2.7. Let R be a commutative ring with identity 1. If ¢: R—F
1s a signature of R such that G(c) is a 2-torsion group, then P(c) is a p,(o)-
prime of R.

Proof. Since G(o) is a 2-torsion group, by Remark 1.1 every non-trivial
subgroup H of G(s) contains —1. By Theorem 1.7, P(s) is a p,(c)-prime of
R.

Corollary 2.8. Let S be a commutative ring with identity 1, and R a subring
of S containing 1. If o: R—F a signature of R such that G(c) is 2-torsion
group, then o can be extended to a signature 7: S— F' of S, i.e. S,NR=R, and
P(r)NR=P(c) hold.

Proof. A signature r: S— F’ is defined by a p,(¢)-prime P of S containing
P(c). Then, 7 is an extension of .

3. Category of signatures

Let o,: R~ F, and o,: R,— F, be signatures of rings R, and R,. Suppose
that f: R, — R, is a ring homomorphism such that f(1)=1 and f(Ry,,) C R,,,, and
that £: F,— F, is a partial homomorphism which is defined on G(o,) and satisfies
£(0)=0,&(—1)=—1 and &(aB)=E(a)E(B) if £ is defined on «, B and aB for
a, B€F,. Then, the pair (f, £) will be called a morphism of signatures of o,
to o, denoted by (f, ): 0,0y, if it satisfies £(a(x)) = o(f(x)) for all xER,,..
Let o;: R;— F; and o}: R!— F/ be signatures of rings for =1, 2, and (f, §):
oy—>a, and (f', &'): o{— o4 morphisms of signatures. We define the equalitiy
of morphisms that (f, £)=(f’, ') if and only if o; = o/ (i.e. R, = R{, R;;;= R/},
F;=F!and g,(x) = g/(x) forallxeR,,,) fori=1, 2, f=f" and for every a € G(o,)
= G(o1), E(¢)=E'(a) hold. By C,,, we denote the category of signatures in
which objects are signatures of rings and morphisms are morphisms of signatures.

Proposition 3.1. Let R and S be rings with identity 1, and f: R— S a ring
homomorphism with f(1) = 1.

1) If 7: S—F is a signature of ring S with Im fD py(7), then there exists a
signature o : R— F of ring R with a morphism (f, Iz): o — 7 in Cg,.

2) If f: R— S is surjective, and if o: R— F is a signature of ring R with
Ker f Cpy(o), then there exists a signature v: S—F of ring S with a morphism
(fs Ir): o= 7 in Cg,.

Proof. 1) Suppose that 7: S—F is a signature of ring S and f: R—>S isa
ring homomorphism with f(1)=1 and Im f D py(7). On a subring R, ={xER|
f(x)eS8.} of R, a map o: R,—F; x W 7(f(x)) is defined. The condition
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Im D py(r) derives that a signature o: R~ F of ring R and a morphism (f, Ir):
o —7 in Cy, are defined. 2) Suppose that f: R—S is a surjective ring homo-
morphism, and o: R— F is a signature of ring R with Ker fC py(o). For a
subring S, =f(R,), we can define a map 7: S,—F as follows: For any a€ S,
there is a bR, with f(b)=a, then we put 7(a)=a(b). From the condition
Ker f C py(o), it is known that the map 7: .S, — F is well defined. Then, it is easy
to see that a signature 7: S— F of ring S and a morphism (f, Iz): o =7 in Cy;,
are defined.

Concerning commutative rings, the situation of Proposition 3.1, 2) is
reformed as follows;

Theorem 3.2. Let f: R— S be a ring homomorphism of a commutative ring
R into a commutative ring S with f(1)=1. If o: R—F is a signature of R such that
G(c) s a torsion group and Ker f C py(c), then there exists a signature v: S—F'
of ring S with a morphism (f, £): ¢ — 7 in Cyg.

Proof. Suppose that f: R— S is a ring homomorphism with f(1)=1, and
o: R—Fis a signature of R with torsion group G(c) and satisfying Ker f C py(o).
By Proposition 3.1, 2), for the surjective ring homomorphism f: R— Im f, there
exists a signature o’: Im f—F of the subring Im f of .S with a morphism (f, I,):
o—o' in C,;,. Hence, we may assume that R is a subring of S with common
identity, and it is sufficient to show that there exists a signature 7: S—F’ of S
with a morphism (¢, £): ¢ =7 in C;;g, where ¢ denotes the inclusion map R~ S.
By Theorem 2.6, there exists a signature o: R— F” of R such that R; =R,,
po(a)=py(c) and G(o)==G(o")/H for some subgroup H of G(s) hold, and P(¢) is a
pi(o)-prime of R containing P(¢). Then, we can define a partial homomor-
phism &,: F— F’ such that &, induces a group homomorphism G(¢)—>G (o) and
the pair (I, &,) defines a morphism (I, §)): 0 =& in Cge. On the other hand,
by Zorn’s Lemma, there exists a p,(c)-prime P of S containing P(s), and by
Theorem 2.1 the p,(o)-prime P defines a signature 7:.S— F(P) of S such that
P(r)=P, S,=S;, F(P)=G(P)U {0} and G(P)=S3%/P* hold, and 7 is induced
from the canonical map S(— G(P). From the fact that P(5) is a p,(c)-prime of
R, and PDP(g), it follows that PNR=P(s), p(P)NR=p\c) and P*NR=
P(a)*(=py(a)) hold. Since G(o) is a torsion group, so is also G(s), and by
Lemma 2.3 and Proposition 2.2, it is derived that Ry (= R;) = {a=R|a"€P(c)
for some integer #>0} is included in S, ={acS|%,< p,(c)+P, b, P U —P,
i=1,2,+,n; 3); b,a" =0 for some n>0}. Hence we have that Rs;C S},
and the natural homomorphism G(P(c¢))= Rs5/P(c)" = G(P)=S}/P*; [a]
M- [a] defines a partial homomorphism &,: F”/—F(P) such that (¢, &,): ¢ —>7 is
a morphism in C,;,. Thus, we obtain a signature 7: S— F'=F(P) of ring S and
a morphism (¢, £,08,) = (¢, &;)o(Ig, &,): o —7 in Cyy.
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ideal pi(c), that is, every element in R,\py(c) is invertible in R,. Then, a< pyo)
if and only if a "' & R,.

Proof. 1) For elements x, y € R, we suppose that xR,y C py(c) and x€E py(c).
If x& R,, then there is an &' &€ p(o) with x’xE p,(c) or xx’Ep,(c). Since both
x'xR,y and xx'R,y are included in py(o), we may assume that x& R,, and similary
yER,. Then, yepyo) follows. 2) Suppose that acR,\p,(s). If a'&R,,
then there is a b€ py(o) with a™'b& p,(c) or ba™' € p,(c), so it means either a(a™'d)
or (ba™')a belongs to py(a), that is, a& p,(c), which is contrary to a<t po(c). Hence,
we get a”'ER,\py(c). 3) First, we suppose that R is commutative. It is easy
to see the “only if” part. If a”'éER,, there is a bE py(c) with a 'bE py(o), so
by 1) a(a™'b) € py(c) implies ac p,(c). Next, we suppose that R, is a local ring
with maximal ideal py(o). If a £ R, then there is a 6 € p,(o) with a”'bE py(o) or
ba~'€ p,(c), so either a™'h or ba™' is invertible in R,. Hence, we get a& py(o).

Lemma 4.2. For a o€X(R, F), put q(c)={aER|RaRC pyc)}. Then,
the following properties hold;

1) gq(o) is a prime ideal of R, and g(a) C py(c).

2) If R is a local ring with maximal ideal q(o) then so is R, with maximal
ideal po). If R is commutative, then the converse also holds.

3) If po(c)=A10}, then R=R,, and P(c) gives a partial ordering on the ring R.

Proof. 1) Itis easy to see that ¢(o) is an ideal of R, and ¢(c) C py(c). For
%, yER, we suppose that xRy Cg(c) and x&£¢(s). We can find elements a and b
in R with axbet p(c), so it follows that axbR,(RyR)C py(o) and RyRC py(a) by
Lemma 4.1, 1), i.e. yEq(a). 2) If R is a local ring with maximal ideal ¢(o),
then every element in R,\py(c) (CR\¢(s)) is invertible in R, and by Lemma
4.1, 2), so is also in R,. Hence, R, is a local ring with maximal ideal p,(s). If
R is commutative and R, a local ring with maximal ideal py(c), then for any
element x&R\¢(c), we can find an element a= R such that axe R,\p,(c), that
is, ax is invertible in R,, so x is invertible in R. 3) is easy.

Corollary 4.3. Assume that R is a division ring, then the following hold.
1) For any o €X(R, F), R, is a local ring with maximal ideal p,(c).
2) X(R, F)is a Hausdorff and totally disconnected space.

3) If Fis a finite set, then X(R, F) is compact, that is, a Boolean space.

Proof. 1) is obtained by Lemma 4.2, 2). 2) By Lemma 4.1, 3), it follows
that Hy(a) = H..(a™") is a clopen set of X(R, F) for any a=0 in R, and so is also
Hy(a) for any YEF U {0} and a€R. Hence, X(R, F) is Hausdorff and totally
disconnected. 3) Suppose that F is finite, then (FU {co})® is compact.
Whenever FU {oo} is a discrete space, the subset X(R, F) becomes a closed
subset of (F'U {oo})®. Hence, under our topclogy on F U {co}, X(R, F) is also
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ReMARK 3.3. Let ¢: R—F and 7: S— F' be signatures of rings R and S.
If (f, £): ¢—7 is a morphism in C,,, then the following identities hold; 1)
R,=f7(S), 2) if G(o) is agroup, then po)=f(pu(r)) and_U, pu(s)=

I (pa(7)) for each B=G(7).

Proof. 1) Itis easy that R,C f7'(S,). To prove the opposite, we suppose
that there is an x&R\R, with f(x)=S,. Then, there is a yEp,(cs) such that
xyEp(o) or yxEp(c) hold. However, xycp (o) (resp. yxE py(o)) implies
7(f(xy)) = E(o(xy)) =1 (resp. 7(f(yx)) = 1) which is contrary to that 7(f(xy))=
(f) T (F0) = T(F)E (@ (M) = T () E(0) = 7 (f(#))0=0 (resp. T(f(y)) = 0).
Hence, we get R,=f"Y(S,). 2) It is also easy that py(a)C f Y (ps(7)). If xE
S (po(7)), then we have &(o(x))=7(f(x))=0 and o(x)=0, i.e. xE py(o), since
G(s) is a group and &(1)=1. Hence, we get py(a)=f""(ps(7)). Since
Re=f(S) and pulo)=f"(pu(r)), it follows that RApe)= U_pulo) =

FS\po(7)) = f “H(pa(T))- Sinceweg,wﬁa(a) C f7(ps(7)) holds for every
BEG(T), we get “Egj_lcgm(a-) =f"!(pa(7)) for evry BEG(7).

4. Space of signatures

In this secition, we assume that F is a f-semigroup with abelian torsion
group F*. Let R be any ring with identity 1, and X(R, F) denote the set of
signatures o: R— F of the ring R over the f-semigroup F. We consider a set
F U {oo} which is added a formal symbol oo to F. We make the set FU {oo} a
topological space such that {a} and {co} are open subsets for every e € F*. Then,
for any subset H CF U {oo}, H is a closed subset if and only if 0 H. Considering
R as a descrete space, we make the power space (F'U {oo})* have a weak topology.
We can introduce a topology on X(R, F) as a subspace of (F U {oo})®. For any
aeFand aeR, we put Hy(a)={cEX(R, F)|g(a)=a} and H.(a)={c €X(R, F)
laeeR,}. Then, for every finite subsets {a,, a,, -**, a,} CR and {v, 7, ***, Va}
CF*U {oo}, the intersections Hy (a;) N Hy,(a;) N --- N Hy (a,) construct an open
basis of the space X(R, F). Furthermore, for a subset HCF U {c} and aER,
we have thatwLEJH H,(a) is a closed subset of X(R, F) if and only if 0 H.

In the following lemmata and corollary, we need not assume that F* is a
torsion group.

Lemma 4.1. For a c €X(R, F) and an invertible element a in R, the following
statements hold;

1) For any x, yER, xR,y C py(c) implies either xE py(a) or yE py(a).

2) a€R\p(o) if and only if a”* € R\ p,(o)

3) Assume that either R is commutative or R, is a local ring with maximal
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compact.

Proposition 4.4. Assume that R is a commutative ring and o, T€X(R, F).

If P(c) CP(7) holds, then there are a subgroup H of G(o) and a homomorphism

Vi H—G(1) such that pg(t)NR,C ‘#Ul . 2a(a) T po(T)U pe(7) holds for every
sy =B

BeG(t), and R,CR, holds.

Proof. Suppose that P(c) CP(7). Since G(c) and G(7) are torsion groups,
by Lemma 2.3, we get R,CR,. We put H={a& G(c)| p(c) L ps(7)}, then H is
a subgroup of G(s). We can define a homomorphism yr: H— G(7) as follows;
For any a€ H, we can find an element a in p,(a)\py(7), and 7(a) = 7(x) holds
for every xE€ p,(a)\po(7). Because, o™ belongs to H, so we can find a & in
DPa-1(0)\Po(7), Which satisfies o(ab)=a(xb)=1 for every x& p,(a)\po(7). The
condition P(c)CP(7) means that for every x& p,(o)\po(7), 7(ad)=7(xb)=1
holds, so 7(a)=7(x). Therefore, we can define the image Jr(a) of & as 7(a) for
a€ pu(a)\po(t). Then, it is easy to see that the map yr: H— G(7) is a group
homomorphism. Further, for any «eH and B8 G(7) with y(a)=g, from the
definition of yr, pu(a) C po(7) U pe(7) follows. Hence, we getwe\l‘ql(mpm(a)c Po(7)

U pe(7). On the other hand, if B is an element in G(7) with pg(7) N R, =+ ¢,

then for each x& pg(7) N R,, there is an a=G(o) with ¥ p,(a)\po(7), that is,

Y(a)=p and xEp,(c). Hence, we get po(T) NR,C U, p4(a) for every B&
aeYy~ (B

G(7).

ReEMARK 4.5. Let R be a commutative ring, and ¢: R—F a signature of R.
By o, a topology on affine n-space R” is introduced as follows; For any v;,&
G(o)U {oo} and fi(X,, X,, --+, X,) in polynomial ring R[X,, X,, ---, X,], i=1,
2, ---, m, we put U(fl’ f2: ) fmv T Vo ooy 'an):{(al’ s "y a,,)ER”Icr(f,-(al,
@y @)= 1=1,2, -+, n}, where o(fi(ay, a,, -+, a,)) = oo whenever fi(a,, a,,
-+, a,)ER,. Then, the sets U(fy, fo, ***, fus Y1 V2 ***» V) form an open basis on
R*. We can define a continuous map v, of the topologicl space R into X(R[X],
X,, -, X,], F); Let (a,, a5, --*, a,) be any element in R", and let Vg a0y
R[X,, X,, -+, X,] = R; f(X,, X3, -+, X, )W f(a,, a5, -++, @,) a natural ring
homomorphism. By Proposition 3.1, 1), there exists a signature o(,,,4,,..,s,): R[X,
Xos trs Xn]—/F with a morphism (‘l’(al.az,w,an)’ IF): O (ay,a2,a,) O in C,g. Thus,
we get a map ¥r,: R' > X(R[X), X, -+, X,], F); (ay, a5, **, @) W 00,0005
which is continuous, because of ;' (Hy(f))=U(f, 7) for feR[X,, X,, ---, X,]
and YEG(o) U {oo}.
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