ABOUT STOCHASTIC INTEGRALS WITH RESPECT TO PROCESSES WHICH ARE NOT SEMI-MARTINGALES

NICOLAS BOULEAU

(Received April 26, 1984)

1. Introduction

Let $(\Omega, \mathcal{F}_t, \mathbf{P})$ be a probability space with an increasing right continuous family of $(\mathcal{F}_{\infty}, \mathbf{P})$ -complete σ -algebras (\mathcal{F}_t) , and let \mathcal{P} be the predictable σ -algebra induced on $\Omega \times \mathbf{R}_+$ by the family (\mathcal{F}_t) .

For $H \in \mathcal{P}$, we write H_s for the random variable $\omega \to 1_H(s, \omega)$. If Z = N + B is a semi-martingale such that N is a square integrable martingale and B an adapted process with square integrable variation, the mapping

$$(1) H \to \int_0^\infty H_s \, dZ_s$$

defines a σ -additive vector measure on $(\Omega \times \mathbf{R}_+, \mathcal{P})$ with values in $L^2(\Omega, \mathcal{F}_{\infty}, \mathbf{P})$. It has been shown by several authors that conversely if μ is a σ -additive measure from \mathcal{P} to $L^2(\Omega, \mathcal{F}_{\infty}, \mathbf{P})$ given on the elementary predictable sets H of the form

$$H = h \times [s, t]$$
 $0 < s < t, h \in \mathcal{F}_s$

by

$$\mu(H) = 1_h(Z_t - Z_s)$$

for a mean square right-continuous adapted process Z, then there is a modification of Z which is a semi-martingale [2].

Nevertheless, if we consider an other probability space (W, W, Q), an adapted process $(\omega, t) \rightarrow Z_t(\omega, w)$ depending on $w \in W$, and a measure μ which satisfies (2) for elementary predictable sets, and if we replace σ -additivity in $L^2(P)$ for each $w \in W$ by σ -additivity in $L^2(P \times Q)$, it becomes possible that Z_t fails to be a semi-martingale for fixed w.

In the example that we give, Z_t is, for fixed w, the sum of a martingale and a process of zero energy similar to those considered by Fukushima [3] in order to give a probabilistic interpretation of functions in a Dirichlet space.

32 N. BOULEAU

2. Random mixing of semi-martingales

Let $(U_{\alpha}(w))_{\alpha \in \mathbb{R}}$ be a second order process on $(W, \mathcal{W}, \mathcal{Q})$ which is right continuous in L^2 , with orthogonal increments and $\mathcal{B}(\mathbb{R}) \times \mathcal{W}$ measurable and let m be the positive Radon measure on \mathbb{R} associated to U_{α} by

$$m(\alpha, \beta) = E_{\mathcal{O}}(U_{\mathcal{B}} - U_{\alpha})^2, \quad \alpha < \beta.$$

Let $(M_t^{\sigma}(\omega))_{\sigma \in \mathbf{R}}$ be a family of right continuous and left limited martingales, and $(A_t^{\sigma}(\omega))_{\sigma \in \mathbf{R}}$ a family of continuous increasing adapted processes on $(\Omega, \mathcal{F}_t, \mathbf{P})$ such that the maps $(\alpha, \omega, s) \rightarrow M_s^{\sigma}(\omega)$ and $(\alpha, \omega, s) \rightarrow A_s^{\sigma}(\omega)$ are $\mathcal{B}(\mathbf{R}) \times \mathcal{F}_t \times \mathcal{B}(\mathbf{R}_+)$ measurable on $\mathbf{R} \times \Omega \times [0, t]$ and such that

(3)
$$\int_{\alpha \in \mathbb{R}} E_{P}[(M_{\infty}^{\alpha})^{2} + (A_{\infty}^{\alpha})^{2}] dm(\alpha) < +\infty.$$

Then we set $Z_t^{\alpha}(\omega) = M_t^{\alpha}(\omega) + A_t^{\alpha}(\omega)$ and

(4)
$$Z_{i}(\omega, w) = \int_{\omega \in \mathbb{R}} Z_{i}^{\omega}(\omega) \ dU_{\omega}(w)$$

where the stochastic integral is of Wiener's type and exists for P almost all ω since by (3) $Z_t^{\alpha}(\omega)$ belongs to $L^2(\mathbf{R}, \mathcal{D}(\mathbf{R}), dm(x))$ for P-almost all ω .

For **P**-almost ω the process $Z_t(\omega, w)$ is right continuous and left limited in $L^2(W, \mathcal{W}, \mathbf{Q})$.

If G is an elementary predictable process on $(\Omega, \mathcal{F}_t, \mathbf{P})$ given by:

$$G_s(\omega) = G_0(\omega) \ 1_{10,\,t1}(s) + \cdots + G_n(\omega) \ 1_{1t_n,\,t_{n+1}}(s)$$

for $0 < t_1 < \dots < t_{n+1}$, where G_i is a \mathcal{L}_{t_i} -measurable bounded random variable, it follows immediately

$$G_{\rm 0}(Z_{t_1}-Z_{\rm 0})+\cdots+G_{\rm n}(Z_{t_{n+1}}-Z_{t_n})=\int_{\alpha\in {\bf R}}\,(\,\int_{_{0}}^{^{\infty}}\,G_{s}\;dZ_{_{s}}^{\alpha})\;dU_{\alpha}\;.$$

And we have:

Proposition 1. The map $H \in \mathcal{P} \to \int_0^t H_s dZ_s$ defined by $\int_0^t H_s dZ_s = \int_{\alpha \in \mathcal{P}} \left(\int_0^t H_s dZ_s^{\alpha} \right) dU_{\alpha}$

is a σ -additive $L^2(\mathbf{P} imes \mathbf{Q})$ valued measure on $(\mathbf{\Omega} imes \mathbf{R}_+, \, \mathcal{P})$.

Proof. Let $H^{(n)}$ be a sequence of disjoint predictable subsets of $\Omega \times \mathbf{R}_+$, we have

$$\begin{aligned} E_{P} E_{Q} \left[\int_{\alpha \in R} \left(\int_{0}^{t} \sum_{n=N}^{\infty} H_{s}^{(n)} dZ_{s}^{\alpha} \right) dU_{\alpha} \right]^{2} \\ = \int_{\alpha \in R} E_{P} \left(\int_{0}^{t} \sum_{n=N}^{\infty} H_{s}^{(n)} dZ_{s}^{\alpha} \right)^{2} dm(\alpha) \end{aligned}$$

which can be made arbitrarily small for N large enough because

$$\boldsymbol{E_P} \left(\int_0^t \sum_{n=N}^{\infty} H_s^{(n)} \ dZ_s^{\alpha} \right)^2$$

tends to zero and remains bounded by

$$2 E_{P} [(M_{\infty}^{o})^{2} + (A_{\infty}^{o})^{2}] < + \infty. \square$$

Set

$$Z_t^{(1)} = \int_{a \in R} M_t^a \ dU_a \quad ext{and} \quad Z_t^{(2)} = \int_{a \in R} A_t^a \ dU_a \ .$$

Lemma 2. There is a $P \times Q$ -modification $\tilde{Z}_{i}^{(1)}$ of $Z_{i}^{(1)}$ which is a $(\Omega, \mathcal{F}_{i}, P)$ right continuous and left limited martingale for Q-almost all w.

Proof. Let $G \in \mathcal{F}_s$, the following equalities hold in $L^2(W, \mathcal{W}, \mathbf{Q})$ for s < t:

$$egin{aligned} oldsymbol{E_P}[1_G\,Z_t^{(1)}] &= \int_{lpha\in R}\,oldsymbol{E_P}[1_G\,M_t^{lpha}]\,dU_{lpha} = \int_{lpha\in R}\,oldsymbol{E_P}[1_G\,M_s^{lpha}]\,dU_{lpha} \ &= oldsymbol{E_P}[1_G\,Z_s^{(1)}]\,, \end{aligned}$$

therefore, if we choose a $\mathcal{F}_t \times \mathcal{W}$ -measurable element $z_t^{(1)}(\omega, w)$ in the $L^2(\mathbf{P} \times \mathbf{Q})$ equivalence class of $Z_t^{(1)}$, for w outside a \mathbf{Q} -negligible set \mathcal{D} , $z_s^{(1)}$ is a $(\mathcal{F}_s, \mathbf{P})$ -martingale for rational s.

Then, if we put $\tilde{Z}_{t}^{(1)} = \lim_{\substack{s \text{ rational} \\ s \downarrow t}} z_{s}^{(1)}$, for $w \in \mathcal{I}$, $\tilde{Z}_{t}^{(1)}$ is P-almost surely a right

continuous and left limited (\mathcal{F}_t)-martingale and

$$\tilde{Z}_t^{(1)} = Z_t^{(1)}$$
 $P \times Q$ -a.e.

because $Z_i^{(1)}$ is right continuous in $L^2(\mathbf{P} \times \mathbf{Q})$. \square

As concerns $Z_t^{(2)}$, it is a zero energy process:

Lemma 3. Let τ_n be a sequence of partitions of [0, t] with diameter tending to zero, then

$$E_{\mathbf{Q}} E_{P} \left[\sum_{t_1 \in \tau_n} (Z_{t_{i+1}}^{(2)} - Z_{t_i}^{(2)})^2 \right] \underset{\mathbf{n}_{\uparrow \infty}}{\longrightarrow} 0$$
.

Proof. The expression is equal to

$$E_P \int_{\alpha \in R} \sum_{\tau_n} (A_{t_{i+1}}^{\alpha} - A_{t_i}^{\alpha})^2 dm(\alpha) ,$$

and $\sum_{\tau_n} (A_{t_{i+1}}^{\omega} - A_{t_i}^{\omega})^2$ tends to zero, because A_t^{ω} is continuous, and remains majorized by $(A_{\infty}^{\omega})^2$, which gives the result by (3).

Nevertheless, in general $Z_i^{(2)}$ has no modification with finite variation, as shown by the following example:

N. Bouleau

Let X be a continuous martingale on $(\Omega, \mathcal{F}_t, \mathbf{P})$ such that

$$E_P X_{\infty}^2 < +\infty$$
.

Let

$$M_t^{ob} = \int_0^t 1_{\{X_s > ob\}} dX_s$$

and
$$A_t^{\infty} = \frac{1}{2} L_t^{\infty}$$

where L_t^{α} is the local time of X at α . Condition (3) is satisfied as soon as the measure m is finite. If we put

$$Z_t = \int_{lpha \in R} M_t^lpha \ dU_lpha + \int_{lpha \in R} A_t^lpha \ dU_lpha$$

we have, from Meyer-Tanaka's formula:

$$Z_t = \int_{\alpha \in \mathbb{R}} \left[(X_t - \alpha)^+ - (X_0 - \alpha)^+ \right] dU_\alpha = \int_{X_0}^{X_t} U_\lambda d\lambda \quad \mathbf{P} \times \mathbf{Q} \text{ a.e.}$$

If Z_t had a $P \times Q$ -modification such that, for fixed $w \in W$, \tilde{Z}_t were a $(\Omega, \mathcal{F}_t, P)$ semi-martingale, then, since \tilde{Z}_t and $\int_{x_0}^{x_t} U_{\lambda} d\lambda$ are both right continuous, $\int_{x_0}^{x_t} U_{\lambda} d\lambda$ would be a semi-martingale. So, from ([1], theorem 5, 6), if we took for X a real stopped brownian motion starting at 0, the map

$$x \xrightarrow{\psi} \int_0^x U_{\lambda}(w) d\lambda$$

would be the difference of two convex functions. But, if for example, U itself is a stopped brownian motion, that can be true only on a \mathbf{Q} -negligible set because almost all brownian sample paths have not finite variation. So, in this case, the $\mathbf{P} \times \mathbf{Q}$ -modifications of \mathbf{Z}_t are \mathbf{Q} a.e. not semi-martingales.

References

- [1] E. Cinlar, J. Jacod, P. Protter and M.J. Sharpe: Seminartingales and Markov processes, Z. Wahrsch. Verw. Gebiete 54 (1980), 161-219.
- [2] C. Dellacherie and P.A. Meyer: Probabilités et potentiel, théorie des martingales, Hermann, 1980.
- [3] M. Fukushima: Dirichlet forms and Markov processes, North-Holland, 1980.

Ecole Nationale des Ponts et Chaussées 28, rue des Saints-Pères 75007, Paris France