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Introduction. This paper intends to study the fundamental solution
E(t) of a degenerate parabolic system of pseudo-differential operators:

= o, f>o,

where kxk matrix p(x, ξ) has the following expansion:

P(x, ξ)=P*(*> £)+ί«-ι(*. f)+lW*, f) ,
(0.2) A,-,eST.ϊ' 0-0,1,2),

pm-,{χ, xf ) = \m~j pm-j(χ, ξ) x>o, ?ΦO (y = o, i)
and m>\ .

Our aim is to find E(t) in some class of pseudo-differential operators. We
adopt the Weyl symbol for pseudo-differential operators in this paper. The
main theorem of this paper is that one can construct the fundamental solution
E(t) in the class SJ/2ϊι/2 of pseudo-differential operators with parameter t pro-
vided the symbol (0.2) satisfies the following Condition (A):

Condition (A).

(A)-(i) J.te^ϊ.tef)/,

where qm (eSf.o) is a non-negative scalar symbol.

(A)-(ii) mm (Re^X*, £))+tt Aβ>e\ξ\ "-1
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for some positive constant c on the characteristic set 2=-

qm(x, ξ)=0}, where {μX#, f)}y=ι are the eigenvalues of pm-ι(x, ξ) and tr A is
the sum of all positive eigenvalues of A:

(0.3) A -

Here

(0.4) J =

and

(0.5) Hq = ( "q' *ί9) (the Hessian matrix of q).

For a single equation in C. Iwasaki and N. Iwasaki [7] E(t) has been con-

structed in class Sι/2,ι/2 under Condition (A), which is equivalent to the con-
dition that the following inequality holds for some positive constant 8 (Melin

[9]).

(0.6) te(ρ(x,D)u,u)>ε\\u\\\m-M-C \\u\\l for

Similar results are found in Menikoff and Sjϋstrand [10] and Sjϋstrand [12].

However for the degenerate systems, namely, when some of the eigenvalues

of the principal symbol attain zero, a necessary and sufficient condition in order

that (0.6) holds is not known. Although the principal symbol is assumed

to have a simple form in our case, our result will turn out to be valid when

we apply it to Πa
We intend to construct directly the symbol of E(t) having the form eφf.

The function φ is expressible of an explicite function of the principal symbol
pm, its derivatives of the first order, the fundamental matrix A and the sub-

principal symbol near the characteristic set 2 with the aid of symbol calculus
of pseudo-differential operators. The meaning of (A)-(ii) will be made clear

through our construction of φ. We obtain E(t) by following the discussion
given in [7] carefully.

The exact form of E(t) is available to obtain the asymptotic behavior of
oo

2 exp (—ΐ\j) as t tends to zero, where {λ;}7»ι are the eigenvalues of p(x, Z>),

if p(xy D) is a self-adjoint operator on a bundle over a compact manifold and
has exactly double characteristics. As an application of this theorem we get

an explicite construction of a parametrix for Π* under the condition Y(q) (See

[2], Definition 4.1 also) for the Levi form, which will be shown to be equivalent

to (A)-(ii). Also we get the asymptotic behavior of the eigenvalues of Πa
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Folland and Stein [3] and Boutet de Monvel [1] constructed a parametrίx for
Π* under more restrictive conditions. We no longer assume the nondegeneracy
of the Levi form, that is, the characteristic Σ is symplectic as they did. On
the other hand Rothschild and Tartakoίf [11] obtained a parametrix of integral
form under Y(q) . But its kernel is not given in an exact form and their re-
sults are not available to the study of the asymptotic behavior of eigenvalues.

The plan of this paper is as follows. In Section 1 we state the theorems
of this paper. Section 2 is devoted to the calculus of pseudo-differential opera-
tors with the Weyl symbols and to the construction of the fundamental solu-
tion for (0.1). In Section 3 we apply the main theorem to an operator on a
manifold. Finally in Section 4 we apply theorems obtained to Πa

1. Main results

We say that a C°°-function p(xy ξ) defined on R"xR" belongs to S™8

=S™8(Rn) (0<δ<p<l, δ<l) if for any pair of multi-indices α, β there exists
a constant C#tβ such that

where p% (x, ξ)=d^p(x, ξ) and <£>=(!+ 1|| 2)1/2. For p(x, ξ)t=S?.t we
define the semi norms |/>|(/"' (/=0, 1,2, •••) by

S™8 is a Frέchet space with the system of semi-norms (1.1).
We employ the Weyl symbol for pseudo-differential operators in this

paper, that is, a symbol p(x, ξ)^S™8 defines an operator as

(1.2) p(xy D) u(x) = (2πΓ» Λ Λ χ Λ Λ e ^ - ^ p - , u(y) dydξ

for u<=S(Rn}.

DEFINITION 1,1. We say that {pζ(xy ?)}0<s<ι converges to ρ0(x, ξ) as £->0
weakly in S™8 if { 8̂}0<8<i is a bounded set in the Frechet space S™8 and if
pε(x, ξ) converges to p0(x, ξ) as £->0 uniformly on any compact set of Rn X Rn.
We denote by ^—6Q

t(S^) the set of all functions of t with values in S™8

which are continuous in t with respect to this topology.

The main theorem of this paper is the following

Theorem 1. Let p(xy ξ) of (0.2) satisfy Condition (A). Then a funda-

mental solution E(f) of (0.1) is constructed as a matrix whose elements are pseudo-

differential operators belonging to W—G^Sw.iώ This is also the unique
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fundamental solution in CW— β°t( U 5p

m

δ) for any 0<δ</o<l and S<1. More-

over E(i) belongs to S~°° if t is positive and its symbol σ(E(t)) has the following
asymptotic expansion for any N

y=o

where f0=I, (exp φ)/y are matrices whose elements belong to ^W— £?(Sϊ"/V,ι/2)
gN is one with elements belonging to W-^Sr/^/^) (0<£<l/6). Here the
function φ is defined by

(1.3) φ = ψ

where ψ =

, ψ = 0 (ί>2)

0<12δ<l-6£<l

Φi = -{<7m ί+<V?w ί, F(Atj2)JVqm ί>/4

(1.4) +tr [log {cosh (A/2)}]/2} /-#._! ί,

f (λ) = (zλ)-1(l-λ~1 tanh λ)

and

S T
E(t)dt (Γ>0) is a parametrix of p(x, D) of

o
class S\j2?ι/2 since φ of (1.3) satisfies

with some positive constant c0 and c' (See (2.8)). The case that/)w = 0 implies

the results for parabolic systems of order m— 1.

If p(x, ξ) is a quadratic polynomial with respect to (x, ξ), then exp φλ is

the symbol of E(f). We have

Corollary. Let p=<Xy HXy/2 with X=(^\ far some constant matrix

. Then

σ(E(t)} = exp {~i <X, /tanh (iJHtβ)2C>} [det
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EXAMPLE 1.

P = Σ (Ήj+xj £>*/)+Σ Dlj Then

σ(E(t)) = II (cosh|^| ί)"1 exp {-Σ (ζ2j+*ξ ?7?)hy| 1 tanh (|^| ί)
y=ι y=ι

y=ι

EXAMPLE 2. Let £Γ/ be the Heisenberg group with / strongly pseudo
convex CR structure. Then DA on Γ(Λ°'9) (?ΦO, /) is

— Σ (Z, 2y+Zy Zj)+i(l-2q) :

9

where Zy=-^—
7 O%j ' Ul Uί

f χ\ /ε\where ^i^ί ) and v2= { .
\y / \ TV /

d
The fundamental solution £"(ί) of ~7~ + Πί is given by

2j)τ4 7.

We apply Theorem 1 to a formally self-adjoint operator P on sections
of a bundle E of rank k over a compact manifold M of dimension w under the
additional assumption (B). As for the definition of pseudo-differential opera-
tors on a manifold we use that of Hϋrmander [6] and Treves [13] which will

be illustrated in Section 3.

Condition (B). qm vanishes exactly to the second order on the character-
istic set Σ, that is, qm(X)^C(X) d(X, Σ)2, where C(X)>0 and J( , •) is a dis-
tance on Γ*M.

Under Condition (B) the characteristic set Σ={qm=Q} consists of smooth
conic submanifolds of Γ*M. Let Σ' be submanifolds of Σ such that

codim ΣfW, . We put Σ°= V Σ'', where J—

Theorem 2. Let a system of pseudo-differential operators P satisfy Condi-
tion (A) in any local chart and trivializations of E. Then there exists the funda-

d
mental solution E(ί) of ~+P in the class <F— £? (5?/2>1/2(M, E)) of pseudo-

differential operators (See Definition 3.2). Suppose further that P is formally
self-adjoint with respect to the inner product associated with some volume of M
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and some Hermitian form on E, and satisfies (B). Then we have the following
assertions.

(i) P is self -adjoint and has only discrete spectrum {λy}~.ι.
CO

(ii) 2 exp(— ίλ. ) has the following asymptotic behavior as t tends to zero.
j = l

J exp(-ίλy) ~ (CΊ+o(l)) r»/m if n-mdβ<() ,

~ (C2 log (l/ί)+0(l)) r«" ίfn-mdβ = 0 ,

D ,/ n-mdl2>0 ,

M exp -?.«,

C2 = (Z^r^/2' (*/«) jsθ A exp (-A) d Σ° ,

C3 = (2πY^^ 0 [det {(^/Z)-1 sinh

where h is an arbitrary positive function on 2° which is homogeneous of degree

m— 1 with respect to ξ> and where dΣ° is a density on 2° induced by qm and dxdζ
as follows ([7]). If (uy v] is a system of local coordinates such that Σ°— {u=Q},
we define ^Σ°—(det Huu)~1/2 Φdv, where Φdudv=dxdξ and Huu is the Hessian matrix
of qm with respect to the variable u.

REMARK. It will be shown later that Condition (A) is independent of
the choise of a local coordinate system.

We apply Theorem 2 to the operator Π* on a compact CR-manifold whose
definitions will be stated in Section 4 for the sake of convenience.

Theorem 3. Let M be a compact CR-manifold of dimension 2l-\-l which
satisfies the condition Y(q). Then a parametrix Q for Π* on T(A.p>q) is con-
structed as a system of pseudo-differential operators of class 5r/2,ι/2 (M, Λ.p q).
Moreover ΰbQ and ϋbQ belong to Sτ/2,l/2(M, A.p>q). We also get the following

asymptotic behavior of Σ exp (—ίλy), where {λy}~-ι are the eigenvalues of Πί

(1.5) Σ exp(-ίλ,.) = (2πt)-1-1 (l

p )\M <

where dM stands for the natural volume on M defined by the Hermitian metric
and cQ is defined by

(1.6) <;0 = \ Π fr, τ/2 sinh (u/r/2)} Σ exp {( Σ *>— Σ "/) ^12} dr
J - o o / = l |J|=Ϊ jξ£(J) je.(J]
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= :ZHr,(/+ι,(Σ K l-Σ *,+ 2>y)/2,5)

l,(ΣI"yl + .Σi'y-Σ«'y)/2)P)})

where {z>;}/-ι ^^ eigenvalues of the Leviform L, v=( | vl \ , •••, | vl \ )
w given ί̂ follows.

ξ,(s, a, μ) = Γ(ί) Π Aty Σ (β
y=ι »1-..»r=o y=ι

J oo r

Π μ/1— exp (— A*y Λ:))~1 Λ;S"1 ^~β*
0 ^=1

^ = (μi9 ..., Mr) (^ >0), Re ί>l αwJ Re

Then

?,(*, α, /•) - lim ?r+1(f+l, α, (ft £)) .

5o w^ can define ξr(s, a, μ) for μ=(μ^ •••, μr) (μ^ϋ), Re s>r^l and Re
Λ is clear that

&(*, β, 1) = Γ(ί) f (ί, β)

where ζ(s, a) is Hurwίtz zeta function.

Corollary. Under the assumption of Theorem 3, we get the estimate

II φ \\S<C (II Π* Φ IU+II φ IW φeΓ(Λ^) /or any ί>f' .

2. Fundamental solution for degenerate parabolic systems on R*

Some basic theorems for pseudo-differential operators of the Weyl symbols
are stated below. Their proofs are found in the appendix of [7]. At first
we give a relation between the ordinary type of pseudo-differential operators

p (x, D) u(x) = (2πY» \ ei(χ-^ p(x, ξ) u(y) dydξ
jRn*Rn

and those of Weyl symbols.

Theorem 2.1. If a Weyl symbol p(xy ξ) and an ordinary symbol q(x, ξ)
give the same pseudo-differential operator, that is, p(xy D)=q°(x, D)y then they
are transformed to each other by the following relations:

(2.1) q(x, ξ) = (2*)-" n e-"'ί /> (*+*/2, ξ+ξ) dzdζ ,
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(2.2) p(x, ξ) = (2π)- \ e"'{ ί(*+*/2, ξ+ζ) dzdζ .
JRnxRn

Corollary. In the above theorem if p(x9 ξ) and q(xy ξ) have homogeneous

expansions />~Σ Pm-j> ?~Σ <7>»-y> ***» Pm=<lm (the principal symbol) and
y=o y=o

A,-i=(i«-i+4- Σ 9*y 9ξy ?«)=(*** subpήncίpal symbol of q°(x, D)).
Zt J-Ί

REMARK. We may use the following form of the same operator instead

of (1.2).

(2.3) n „
JR x/Z x

for ttGEcSOR"), (Λ(i7
JRn

We use the same notation S™8 to denote the set of pseudo-differential
operators whose symbols belong to 5 δ̂.

NOTATION 2.2. We denote the symbol of multi-product p^x, D) •••
p<v(x, D) of pseudo-differential operators p} (x, D) with symbol pj(xy ξ) by
(piv ep v) (x, £). We use the notation σ(P) to denote the symbol of P. So

Theorem 2.3.

- -.. exp

X Π /»X

= i

y=ι

where η-v+1= —??ι, ^v+ι=—3Ί Moreover if pj belongs to Sffi (j=l, •••, v)
V

p=p1 o- oρ^^S™>8 (flί=2 m(j)) satisfies the following estimate for any I

where C and /0 αr^ independent of v.

Theorem 2.4. Lrf />y δ^/o/z? ίo ^^(y) (j=l, 2) βwJ δO')<l, ρ(j)>S(k)
. Then for any N, we get the expansion

I = Σ1(2/)-*
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(2.4) σ 4(A,A) (-iγJ

δ = max (8(1), 8(2)) and
£=min {p(l)— δ(2), p(2)— δ(l)} >0. Moreover there exists constants 10 and C
for any I such that

Theorem 2.5. L0ί p^S™δ. Then its adjoint is a pseudo-differential
operator with symbol p*(x, ξ).

We get some properties for σk(p, q) of (2.4) in case that p and q are arbitrary
smooth functions on Rn X Rn.

DEFINITION 2.6. (i) Vp means a vector (^* ?)=ί(91/>, •••, θ^p, 8faί,

•••, dξup) for p^C°°(RnxRn)t where superscript t stands for transpose.

(ii) / is a transformation on Cn X Cn defined by / (fy=(^\ (See (0.4)).

(iii) Hp is the Hessian matrix of p (See (0.5)).
2»

(iv) <X δ>— Σ έϊy fty for a pair of vectors a=t(aly •••, ̂ 2Λ) and

*='(*!, -, *2 )

For scalar valued smooth functions p, q, φ, we have

Proposition 2.7. (i) σk(ρ, q)=(-lγσΛ(g, p) (k=Q, 1, 2, -•)

(iii) <r2(p,q)=-tr(JHpJHq)

(iv) σι(p, expφ)=σι(/>, φ) expφ
(v)

Proof of Theorem 1. We obtain the fundamental solution £"(£) by apply-
ing the same method as that of [7] for a single operator. The uniqueness of
E(t) will be shown in Theorem 2.8. The shape of the phase function φx of
(1.4) near {t= 0}xΣ is important. So we sketch how to construct φλ and/;

0>i).
If we assume that expφ belongs to CW— <5°t (S;/2>ι/2), we get by Theorem

2.4

d d 2
-£ expφ+^oexpφΞΞ-^ expφ+Σ (2ί) k (&!) * σk(pm9 expφ)

+Pm-l eXPΦ mθd Sl/2*{/2

Off the characteristics we take φ=—ρmt. Near {£=0}xΣ, φ=φι should
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satisfy the equation approximately

Φ i + j (2f)-* (klΓ1 <Γk(pm, exp φO exp (-

Put φι=—pm-ι t+φι 1 for some function φx. Then φλ should satisfy the follow-
ing equation by Proposition 2.7 if we neglect derivatives of pm-\

—— φι+qm+i <V?M, /Vφι>/2+tr (JHqm JH φj

(2.5) ' * -τ-^wJ- J*™ ,

&U=0.

We get the following equation for X= tJH $ι taking derivatives of (2.5) and
neglecting the terms which include the derivation of φly pm of more than second
order.

dt

Thus we get X=— 2 tanh (At/2) and

Φi = -{?. t+<Vqm t, F(At/2)JVqm ί>/4

+2-1 tr [log {cosh (At/2)}]} I-p^ t .

In our case pm-ι(xy ξ} of φλ is a matrix. So we use the following estimate found
in Chapter II of GeΓfand and Shilov [4].

(2t \\pm^ (x, ξ) \\)'

where Λ=min (Re^; ), {μ; }y=ι are the eigenvalues of pm-ι(xy ξ). Then there

exist constant CΛ# and dΛtβ for any a, β such that

(2.6) || 8T95(exp (-φ.-ι(*, *)) II <i.Xe>-'*1 (l+Kf)"-1)'-^ e-'Λ

Noting

[det {cosh (Atl2)}]-1/2*ζC exp (-tίA tβ),

we have

|| dl dξ (exp φϊ) || «β<D-|Λ| (l+Kf)"-1)'-''' exp (-(A+tt^/2) ί)

for φj = -2-1 tr [log {cosh (At/2)}] I-ρm.^ t.
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Hence we have

(2.7)

for c'<c with some constant C according to (A)-(ii). By (2.7) and the same
method of Proposition 1.25 of [7] the function φ of (1.3) satisfies

(2.8) II exp φ || <r0exp(-φ0),

where

Φo =

with Φ2(*, £)=?„((*, £)+Λ) /, h=h0(At!2) JVqmt

and h0(\)=2'1 FtλHl+ίλ-1 tanh λ)"1'2}-1-
To find/y (/=!, 2, •••, 7V) we must seek the solution of the equation

(2.9) - - / + J (2i)-' (/I)-1 exp (~Φ) {σ/A,, (exp φ)/)

-<rX^, exp φ)/} = £

for some given matrix £. We can apply the same method as in Lemma 1.15
of [7] to solve (2.9) approximately. Noting the estimate of g obtained by (2.6),
we have

(2.10) || 8? 8f ((exp φ) /,) || <C/Λ, <f>-'-κ«Ί-ι i)/» exp (-φ0/2)

by the same reason as that of Proposition 1.28 of [7], It is clear that (exp φ)/y

belongs to Sτ/ίι/2 by (2.10).
Once an approximate solution EN(t) has been obtained, a fundamental

solution E(t) is constructed by solving the equation

(2.11) E(t)+ Γ £(ί- j) G^W Λ = EN(t) ,
Jo

where ^(0= (exp φ) //f, Λ, Z)) and G j,(i)=--+p (̂O To get the

solution of (2.11) we use the estimate of symbols of multi-product given in Theo-
rem 2.3. Q.E.D.

Theorem 2.8. Under Condition (A), E(i) is the unique fundamental solu-

tion in W-£? (S?>8) in any finite interval [0, T\.

Proof. By the same method as in the proof of Theorem 2.2 of [7], we
can choose a constant £>0 such that

Re (p(x, D) u9 u)+c(u, u
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Now consider the Cauchy problem

= 0, t>0,

£(0) = 0 .

Then Ec(t)=e-«E(t) satisfies

c(t) = 0, ί>0,

The inequality

-j- (Ec(t, ή u, Ec(t, s) β) = -2 Re ((P+e) £c(ί, *) «, E.(f, *) «)<0
αί

implies

) «|| < 11 (̂5, s)u || = 0.

Therefore we get conclusion of the theorem. Q.E.D.

Under the same assumption (A) for p(xy ξ), we get

Theorem 2.9. p*(x, ξ) also satisfies Condition (A) and we can construct

a fundamental solution F^eS^7—<5? (SQ

1/2tι/2) of

(2.12) {[£+*•«* ̂ "W-O '>°

Moreover

(2.13) E*(ί) =

(2.14) - E(t)+E(t) p(x, D) = 0 , ί>0 .

Proof. Let 0<r<Z be any number. For any / and gG (<S(R"))k we have

= -(PE(r)f, V(t-r)g)+(E(r)f,P*V(t-r)g) = 0.

Integrating it in r from 0 to t, we obtain
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(2.15) (2(0) /, V(t)g) = (E(t)f, F(0)£) .

From (2.15) we have (2.13). Taking the adjoint of (2.12), we get (2.14) by

(2.13). Q.E.D.

Corollary. Under Condition (A), we can construct a parametrix

ρ = Γ E(t) dteS\72

m

l/2 (Γ>0) forp(x, Z>) .
Jo

Proof. In view of Theorem 1 Q is a right parametrix, and by Theorem
2.9 Q is a left parametrix also. The function φ defined by (1.3) satisfies
|| exp φ || <£0 exp (— c'(ξym~l t). So it is easy to see that Q belongs to 31^1/2-

Q.E.D.

In the rest of this section we assume that

(2.16) qm(x,ξ) = ± |*X*,f)|',

where Zj(x, ξ) belongs to S™fQ

2 for each/.

Proposition 2.10. On the characteristic set Σ={(x, ξ)<^R*xRn\ qm(x, ξ)
=0} the non zero eigenvalues of A coincide with those of <3kί including multiplicities,
where <3ά is the symmetric matrix defined by

»
Here C and D are lχl matrices whose elements are given by

,̂*

and

Proof. The Hesse matrix of qm is equal to

Σ3 {Vg}(V«y)+V*KV2y)}

on Σ when (2.16) holds. Let X be the 2nχ2l matrix defined by

(2.18) X = (V^, -, V*/f V2ι, -, V2,)

Then A=iJXX* on Σ. On the other hand we have JH=iX*JX by (2.17)
and (2.18). Then

(2.19) X* A = JH X*
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and

(2.20) AJX = JXJU.

The conclusion of the proposition follows from (2.19) and (2.20) without difficulty.
Q.E.D.

Theorem 2.11. We assume (2.16) and Condition (A). Then the parametrίx
Q=q(x, D) obtained in Corollary of Theorem 2.9 satisfies

(2.21) xj q, SjogeSVjffi (/=!, -,/)

and

(2.22) j^^oje

where z* zβ=z*ι ••• a?/ z?ι ••• z?' /.

Proof. We have

where r?=(2»)-' O'i)"1 <r^, q)^S\J2

m^mml2 (j=0, 1) and rίeSfflfr* since
^ belongs to Slj^i/z and s:Λ belongs to <Sf,'ol/2 Then it is sufficient to show

?" (|α| = 2)

and

By ^= *(f) ώ, for concluding (2.21) and (2.22) it suffices to show
Jo

(2.23) |*y exp (-φ0/2) | <C<f><--^ exp (-φ0/4) ,

(2.24) \xtx, exp (-φ0/2)l <C<£>«-1 exp (-φ0/4)

and

(2.25) 1 1 x, σι(xjϊ, (exp φ) /») 1 1 < C<g>»-1 exp (- φ0/4)

by (2.8) and (2.10). Proposition 1.23 of [7] and the Taylor expansion lead to

xfa ξ) = */(*, !)+*)+«}(*, I) ,

where z'j(xt ζ) satisfies

(2.26) |*}(*, f) I

for some d ̂  0 ,
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(2.23) and (2.24) are proved by (2.8) and (2.26). (2.25) is clear by (2.10) and

(2.24) E.Q.D.

3. Fundamental solution for a degenerate parabolic operator on

bundles

In this section we consider pseudo-differential operators on sections of

vector bundles over a compact manifold M. The definitions of pseudo-differ-

ential operators on a manifold are given, for example, in Hϋrmander [6],

Kumano-go [8] and Treves [13], We use, in this paper, the definition given by

Hϋrmander and Treves. We state it here for the sake of completeness. In this

section we always assume p+δΞ^l and δ<l.

For an open set Ω in Rn, Spι8(Ω) is the set of C°°(ίlX JR")-f unctions such

that for any compact set KdΩ and multi-indeces α, /3, there exists a constant

CK<A such that

DEFINITION 3.1. A linear operator L: Csr(M)->C°°(M) belongs to S

if the kernel of L is smooth off the diagonal in MxM and if for any local chart

θ of M with %: Θ-+Ω a diffeomorphism onto an open set Ω of Rn, the mapping

of CJΓ(Ω) into C°°(Ω) given by w->L(wo%)o%-1 belongs to ιS*β(Ω). Elements of

are called pseudo-differential operators on M.

DEFINITION 3.2. Let E, F be vector bundles over a compact manifold

M and let T(E) be the set of sections of E. We say a linear operator Pi Γ(E)->

T(F) is a pseudo-differential operator of class 5™δ(M; E) if the kernel of P is

smooth off the diagonal in MxM and if for any local chart θ and any pair of

local basis el9 •••, fy,, and/!, •••,/„ of E and -P over θ respectively, there exists

Pitj<=S™8(Ω,) such that

(3.1) (ΛO. = ίϊ Λ.y *y in Ω, !<*'<*,
J-l

where «=Σ (i ^oχ) βy and Pw=Σ ((Pυ)^ ft.
j=l ί=l

DEFINITION 3.3 (properly supported). A distribution t/e.2)'(ΩxΩ) is

said to be properly supported if supp U has a compact intersection with KxΩ,

and with ΩxK for any compact ^CΩ. A pseudo-differential operator is said

to be properly supported if its kernel is properly supported.

Theorem 3.4. Let Ω and Ω' be open sets in Rn and let φ: Ω-»Ω' be a

diffeomorphism. Suppose P is a matrix consisting of property supported opera-

tors in ιS*δ(Ω'). Then we get a matrix P consisting of elements of 5 δ̂(Ω) such

that
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(3.2)

3

a Aere Ψ(y, z) is a matrix valued smooth function such that

φ(y+al2)-φ(y-*l2) = Ψ(y, z) z .

Corollary. Pseudo-differential operators on sections of the bundles over
CO

a manifold are well-defined. If P has a homogeneous expansion />~Σ pm-j, then

# homogeneous expansion />~Σ ^w-y wA/cΛ satisfy

(3.3) (i) &,(j, 9) = pm(φ(y\ (dyφΓ v)

(3-4) (ϋ) $Λ-1(y,η)=pm-1(Φ(y),(Q,Φr1ι)
tf$*(y, 7) = V^M(y, 7) = 0 .

REMARK. On manifolds it is natural to use (2.3) as a definition of pseudo-
differential operators instead of (1.2). Condition (A) is independent of the
choise of local coordinates by (3.3) and (3.4).

Proof of Theorem 2. Take a finite covering of M by a local chart (θκ>
?Oκetf Using the local coordinates, we get systems of pseudo-differential
operators Pκ=(PKij) satisfying Condition (A) in Ωκ= %*(#*). We may assume
that ρ*GSι.o(Ωκ) are extended to $FGS"0(R*) satisfying Condition (A) of
Theorem 1. According to Theorem 1, we can construct a fundamental solution

(3.5) = 0, ,>0,

For ^'£(ί)=(£ΐ>; (<)), >y=lj...jjt we define operators EΊ ,Xί) on θκ such that

(3.6) β\j(t) v = £?.,(*) (βoχjoχ i for β

Choose {<£«}*€=# a partition of unity subordinate to θκ and another function
such that φκψκ=φκ (κ<=K). Put

(3.7) £(ί> =κΣ Σ Σ ^K BΪ.XO (φ. u)y ί ,
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where φκ u=Σ (φκ u)j e*. Then E(i) belongs to 5?/2>1/2 (M, E) and by (3.5)

~(3.7) it is clear that

where K(t) is a smoothing operator.

We assume that the fundamental solution E(t) is of the form

E(t) = E(t)+ £ E(t-s) Φ(s) ds .

Then Φ(t) must satisfy the following integral equation

(3.8) K(t)+Φ(t)+ Γ K(t-s) Φ(s) ds = 0 .
Jo

^ΣJ Φ'(*) satisfies (3.8), where Φ*(t) is defined by

= -Γ X(ί-
Jo

It is clear that Φ(t) is a smoothing operator. Uniqueness is shown by the
same method as that of Theorem 2.8. The proofs of the assertions (i), (ii)
for a formally self-adjoint system satisfying Condition (B) are omitted since
they are obtained by applying the method of Section 4 of [7] to a system of
pseudo-differential operators on M with diagonal principal symbol instead
of pseudo-differential operators on M. Q.E.D.

4. Proof of Theorem 3

M is a CR-manifold of dimension 2/+1 i.e. a real orientable C°°-manifold
with a subbundle S of complex tangent bundle CTM satisfying the following
conditions:

(i)

(ii) SΠS= {0}

(iii)

where Γ(5) stands for the space of C°° cross sections of S. We fix F a com-
plexification of the line bundle of TM such that
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We denote (Λ>S*)<S>(Λ?S*) by Λ' . The operator Sd: Γ(Λ' «)-*Γ(Λ> «+1) is
defined as

-ιy-1 Wj <ψ, (zl/\ . /\zt}®(wl/\ ^wj/\ /\wq+ϊ)y

+Σ (-l)'+y <Φ, (ZιΛ

for Z* ..-, Z,€=Γ(S), Wlt

Then 9έ forms a complex. Let L19 •••, L/ be a local basis for sections of 5
and choose a non zero local section T of TMΓ\F. Then Î , •••, L/, Zj, •••, Σ/

and ϊ1 span CTM. The Levi form L=(Litj) defined by

(4.1) ί [L,, L; ] - Lu Γ mod (L,, -, Lh Lly .-, L,)

is hermitian on Cl. If we introduce a Hermitian metric on M such that 5, S

and F are mutually orthogonal, then we can define the formal adjoint operator

tV IXΛ' J-^IXΛ*'-1) of 3> and the Laplacian D*=SA+#*3*: Γ(Λ' «)-*
Γ(Λ/>>ί). Following Folland and Kohn [2] we introduce the condition Y(q)

for the Levi form.

DEFINITION 4.1. We say that M satisfies Y(q) if

max (μ+, μ_)

or

min

at each point of M, where ^+ (^._) are numbers of the positive (negative) eigen-
values of the Levi form L, respectively.

REMARK. The condition Y(q) is independent of the choise of L!, •••, Lh

T (See [2]). The Hermitian metric which we use is arbitrary as far as 5, S
and F are mutually orthogonal. Hence, we need not choose Hermitian metrices

bearing a relationship to the Levi form as Folland-Stein [3] and Greiner-Stein

[5] did.

Now we will calculate the symbol of self-adjoint operator Π$ in a local
chart to apply Theorem 2. Let Ll9 •••, L/ and T be an orthonormal basis over

an open set U of M. Let ω1, •••, ω7, ω/+1 be its dual basis. We can write by
(4.1) with the Levi form L=(Litj)

ί [Li9 Lj] = L,j Γ+ α}ty L,+ b]j Lk on U .
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For simplicity we consider Π* on Γ(Λ° ί). No difference appears in other cases.

For Φ=ΣfΦ/ ω'eΓ(Λ°'«), where ω^ω^Λ-Λω^, J=(jl9 -, jf), j\<

<jq O'*e {!> •"> /})> we have

δ* Φ = Σ £/ Φ/ ω''Λω7+£(φ) ,

i

#> Φ = -Σ £, Φ/ ωOω^+f(φ) ,

where £(φ) means linear combinations of φ/ with coefficients of smooth func-

tions and

= (-1)*'1 ωj for / = OΊ» -»Λ* "'J«) Λ = J and / = (/ι> -»Λf " Λ)

Then we have

I I ii ___ / 75 O [ Q 5 \ J

= -Σ9(mΣ Lm Lm+^Lm La) φj δ

(4'2) -Σ9(Σ L, La-La L,) φj ω^-J (ε

+ε(Lφ, Lφ),

where £(Lφ, Lφ) means linear combinations of Ljφj, Ljφj and φj with

coefficients of smooth functions.
Put k=l\/(l—q)l q\ and n—2l-\-l. For local basis (ω7)/, the symbol of

Πί is given by

where pj (j=Q, 1, 2) is a Λ x Λ matrix homogeneous of order j in f such that

Proposition 4.2. (i) ί>2=Σ NX*, I) I 2 ^=?2 Λ

where

*,0 =;§«>(*)*-
when

(ii) 5? (ί7#ί2)=Σ |/»X*, 1)1 OM the characteristic S={(*, f)ί *X*. ?)=°»
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j= 19 ..., /}, where {μy(#, ξ)} are the eigenvalues of the matrix C(x, ξ)=(citj(x,
defined by

(4.3) cίtj(X, ξ) = ί </V*, (*, I), V*Λ*. Φ .

(iii) On Σ, pι(x, ξ) is a Hermitian matrix whose eigenvalues are (μj(x,
where

(4.4) μj(x, ξ) = { Σ j*X*, ?)- Σ μX*,

Proof. We can find smooth functions {</X#)}y-ι such that σ(L(/)=ώr
and σ(Lj)=iZj+dj. By Theorem 2.4 we get

σ( Σ i« Ϊ.+ Σ ί, L.)

Σ

(4 5> + _ _ .
— / VI I «y |2_ |_VΊ _. /V 3; \/7/ VI -. (y ~ \lΐ \
= I Zj I zm I ~Γ Z.J ^IV^wίί *m)lΔl Z-i ^iV^iw? ^w//* J

/ -

Λ~i Σ (^w %m~\~dm zm) mod *Sfιto

(4.6) σ(Lj Lm-Lm Lj) = σ([Ly, £j)

So (i) is clear by (4.2) and (4.5). By the property [Γ( S), Γ(5)]cΓ(5) we
have

(4.7) σ([Lί,Ly]) = i</V^,V«y> = 0 on

Proposition 2.10 means on 2

= I the sum of absolute values of eigenvalues

y=ι

Thus (ii) is proved. By (4.5), (4.6) and σ^a, b)=(JVay Vέ> we have on 2
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Pι(x> ί) (Σ?Φ7 ω7)

/
(A. Q\ \Π ί—V1 r (v £Λ/?4- ̂  r ( v
\ J ~~ .te J \ <*~Λ tn tn\ 9 & / / ^ * i jL*^ tn nt\ >

where q^x, ζ) is given by

qλ is a Hermitian matrix because C is a Hermitian matrix. Choose a unitary
matrix U such that

fμι o
(4.10) UCU-1=\ v>2

\ 0 '*'X μι

Let η—*(ηl

y •••, ^7) be defined as 9)=Uω, ω—'(ω1, •••, ω z). Then we have
the following lemma. So the proof is complete since {ηj}j are linearly in-
dependent. Q.E.D.

Lemma 4.3. pλ(x, ξ) ηj=μj(x, ξ) ηj for any J.

Proof. We assume the following equality

(4.11) Pl(x, ξ) = —L (tr C) l+pl(x, ξ),

where

(4.12) pί(φjw
j = l

fof / == OΊ» >Λ) OΊ<Λ< </f )»
/

Then we also prove the formula (4.12) for any ω7 (J=(jι, " >jq)jk
because ωj=εj

κ ωκ K=(kly •••, kq) kl< -<kq
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where σ is the permutation such that jσu)=ki. By linearlity we can prove
(4.12) for any vector of A9. So we can prove by (4.10)

(4.13) pity) = ( Σ μj) VJ

"

The conclusion follows from (4.11) and (4.13). (4.12) is justified as follows.

Noting that if J=(jl9 — , Λ) and J=J» ωy_J(ω"Λsy7)=(— !) ω
iΛ ••• Λω's we get by (4.8) and (4.9)

Pί(φj ω7) = φj {Σ Σ Cjf.
.

= Φ/ {Σ Σ Cίim ωyι
1=1 »=/,•

+ Σ Σ O, M ω'ΊΛ •
, = 1 mφ/i '

= Φ/ (Σ3 ωyιΛ ΛCω^Λ Λω^} . Q.E.D.
ί = l

Before we prove Theorem 3, we give a remark for (1.6).

REMARK. Of course the expression (1.6) is independent of the choise

of an orthonomal basis {£,}/=! of S and T. In fact for another orthonormal
basis {LJ}}-!, C'=BCB* holds with a unitary matrix β, where C=(cjtίn)
=σ([Lj, LM]) and C'=(c'j>m)=σ([L'h Zy). So {μy}}βl are invariant. We also
see that the integrand is an even function of r. Thus (1.6) is independent of
choise of T.

Proof of Theorem 3. We have only to check Condition (A) of Theorem

1. By Proposition 4.2 ?2

==ΣI'2ryl2^0 and (A)-(ii) is equivalent to the following

inequality.

(4.14) 2 μj(X, f )+Σ I μfa ξ)\>C\ξ\

for any / and for some positive constant c on 2= {(#, f); ^.=0,^=1, •••, /} .

Set σ(T)=ir. Then r is a real-valued function of (#, |). By (4.1) and (4.6)

we have

(4.15) citj = Litj T on 2 .

It is clear by (4.15) that

μj(x9 ξ) = Vj(x) τ(χ, ξ) j = 1, ..., / .

(4.14) is equivalent to the inequality
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t Σ "/(*) T-jEjj "/*) τ+Σ I "/*) | | τ |>c |τ | ,τeΛ for any /.

This is equivalent to the inequalities

(4.16) and

Σ ( K I -"y)+ Σ ( I V) I +";) > c for any / .
/$ {j j

It is easily shown that (4.16) is equivalent to Y(q). We also use Theorem 2
for our operator Πδ Take n=2l-\-\, m=2 and d=2L Then we have

(4.17) - (20-7"1

 0 [det {μ/2)- sinh (4/2)}]-^ tr

with .4 =

By Proposition 2.10, the eigenvalues of A are {μjy —μ^lj=ι and zero and
those of pi are {μj}j by Proposition 4.2. The integrand of (4.17) is

Π μjβ (sinh (μj/=ι" v v ;< " ijFt

Take Uj=(*j+Sj)l2, «y+/=(*/-*/)/2i (/=!, -, /) and v=(τ, x). Then
we have

to 9τ

Qξ dξ
-1

By the assumption that L; , Γ are orthonormal with respect to the Hermitian
metric, (J7y)?iV ([/,=(L,+Zy)/2, C7;+,=(L,-Iy)/2/, j=l, -, /, ί72;+1=Γ) are
mutually orthonormal with respect to the Riemannian metric g. This means

(4.18) βgιβ}Λ..βf = δy.< >

/ 25 <5 \ « O

and Us=

α| = |detG|-1 / 2,

where G=(gltj). Then Φ= | det α | -̂  | det G |1/2. So we have



954 C. IWASAKI

JΣ = Φdv = I det G | 1/2 dxdτ=dMdτ .

b QJ $b Q&Sϊ/yt

2ι/2(M, A.p'q) are shown as an application of Theorem 2.11.
Q.E.D.
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