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0. Introduction

Each homology theory E, determines a natural E,-localization %: X —-L;X
in the homotopy category hCIY of CW-complexes or hCIYS of CW-spectra.
It is full of interest to study the behavior of E-localizations after application
of various functors T to the category hC9Y or hCIYS. Consider as T the 0-th
space functor Q~: hCHS—hCIY which is right adjoint to the suspension spect-
rum functor Z*. Bousfield [4] showed that the E-localization of an infinite
loop space Q=X is still an infinite loop space. More precisely, he proved

Theorem 0.1 ([4, Theorem 1.1]). There exists an idempotent monad L:
hCWSy—hCWS, and 5: 1—L such that the map Q= n: Q°X—->Q"LX is an E-
localization in hCY. Here hCIWS, denotes the full subcategory of hCWS
conststing of (—1)-connected CW-spectra.

As remarked by Bousfield [4], this implies

Proposition 0.2. If f: A—B is an Ey-equivalence in hCYY, then so is
Q°Z=f: Q~ZA—->Q~Z"B.

On the other hand, Kuhn [7, Proposition 2.4] gave recently a simple proof
of Proposition 0.2 using the stable decompositions of Q*3~4 and Q*3~B
(see [9]).

In this note we will show that Proposition 0.2 is essential to the existence
theorem 0.1. Thus, by use of only Proposition 0.2 we give a direct proof of
the existence theorem 0.1 along the primary line of Bousfield [1, 2 and 3]. In
our proof we don’t need the knowledge of very special I'-spaces although
Bousfield did in [4].

Let T: C— be a functor with a left adjoint .S and 9 be a morphism class
in 8. In §1 we introduce T*9Y- and (9, T)-localizations in C and discuss
a relation between them. Following our notation Theorem 0.1 says that there
exists an (Ey, Q~)-localization in ACIYS, where E, stands for the morphism
class of Ey-equivalences in 2C9¥. Don’t confuse our notation with Bousfield’s
[4]. We next give three conditions (C.1)—~(C.3) under which we can construct
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a (W, T)-localization »: X—LX for each X&C where C=hCY or hCWS,
by the same method as Bousfield used in constructing E-localizations in [1, 3].

It might be indistinctly known that the O-th space functor Q~ converts
generally a cofiber sequence in kCHYS to a fiber sequence in ACFY. Nevertheless
we prove this fact in §2 by making use of secondary operations on mappings
[10]. This result yields a key lemma for proving the existence theorem of
(Ex, ©~)-localization.

In §3 we first check that the conditions (C.1)-(C.3) are satisfied for the
triple (W, T, S)=(Ex, Q~,=7). As a result we can give a new proof of the
existence theorem of (Ey, Q~)-localization in ACHYS. Since the equivariant
version of Proposition 0.2 is valid when G is a finite group (use [8, V]), we
obtain the equivariant version of Theorem 0.1. Of course we may prove it by
using very special G-T' spaces following Bousfield’s approach. Let G be a
compact Lie group and ¢ be the K-fixed point functors. Applying our method
to T=T] ¢x we also obtain the existence theorem of (II Ex+, II ¢x)-localization
which was studied in [11, Theorem 2.1].

1. (9, T)- and T*9P-localizations

1.1. Let B beacategory. We call a functor and transformation L: B—3B,
n: 1—>L idempotent if »,,= Lyn,: LA—L?4 and it is an equivalence for each
A B. It is easy to show

(1.1) A functor L: B—B and transformation n: 1—L is idempotent if and only
if na: A—LA induces a bijection n¥§: B(LA, LB)—>PB(A, LB) for any A, B€ 3.

Given a morphism class 9 in a category B, an object DB is called
GY-local if each f: A—B in 9¥ induces a bijection f*: B(B, D)— B(4, D).
For each A€ .98 a morphism g: A—D is called a 9Y-localization of A if g belongs
to 9Y and D is 9Y-local. If all objects of B admit GY-localizations, then
there exists a functor L: $— P and transformation 5: 1—L such that 5,: 4—LA
is a 9P-localization for each 4€B. Such an (L, ) is unique up to natural
equivalence, so it is called the 9f-localization in B. It follows from (1.1) that
the 9¥-localization is idempotent [1].

Let T: C—9 be a functor and 9¥ be a morphism class in 8. An idem-
potent monad L:C—C and #:1—L is called the (9, T)-localization in C if
Tyyx: TX—TLX is a 9Y-localization for each X (.

We here restrict to a morphism class 99 in B satisfying the condition:

(C.0) i) Each equivalence f: A—B is contained in 9Y.
ii) If two of f: A—B, g: B—C and gf: A—C are in 9, so is the third.

Lemma 1.1. Let T:C—B be a functor with a left adjoint S, and G be
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a morphism class in B satisfying the condition (C.0). Assume that there exists
a (W, T)-localization (L, n) in C. If f: A—B is contained in 9, then so is TSf:
TSA—-TSB. (Cf., [4, Remark following Proposition 1.2]).

Proof. Each f: A—B in 9 induces a bijection f*: B(B, TLX)—
B(A4, TLX) for any X since TLX is 9P-local. By adjointness Sf*:
C(SB, LX)—C(SA, LX) is bijective, too. Making use of (1.1) we easily verify
that LSf: LSA— LSB is an equivalence. It is now immediate that 7.Sf:
TSA—TSB is in 99 because 9¥ satisfies the condition (C.0).

Given a functor T': C—3 and a morphism class 9/ in B we denote by T*Jp
the morphism class in C which consists of all #: X— Y with Tucs9p. We
here study a relation between the T*9)-localization and the (94, T')-localization.

Proposition 1.2. Let T:C—B be a functor with a left adjoint S, and G
be a morphism class in B satisfying the condition (C.0). Assume that u: X ->Y&C
is an equivalence whenever so is Tu: TX—TY. Then an idempotent monad
(L, ) is the (W, T)-localization in C if and only if it is the T*9Y-localization in
C and moreover TSf: TSA—TSB is in I when so is f: A—B.

Proof. The “if” part: It is sufficient to show that TLZ is 9)/-local for
each Ze(. Given any f: A—B in 99, Sf*: C(SB, LZ)—C(SA,\LZ) is
bijective since LZ is T*9Y-local. By adjointness this means that TLZ lis G-
local.

The “only if” part: The latter part follows from Lemma 1.1. So we
only have to show that LZ is T*9p-local for each Z&(. Taking any u: X—>Y
in T*9Y, TLu: TLX —TLY is an equivalence since itis in 9 and TLX, TLY
are both 9¢-local. Under our assumption Lu: LX—LY is also an equivalence.
It is immediate from (1.1) that «*: C(Y, LZ)—C(X, LZ) is bijective, thus LZ is
T*9p-local.

1.2. Let G be a compact Lie group. Let G9 denote the category of based
G-spaces with G-fixed basepoint, and GS A the category of G-spectra indexed
on an indexing set 4 in a G-universe U. Let us write GSU for GSJ when
A is the standard indexing set in U. The category GS A is equivalent to GSU
for any indexing set A in U. The suspension spectrum functor %~: G4—-GS A
has a right adjoint functor Q*: GSA—>GY called the 0-th space functor [8,
Proposition II. 2.3].

Let AG9 or hGS A be the category obtained from the homotopy category
hGY or hGSA by formally inverting the weak equivalences respectively. The
category KG9 is equivalent to the homotopy category AGCHW of G-CW com-
plexes and cellular maps. Similarly the stable category AGS A is equivalent
to the homotopy category AGCTWSA of G-CW spectra and cellular maps
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indexed on 1 [8, Theorem II. 5.12].

Let us abbreviate by GC the category GCH of G-CW complexes or the
category GCYW S of G-CW spectra indexed on A, and by AGC its homotopy
category. Let S: B—hGC be a functor and 99 be a morphism class in B. For
a fixed infinite cardinal number ¢ we consider the subclass W ,= {f4; 45— Ba} scr
consisting of morphisms in 9Y with $S4,=<c and §SB, =<0, where $X denotes
the number of G-cells in XeGC. Note that Sf,: SA,—~SB, may be repre-
sented by an inclusion Z,, when replacing SB, by the mapping cylinder of Sf,
if necessary.

We say an inclusion map u: X—Y &GC admits an (S, 9,)-decomposition
if there exists a transfinite sequence

X=X cXc.-cXcX , c.-.cX,=Y

in GC such that X,= U <, X, when X is a limit ordinal and X,C X, is obtained
from a pushout square

vS4, — X,
(1.2) Vig | ¥

V8B, — X,

in GC where the inclusion 7, is a representative of Sf, for f,: A,—B, in 9,
Let 7 be the first infinite ordinal of cardinality greater than &. For each
X €GC we inductively construct a transfinite sequence

X=X cXc-cXcX,C:--
in GC where X,= U ,, X, for each limit ordinal A and X,CX,,, is given by
the pushout square

Vwet ngAm - Xs

y y
vaEI ngBa - Xs+l

in which g ranges over all representative cellular maps SA4,—X, (cf., [2]).
Putting LX=X,, we see immediately

(1.3) The inclusion map ny: X—LX admits an (S, W ,)-decomposition.

Each cellular map k: S4,—LX passes through SB, because the image of
k is contained in X, for some s<<v. Therefore any f,: A,—B, in 9, induces
a surjection Sf¥: hGC(SB,, LX)—>hGC(SA,, LX) This implies

(1.4) If an inclusion map v: Y—Z admits an (S, W,)-decomposition, then v*:
hGC(Z, LX)—~hGC(Y, LX) is surjective.

Let S;9Y, denote the morphism class consisting of morphisms in AGC,
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each of which is represented by some inclusion having an (S, 9/,)-decomposi-
tion. We now assume that S;J satisfies the condition:

(C.1) Given u: X—Y in S, and f, g: Y—Z such that fu=gu in hGC, there
exists w: Z—W in S;9,, such that wf=wg in hGC.

Under the condition (C.1) it is easy to show

(1.5) Each v: Y—Z in Sy, induces a bijection v*: hGC(Z, LX)—>hGC(Y, LX)
(see [1, Lemma 2.5]).

By use of (1.1), (1.3) and (1.5) we obtain

Lemma 1.3. Let S: B—hGC be a functor and YW be a morphism class
in B. Fix an infinite cardinal number o and assume that the morphism class Sy ,
satisfies the condition (C.1). Then the inclusion map ny: X—LX give rise to an
idempotent monad (L, 5) in hGC.

Let S: B—hGC be a functor with a right adjoint T and 9 be a morphism
class in 8. We moreover assume that the following conditions are satisfied:

(C.2) For each f: A—B in 9¥ the morphism Sf: SA—SB is in S;9Y.,.

(C.3) If u: X—Y is in S{9,, then the morphism Tu: TX—TY is in 9.
Note that both (C.2) and (C.3) imply

(C4) Iff: A—»Bisin 9, then so is T'Sf: TSA—TSB.

Proposition 1.4. Let T: hGC—B be a functor with a left adjoint S and
9 be a morphism class in B. Fix an infinite cardinal number o and assume that
the three conditions (C.1), (C.2) and (C.3) are all satisfied. Then there exists
a (W, T)-localization (L, 5) in hGC.

Proof. Under our assumptions it follows from (1.3) and (1.5) that the
morphism T'py: TX—TLX is a 9 -localization. The result is now immediate
from Lemma 1.3.

2. Homotopy theoric fiber sequences

Given maps d,, d,: K A I*—N in G4 such that d,| K X {1} =d,| K X {0} we
define a G-map d,1d,: K AI*—N as d,|d,(x, t) is equal to dy(x, 2t) if 0=t=<1/2

and to dy(x,2—2¢) if 1/2<t=<1. Consider a sequence K—LL—iMiN in G4
such that the two composite gf, hg are both G-null homotopic. Then there
are G-maps F: CK—M and H: CL—N such that F|KX {1} =gf and H|L X {1}
=hg where C denotes the reduced cone functor. Two maps hF, H(Cf) give
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rise to a G-map d(hF, H(Cf)): SK—N obtained as d(hF, H(Cf))=hF1H(f n7)
where 2 denotes the reduced suspension functor and 7: I*—I" is the twisting
map. The bracket {f, g, k> is defined to be the double coset of 4,[ZK, M];
and Zf*[2L, N]; in [ZK, N]; determined by [d(hF, H(CY))].

Consider the mapping cocylinder

E, = {(z, 0)EMxF(, N); h(z) = o(0)}

of h: M—N. The G-map p: E,—N defined to be p(2, w)=w(1) is a G-fibra-
tion. Let us denote by F, the fiber of p over the basepoint of N, which is called
the mapping fiber of . The G-map ¢: F,— M defined to be ¢(z, w)==2 is a
G-fibration, too. Notice that the fiber of ¢ is just the loop space QUNV.

Assume that there exist G-maps b: C;—M, a: ZK—>N making the
diagram below G-homotopy commutative

L—-C,—»Z2K
@1) I b la

L—->M-—>N

g h
where we write C for the mapping cone of f: K—L. According to [10, Theo-
rem 3.3] the bracket <f, g, &> is represented by the map a. So we may choose
G-maps F: CK—M and H:CL—N such as F|KXx {1} =gf, H|LX {1} =hg
and [d(hF, H(Cf))]=[d]€[ZK, N].
Using such a map H we define a G-map B: L—F, to be

(2.2) B) = (), HAAT)|{y} x)EMXF(I,N).
As is easily seen, the following diagram
klriu
(2.3) al B |l
QN g Fh - M
q

is G-homotopy commutative where & is the adjoint of a.

h -
A sequence K—j—iLiMaN in G9 is said to be a fiber sequence in hGY if
there exist weak equivalences 8: L—F,, a: K— QN such that the diagram
below is G-homotopy commutative:

K—-L—->M

(2.4) al Bl
QN —>F,— M.

Proposition 2.1. Let X—>Y—>Z—>3X be a cofiber sequence in hGS.
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Then the sequence Q=X —>Q~Y—->Q>Z—>Q3X is a fiber sequence in hG9.
Proof. Consider the following diagram

307X - 37Q°Y - Z7Cge, — 3370~ X
€l €l V e

u v w

in GS A where &’s are the adjunction maps. Both of horizontal rows are cofiber
sequences in AGS A and the left square is commutative. So there exists a G-
map &: 5~Cge~,—>Z such that the remaining squares become G-homotopy com-
mutative. Taking the adjoint situation the maps b: Cg~, —Q~Z and a: Q"X
—-0~3X give a G-homotopy commutative diagram such as (2.1). From
(2.2) and (2.3) we obtain a G-map B:Q~Y->Fg=, such that the following
diagram is G-homotopy commutative:

Q"X — QY > Q°Z
al sl I
Q03 X—> Fawe, — Q°Z .

By use of the desuspension theorem [8, Theorem II. 6.1] we observe that the
adjoint @ of a is a weak equivalence. Applying Five lemma we moreover verify
that 3 is also a weak equivalence.

2.2. Given two sequences ®: K-f+L—q>Mil>N, D' K'-]-;L'&M' iN’ in
GY we consider a morphism &= (%, [, m, n): ®—>®’ such that the induced
diagram is G-homotopy commutative. Choose a G-homotopy P: K A [T—L’'
from f'k to If and define a G-map p: C,—~Cy by p|CK=Ck|P and p|L=I
We here assume that there are four G-maps b, b’, a and a’ making the diagram
below G-homotopy commutative:

h
M_ SN
g/ b ta
L—C, \-»3K
(2.5) 1Y lw |m |3k |n

L'—Cy |>ZK'
g/ Y la
MI — NI
hl
Choose G-homotopies U: L A I*—M from bito g, U': L' AIt—M’ trom
b'i" to g’ and V:C,AI"—> M’ from mb to b'p, and then define a G-map b;:
C,—M by b,|CK=b|CK]U(f A1) and b,|L=g, and similarly a G-map b{:
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Cy—>M' using the homotopy U’. Combine U, U’ and V to obtain a G-homo-
topy Q: LAI*—M' from mg to g'l defined to be Q=mU(1 A7) LV([EAL)LU'(IA1).
Putting F=b,| CK and F'=5b7| CK' we have

Claim 2.2. mF|Q(f A1) is G-homotopic rel K p0I* to F'(CK)lg'P.

Proof. b'n|CK is G-homotopic rel K A 8I* to mb| CK | V(if A1) and also
b'TU'PlU'(If A1) is so to U'(f'kal)lg’P. Hence the result is easily shown.

Since [b]=[b,]€[C/, M]; we get a G-map H: CL— N such that [d(hF, H(Cf)]
=[a]€[=K, N]; (see [10, Lemma 3.2 and Theorem 3.3]), and similarly a G-
map H': CL'—N’ such that [d(h'F', H'(Cf'))]=[a']€ [EK', N']¢. Choose a
G-homotopy R: M A I*—N' from h'm to nh. Then we have

Claim 2.3. There exists a G-map W:ZM—>N' such that R(g A1)l
nH(1 A7) | W(Zg) is G-homotopic rel L N0I* to h'Q1H'(I A T).

Proof. nhF is G-homotopic rel K A3l to A'mF | R(gf A1) and similarly
H'(f'ka7) is so to h'g’PIH'(Iff n7). By means of Claim 2.2 the equality
[d(nhF, nH(Cf)] = [d(h'F'(Ck), H'(Cf'k)] € [EK, N']; implies that R(gf A1)L
nH(f o7) is G-homotopic rel K A0I* to h'Q(f A1)LH'(If A7). The result is
now immediate.

Using the maps R and W we define a G-map A: F,—F,, to be
(2.6) Mz, ) = (mz, R| {2} XIlnol W| {2} XI).

By means of Claim 2.3 we see easily that the following diagrams are G-homo-
topy commutative:

N> F, 2 m LB,
2.7) anl  n dm I} I
QN,—>F,,/'—7 M’ L’—>I Fh’

q B

where @ and B’ are defined as (2.2).

Let ®: K—>L—->M—N, ®': K'->L'—>M'—N’ be fiber sequences in 2GJ.
A morphism E=(k, [,m,n): ®—>D' is said to be a morphism between fiber
sequences in hG9 if there are four weak equivalences B, B’, @ and ' and a
G-map  such that the diagram below is G-homotopy commutative:

K —- L
Va VB
ON —-> | F, - M —> N
(2.8) El lQn g I lm |n

QN' -\ F, — M' >N’

ta’ 187
- L’

KI
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Proposition 2.4. Let ¥: X >V SZ53X, v X' %7 5 2%5Xx be
cofiber sequences in hGS A and §=(r,s,t,3r): r—>' be a morphism between
cofiber sequences in hGSA. Then Q°f: Q™Yr—Q>Y' is a morphism between
fiber sequences in FG9.

Proof. Pick up a G-homotopy P: X A I*—Y' from u'r to su and consider
the G-maps p: Cge,—Cge,s given by p|CQ~*X=CQ"r| Q~P and u|Q*Y=Q"s.
By observing standard cofiber sequences in GSA we can easily find G-maps
b: 3~Co»,—Z and b': Z=Cg=,—Z' in the proof of Proposition 2.1 such as b
is G-homotopic to 5'(Z~u). Hence we get four G-maps b: Cg=,—Q<Z,
b': Coeoyy—>Q°Z', a: 2Q°X—->0Q~3X and a’: 3Q°X’'— Q=5 X’ such that the
diagram (2.5) is G-homotopy commutative. Making use of Proposition 2.1, (2.6)
and (2.7) we immediately obtain four weak equivalences B: QY —>Fge,, B':
QY ' —»Fgeo,, a=a:Q"X—->00"3X, a'=a’": Q" X'-00~ZX' and a G-map
A: Fge,—>Fge,, making the diagram (2.8) G-homotopy commutative.

3. (Ey Q~)- and ({Eg,}, Il $x)-localizations

3.1. Let E, be an RO(G; U)-graded homology theory defined on the
stable homotopy category AGCIYSU. A map u: X—Y in hGCIWSU is called
an Ey-equivalence if uy: E,X—E,Y is an isomorphism, and also a map f: A—B
in hGCH is called an E-equivalence if so is 5~ f: 3~A—3%~B. Let us denote
by YF the morphism class consisting of all E4-equivalences in A”GCHWSU. We
simply write YF for the class Z=*JP* consisting of all E-equivalences in ”GCH.
As usual we adopt the terms of E4T- and (Ey, T)-localizations in place of those
of T*GP- and (W, T)-localizations when FP=FPE. Obviously the morphism
class 9% in hGC satisfies the condition (C.0), where AGC=hGCY or hGCWSU.

Lemma 3.1. Let o be an infinite cardinal number which is at least equal
to the cardinality of Ey. Then

WE = 1d,W;
where 1d denotes the identity functor.

Proof. Trivially Id,WEcCGPE. Taking an E,-equivalence u: X—Y in
hGC, it may be regarded as an inclusion XCY. Let ¥ be an infinite cardinal
number of cardinality greater than $Y—#X. As in the non-equivariant case
(see [3, Lemma 1.13]) we can construct a transfinite sequence X=X,CX,C
«-cX,cX,,,C- in GC such that i) if A\ is a limit ordinal then X,=U .« X,
ii) if X,=Y then X,,=Y, and iii) if X,&Y then X,,,=X,UW for some
WcCY where §W =<0, W& X, and the inclusion W A X,—W is an E,-equiva-
lence. Clearly Y=X,. Hence we. observe that the inclusion u: X—Y admits
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an (Id, WE)-decomposition.
As is easily shown, we have

Corollary 3.2. Let o be an infinite cardinal number which is at least equal
to the cardinality of Ey. Then SyIVE satisfies the condition (C.2).

It is known that 9YF admits a calculus of left fractions in AGC (see [1,
Lemma 3.6]). In particular, 9YE=1d, 9 satisfies the condition (C.1).

Lemma 3.3. Fix an infinite cardinal number o. The morphism class
Sy WzE admits a calculus of left fractions in RGCIWSU. In particular, it satisfies
the condition (C.1).

Proof. We only show that SFgpZ satisfies the condition (C.1) because the
remainders are easy. Represent u: X—Y in Sy9Z by a transfinite sequence
X=X,cX,c-cX,cX,C---CXy=Y in GCIWSU, where X,C X, is
given by a pushout square as (1.2). Put V,=Y X {0} VX,AI"VY Y X {1} and
consider the square

VES(ByX {0} VA NIV B, X {1}) =V,
" l !
\u/zm(Ba/\I.‘_) E—— s+l

which is also pushout. The transfinite sequence
YX{}VXAI'VYX {1} =V,cV,C--CV,CV T CVy= Y pI*

gives a (==, WE)-decomposition for the inclusion v: Vy—V,. Given f, g:
Y—Z such that fu=gu in _hGCIYSU, there is a map k: V;—Z with k| Y X {0} =f
and k| Y'x {1} =g. Take the double mapping cylinder W of v and &, then it
follows immediately that the inclusion w: Z—W has a (=, 9 £)-decomposition

and wf=wg in AGCWSU.

Without use of the existence theorem of (Ey, Q~)-localization Kuhn [7,
Proposition 2.4] proved that (%, Q%) satisfies the condition (C.4) in the
non-equivariant case. By virtue of [8, Theorem V. 5.6] we can apply the
method of Kuhn in the finite groups case to show

Proposition 3.4. Assume that G is a finite group. If a map f: A—B
in GCIY is an Ey-equivalence, then 'so is Q=5 f: Q°%~A—-Q~3"B. (Cf., [7]
and [5]).

Proposition 3.5. Given a homotopy pushout square
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v

Y -Z

s Ve

Y =27
v

in GCHWSU such that Os: O~ Y—Q"Y' is an E 4-equivalence, then Q<t: Q~Z—
Q=Z' is an E y-equivalence, too.

Proof. Let X be the cofiber of v: Y—Z. Then there is a G-homotopy
commutative diagram
X —->0°Y - Q°Z - Q"X
I v | Il
QX - Q7Y - Q°2' - Q~3X .

Propositions 2.1 and 2.4 assert that the horizontal rows may be regarded as
fiber sequences of G-CW complexes. Compare the Atiyah-Hirzebruch spectral
sequences (see [6, Theorem 1]). Since the base space Q=X is a G-homotopy
commutative H-space and z§(Q~=X) is an abelian group for each closed sub-
group K of G, the result is now easily shown.

Making use of Propositions 3.4 and 3.5 we have

Corollary 3.6. Assume that G is a finite group and fix an infinite cardinal
number o.  The morphism class Sy IWE satisfies the condition (C.3).

Let o be an infinite cardinal number which is at least equal to the cardinal-
ity of E4. Lemma 3.3 and Corollaries 3.2 and 3.6 say that the morphism class
SyWE satisfies the conditions (C.1), (C.2) and (C.3) when G is finite. So
we can apply Proposition 1.4 to show the existence theorem of (Ey, Q~)-locali-
zation.

Theorem 3.7. Assume that G is a finite group. Then there exists an
(Ex, Q~)-localization (L, n) in hGCIWSU. (Cf., [4, Theorem 1.1]).

Let hGCHWSU, denote the full subcategory of AGCH SU iconsisting of
(—1)-connected G-CW spectra. The 0-th space functor Q~: hGCWSU,—
hGC satisfies the assumption in Proposition 1.2. So we get

Corollary 3.8. Assume that G is a finite group. Then there exists an
EQ~-localization (L, ) in hGCHWSU,. (See [4]).

3.2. Let G be a compact Lie group and & be a collection of closed sub-
groups of G which are not conjugate subgroups each other. We partially
order a list F by writing H <K if H is subconjugate to K. LetEg={Ep}keg
be a family of homology theories defined on ACHWSU. A family Eg is said
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to be order preserving if Ex«X=0 implies E;«X=0 for each pair HZK in
F. Write W°Z for the morphism class [[xegIW*Ex in [[geghCIW or in
I xeghCWSU.

For each closed subgroup K of G the K-fixed point functor ¢px: GI—I
or GSA—->S has a left adjoint functor (G/K)* A — (see [8, Proposition II.
4.6]). Abbreviate by C the category C9¥ or C9YSU and similarly by GC. The
fixed points functor ¢g= [Ixegdx: GC—IlxegC has a left adjoint Yrg:
IIxkegC—GC defined to be yYrg( {XK})ZJ\I/(G/K)+ AXg. We here show that

(W°8, ¢pgrg) satisfies the condition (C.4).

Lemma 3.9. Assume that a family Eq={Ex+} is order preserving. Given
Eg+-equivalences fy: Xg— Yy in hC for all K&F, then ¢ubrqg({fx}):
(}z/(G’/K)+ AXg)T—( l\z/(G/K)+ A Yx)¥ is also an E gs-equivalence for each HE .

(Cf,, [11, Lemma 2.2]).

Proof. Under the hypothesis on Eg it follows that 1 A fx: (G/K)** A Xg—
(GIK)#+ A Yy is an Eg,-equivalence since (G/K)¥=¢ unless H<K.

Let £g=1{Ex+} be an order preserving family and o be an infinite cardinal
number which is at least equal to the cardinality of @geg Ex+. By similar
arguments to Lemma 3.3 and Corollaries 3.2 and 3.6 involving Lemma 3.9 we
easily verify that \,lrg,-#‘ng" in AGC satisfies the conditions (C.1), (C.2) and (C.3).

Applying Proposition 1.4 we obtain

Theorem 3.10. Let G be a compact Lie group and Eq= {Eg+} be a family
of homology theories defined on hCIWSU. Assume that Eg is order preserving.
Then there exists an (Eq, pg)-localization (L, n) in hGCHW or in hGCHWSU where
dg=Il ke FPx denotes the fixed points functor.

If a list & contains precisely one subgroup from every conjugacy class
of closed subgroups of G, then it is said to be complete. As is well known,
the fixed points functor ¢ satisfies the assumption in Proposition 1.2 when
G is complete. Hence we have

Corollary 3.11. Assume that a list F is complete and a family Eq—= {Ex+}
is order preserving. Then there exists an Egdg-localization (L, n) in hGCIY
or in hGCIWSU. (Cf., [12], Theorem 2.1]).
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