HOMOLOGY LOCALIZATIONS AFTER APPLYING SOME RIGHT ADJOINT FUNCTORS

Dedicated to Professor Nobuo Shimada on his sixtieth birthday

ZEN-ICHI YOSIMURA

(Received January 17, 1984)

0. Introduction

Each homology theory E_* determines a natural E_* -localization $\eta\colon X\to L_E X$ in the homotopy category $h\mathcal{C}\mathcal{W}$ of CW-complexes or $h\mathcal{C}\mathcal{W}\mathcal{S}$ of CW-spectra. It is full of interest to study the behavior of E_* -localizations after application of various functors T to the category $h\mathcal{C}\mathcal{W}$ or $h\mathcal{C}\mathcal{W}\mathcal{S}$. Consider as T the 0-th space functor $\Omega^\infty\colon h\mathcal{C}\mathcal{W}\mathcal{S}\to h\mathcal{C}\mathcal{W}$ which is right adjoint to the suspension spectrum functor Σ^∞ . Bousfield [4] showed that the E_* -localization of an infinite loop space $\Omega^\infty X$ is still an infinite loop space. More precisely, he proved

Theorem 0.1 ([4, Theorem 1.1]). There exists an idempotent monad L: $hCWS_0 \rightarrow hCWS_0$ and $\eta: 1 \rightarrow L$ such that the map $\Omega^{\infty}\eta: \Omega^{\infty}X \rightarrow \Omega^{\infty}LX$ is an E_* -localization in hCW. Here $hCWS_0$ denotes the full subcategory of hCWS consisting of (-1)-connected CW-spectra.

As remarked by Bousfield [4], this implies

Proposition 0.2. If $f: A \rightarrow B$ is an E_* -equivalence in hCW, then so is $\Omega^{\infty}\Sigma^{\infty}f: \Omega^{\infty}\Sigma^{\infty}A \rightarrow \Omega^{\infty}\Sigma^{\infty}B$.

On the other hand, Kuhn [7, Proposition 2.4] gave recently a simple proof of Proposition 0.2 using the stable decompositions of $\Omega^{\infty}\Sigma^{\infty}A$ and $\Omega^{\infty}\Sigma^{\infty}B$ (see [9]).

In this note we will show that Proposition 0.2 is essential to the existence theorem 0.1. Thus, by use of only Proposition 0.2 we give a direct proof of the existence theorem 0.1 along the primary line of Bousfield [1, 2 and 3]. In our proof we don't need the knowledge of very special Γ -spaces although Bousfield did in [4].

Let $T: \mathcal{C} \to \mathcal{B}$ be a functor with a left adjoint S and \mathcal{W} be a morphism class in \mathcal{B} . In §1 we introduce $T^*\mathcal{W}$ - and (\mathcal{W}, T) -localizations in \mathcal{C} and discuss a relation between them. Following our notation Theorem 0.1 says that there exists an (E_*, Ω^{∞}) -localization in $h\mathcal{C}\mathcal{W}\mathcal{S}_0$ where E_* stands for the morphism class of E_* -equivalences in $h\mathcal{C}\mathcal{W}$. Don't confuse our notation with Bousfield's [4]. We next give three conditions (C.1)-(C.3) under which we can construct

a (\mathcal{W}, T) -localization $\eta: X \to LX$ for each $X \in \mathcal{C}$ where $\mathcal{C} = h\mathcal{C}\mathcal{W}$ or $h\mathcal{C}\mathcal{W}\mathcal{S}$, by the same method as Bousfield used in constructing E_* -localizations in [1, 3].

It might be indistinctly known that the 0-th space functor Ω^{∞} converts generally a cofiber sequence in hCWS to a fiber sequence in hCW. Nevertheless we prove this fact in §2 by making use of secondary operations on mappings [10]. This result yields a key lemma for proving the existence theorem of (E_*, Ω^{∞}) -localization.

In §3 we first check that the conditions (C.1)-(C.3) are satisfied for the triple $(\mathcal{W}, T, S) = (E_*, \Omega^{\infty}, \Sigma^{\infty})$. As a result we can give a new proof of the existence theorem of (E_*, Ω^{∞}) -localization in $h\mathcal{CWS}$. Since the equivariant version of Proposition 0.2 is valid when G is a finite group (use [8, V]), we obtain the equivariant version of Theorem 0.1. Of course we may prove it by using very special G- Γ spaces following Bousfield's approach. Let G be a compact Lie group and ϕ_K be the K-fixed point functors. Applying our method to $T = \prod \phi_K$ we also obtain the existence theorem of $(\prod E_{K^*}, \prod \phi_K)$ -localization which was studied in [11, Theorem 2.1].

1. (\mathcal{W}, T) - and $T^*\mathcal{W}$ -localizations

- **1.1.** Let \mathcal{B} be a category. We call a functor and transformation $L: \mathcal{B} \rightarrow \mathcal{B}$, $\eta: 1 \rightarrow L$ idempotent if $\eta_{LA} = L\eta_A: LA \rightarrow L^2A$ and it is an equivalence for each $A \in \mathcal{B}$. It is easy to show
- (1.1) A functor $L: \mathcal{B} \rightarrow \mathcal{B}$ and transformation $\eta: 1 \rightarrow L$ is idempotent if and only if $\eta_A: A \rightarrow LA$ induces a bijection $\eta_A^*: \mathcal{B}(LA, LB) \rightarrow \mathcal{B}(A, LB)$ for any $A, B \in \mathcal{B}$.

Given a morphism class \mathcal{W} in a category \mathcal{B} , an object $D \in \mathcal{B}$ is called \mathcal{W} -local if each $f \colon A \to B$ in \mathcal{W} induces a bijection $f^* \colon \mathcal{B}(B,D) \to \mathcal{B}(A,D)$. For each $A \in \mathcal{B}$ a morphism $g \colon A \to D$ is called a \mathcal{W} -localization of A if g belongs to \mathcal{W} and D is \mathcal{W} -local. If all objects of \mathcal{B} admit \mathcal{W} -localizations, then there exists a functor $L \colon \mathcal{B} \to \mathcal{B}$ and transformation $g \colon 1 \to L$ such that $g \colon A \to LA$ is a \mathcal{W} -localization for each $A \in \mathcal{B}$. Such an (L, g) is unique up to natural equivalence, so it is called the \mathcal{W} -localization in \mathcal{B} . It follows from (1.1) that the \mathcal{W} -localization is idempotent [1].

Let $T: \mathcal{C} \rightarrow \mathcal{B}$ be a functor and \mathcal{W} be a morphism class in \mathcal{B} . An idempotent monad $L: \mathcal{C} \rightarrow \mathcal{C}$ and $\eta: 1 \rightarrow L$ is called the (\mathcal{W}, T) -localization in \mathcal{C} if $T_{\eta_X}: TX \rightarrow TLX$ is a \mathcal{W} -localization for each $X \in \mathcal{C}$.

We here restrict to a morphism class ${\mathcal W}$ in ${\mathcal B}$ satisfying the condition:

- (C.0) i) Each equivalence $f: A \rightarrow B$ is contained in \mathcal{W} .
 - ii) If two of $f: A \rightarrow B$, $g: B \rightarrow C$ and $gf: A \rightarrow C$ are in \mathcal{W} , so is the third.

Lemma 1.1. Let $T: \mathcal{C} \rightarrow \mathcal{B}$ be a functor with a left adjoint S, and W be

a morphism class in \mathcal{B} satisfying the condition (C.0). Assume that there exists a (\mathcal{W}, T) -localization (L, η) in \mathcal{C} . If $f: A \rightarrow B$ is contained in \mathcal{W} , then so is $TSf: TSA \rightarrow TSB$. (Cf., [4, Remark following Proposition 1.2]).

Proof. Each $f: A \to B$ in \mathcal{W} induces a bijection $f^*: \mathcal{B}(B, TLX) \to \mathcal{B}(A, TLX)$ for any $X \in \mathcal{C}$ since TLX is \mathcal{W} -local. By adjointness $Sf^*: \mathcal{C}(SB, LX) \to \mathcal{C}(SA, LX)$ is bijective, too. Making use of (1.1) we easily verify that $LSf: LSA \to LSB$ is an equivalence. It is now immediate that $TSf: TSA \to TSB$ is in \mathcal{W} because \mathcal{W} satisfies the condition (C.0).

Given a functor $T: \mathcal{C} \to \mathcal{B}$ and a morphism class \mathcal{W} in \mathcal{B} we denote by $T^*\mathcal{W}$ the morphism class in \mathcal{C} which consists of all $u: X \to Y$ with $Tu \in \mathcal{W}$. We here study a relation between the $T^*\mathcal{W}$ -localization and the (\mathcal{W}, T) -localization.

Proposition 1.2. Let $T: \mathcal{C} \to \mathcal{B}$ be a functor with a left adjoint S, and \mathcal{W} be a morphism class in \mathcal{B} satisfying the condition (C.0). Assume that $u: X \to Y \in \mathcal{C}$ is an equivalence whenever so is $Tu: TX \to TY$. Then an idempotent monad (L, η) is the (\mathcal{W}, T) -localization in \mathcal{C} if and only if it is the $T^*\mathcal{W}$ -localization in \mathcal{C} and moreover $TSf: TSA \to TSB$ is in \mathcal{W} when so is $f: A \to B$.

Proof. The "if" part: It is sufficient to show that TLZ is \mathcal{W} -local for each $Z \in \mathcal{C}$. Given any $f \colon A \to B$ in \mathcal{W} , $Sf^* \colon \mathcal{C}(SB, LZ) \to \mathcal{C}(SA, LZ)$ is bijective since LZ is $T^*\mathcal{W}$ -local. By adjointness this means that TLZ is \mathcal{W} -local.

The "only if" part: The latter part follows from Lemma 1.1. So we only have to show that LZ is $T^*\mathcal{W}$ -local for each $Z \in \mathcal{C}$. Taking any $u: X \to Y$ in $T^*\mathcal{W}$, $TLu: TLX \to TLY$ is an equivalence since it is in \mathcal{W} and TLX, TLY are both \mathcal{W} -local. Under our assumption $Lu: LX \to LY$ is also an equivalence. It is immediate from (1.1) that $u^*: \mathcal{C}(Y, LZ) \to \mathcal{C}(X, LZ)$ is bijective, thus LZ is $T^*\mathcal{W}$ -local.

1.2. Let G be a compact Lie group. Let $G\mathcal{I}$ denote the category of based G-spaces with G-fixed basepoint, and $G\mathcal{S}\mathcal{A}$ the category of G-spectra indexed on an indexing set \mathcal{A} in a G-universe U. Let us write $G\mathcal{S}U$ for $G\mathcal{S}\mathcal{A}$ when \mathcal{A} is the standard indexing set in U. The category $G\mathcal{S}\mathcal{A}$ is equivalent to $G\mathcal{S}U$ for any indexing set \mathcal{A} in U. The suspension spectrum functor Σ^{∞} : $G\mathcal{I} \to G\mathcal{S}\mathcal{A}$ has a right adjoint functor Ω^{∞} : $G\mathcal{S}\mathcal{A} \to G\mathcal{I}$ called the 0-th space functor [8, Proposition II. 2.3].

Let $\overline{h}G\mathcal{I}$ or $\overline{h}G\mathcal{S}\mathcal{A}$ be the category obtained from the homotopy category $hG\mathcal{I}$ or $hG\mathcal{S}\mathcal{A}$ by formally inverting the weak equivalences respectively. The category $\overline{h}G\mathcal{I}$ is equivalent to the homotopy category $hG\mathcal{C}\mathcal{W}$ of G-CW complexes and cellular maps. Similarly the stable category $\overline{h}G\mathcal{S}\mathcal{A}$ is equivalent to the homotopy category $hG\mathcal{C}\mathcal{W}\mathcal{S}\mathcal{A}$ of G-CW spectra and cellular maps

indexed on A [8, Theorem II. 5.12].

Let us abbreviate by GC the category GCW of G-CW complexes or the category GCWSA of G-CW spectra indexed on A, and by hGC its homotopy category. Let $S: \mathcal{B} \rightarrow hGC$ be a functor and W be a morphism class in \mathcal{B} . For a fixed infinite cardinal number σ we consider the subclass $W_{\sigma} = \{f_{\alpha}; A_{\alpha} \rightarrow B_{\alpha}\}_{\alpha \in I}$ consisting of morphisms in W with $\sharp SA_{\alpha} \leq \sigma$ and $\sharp SB_{\alpha} \leq \sigma$, where $\sharp X$ denotes the number of G-cells in $X \in GC$. Note that $Sf_{\alpha}: SA_{\alpha} \rightarrow SB_{\alpha}$ may be represented by an inclusion i_{α} , when replacing SB_{α} by the mapping cylinder of Sf_{α} if necessary.

We say an inclusion map $u: X \rightarrow Y \in GC$ admits an $(S, \mathcal{W}_{\sigma})$ -decomposition if there exists a transfinite sequence

$$X = X_0 \subset X_1 \subset \cdots \subset X_s \subset X_{s+1} \subset \cdots \subset X_y = Y$$

in GC such that $X_{\lambda} = \bigcup_{s < \lambda} X_s$ when λ is a limit ordinal and $X_s \subset X_{s+1}$ is obtained from a pushout square

$$\begin{array}{ccc} & \vee SA_{a} \to X_{s} \\ \vee i_{a} \downarrow & \downarrow \\ \vee SB_{a} \to X_{s+1} \end{array}$$

in GC where the inclusion i_{α} is a representative of Sf_{α} for $f_{\alpha} \colon A_{\alpha} \to B_{\alpha}$ in \mathcal{W}_{σ} . Let γ be the first infinite ordinal of cardinality greater than σ . For each $X \in GC$ we inductively construct a transfinite sequence

$$X = X_0 \subset X_1 \subset \cdots \subset X_s \subset X_{s+1} \subset \cdots$$

in GC where $X_{\lambda} = \bigcup_{s < \lambda} X_s$ for each limit ordinal λ and $X_s \subset X_{s+1}$ is given by the pushout square

$$\bigvee_{\alpha \in I} \bigvee_{g} SA_{\alpha} \to X_{s}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bigvee_{\alpha \in I} \bigvee_{g} SB_{\alpha} \to X_{s+1}$$

in which g ranges over all representative cellular maps $SA_{\alpha} \rightarrow X_s$ (cf., [2]). Putting $LX = X_{\gamma}$, we see immediately

(1.3) The inclusion map $\eta_X: X \to LX$ admits an $(S, \mathcal{W}_{\sigma})$ -decomposition.

Each cellular map $k: SA_{\alpha} \to LX$ passes through SB_{α} because the image of k is contained in X_s for some $s < \gamma$. Therefore any $f_{\alpha}: A_{\alpha} \to B_{\alpha}$ in \mathcal{W}_{σ} induces a surjection $Sf_{\alpha}^*: hGC(SB_{\alpha}, LX) \to hGC(SA_{\alpha}, LX)$ This implies

(1.4) If an inclusion map $v: Y \rightarrow Z$ admits an $(S, \mathcal{W}_{\sigma})$ -decomposition, then $v^*: hGC(Z, LX) \rightarrow hGC(Y, LX)$ is surjective.

Let $S_{\mathfrak{g}}W_{\sigma}$ denote the morphism class consisting of morphisms in hGC,

each of which is represented by some inclusion having an $(S, \mathcal{W}_{\sigma})$ -decomposition. We now assume that $S_*\mathcal{W}_{\sigma}$ satisfies the condition:

(C.1) Given $u: X \to Y$ in $S_* \mathcal{W}_{\sigma}$ and $f, g: Y \to Z$ such that fu = gu in hGC, there exists $w: Z \to W$ in $S_* \mathcal{W}_{\sigma}$ such that wf = wg in hGC.

Under the condition (C.1) it is easy to show

(1.5) Each $v: Y \to Z$ in $S_{\mathfrak{z}} \mathcal{W}_{\sigma}$ induces a bijection $v^*: hG\mathcal{C}(Z, LX) \to hG\mathcal{C}(Y, LX)$ (see [1, Lemma 2.5]).

By use of (1.1), (1.3) and (1.5) we obtain

Lemma 1.3. Let $S: \mathcal{B} \to hGC$ be a functor and W be a morphism class in \mathcal{B} . Fix an infinite cardinal number σ and assume that the morphism class S_*W_{σ} satisfies the condition (C.1). Then the inclusion map $\eta_X: X \to LX$ give rise to an idempotent monad (L, η) in hGC.

Let $S: \mathcal{B} \rightarrow hGC$ be a functor with a right adjoint T and W be a morphism class in \mathcal{B} . We moreover assume that the following conditions are satisfied:

- (C.2) For each $f: A \rightarrow B$ in \mathcal{W} the morphism $Sf: SA \rightarrow SB$ is in $S_*\mathcal{W}_{\sigma}$.
- (C.3) If $u: X \to Y$ is in $S_{\sharp} \mathcal{W}_{\sigma}$, then the morphism $Tu: TX \to TY$ is in \mathcal{W} . Note that both (C.2) and (C.3) imply
- (C.4) If $f: A \rightarrow B$ is in \mathcal{W} , then so is $TSf: TSA \rightarrow TSB$.

Proposition 1.4. Let $T: hGC \rightarrow \mathcal{B}$ be a functor with a left adjoint S and W be a morphism class in \mathcal{B} . Fix an infinite cardinal number σ and assume that the three conditions (C.1), (C.2) and (C.3) are all satisfied. Then there exists a (W, T)-localization (L, η) in hGC.

Proof. Under our assumptions it follows from (1.3) and (1.5) that the morphism T_{η_X} : $TX \rightarrow TLX$ is a \mathcal{W} -localization. The result is now immediate from Lemma 1.3.

2. Homotopy theoric fiber sequences

Given maps $d_1, d_2: K \wedge I^+ \to N$ in $G\mathcal{I}$ such that $d_1 | K \times \{1\} = d_2 | K \times \{0\}$ we define a G-map $d_1 \perp d_2: K \wedge I^+ \to N$ as $d_1 \perp d_2(x, t)$ is equal to $d_1(x, 2t)$ if $0 \le t \le 1/2$ and to $d_2(x, 2-2t)$ if $1/2 \le t \le 1$. Consider a sequence $K \xrightarrow{f} L \xrightarrow{g} M \xrightarrow{h} N$ in $G\mathcal{I}$ such that the two composite gf, hg are both G-null homotopic. Then there are G-maps $F: CK \to M$ and $H: CL \to N$ such that $F \mid K \times \{1\} = gf$ and $H \mid L \times \{1\} = hg$ where C denotes the reduced cone functor. Two maps hF, H(Cf) give

rise to a G-map $d(hF, H(Cf)): \Sigma K \to N$ obtained as $d(hF, H(Cf)) = hF \perp H(f \wedge \tau)$ where Σ denotes the reduced suspension functor and $\tau: I^+ \to I^+$ is the twisting map. The bracket $\langle f, g, h \rangle$ is defined to be the double coset of $h_*[\Sigma K, M]_G$ and $\Sigma f^*[\Sigma L, N]_G$ in $[\Sigma K, N]_G$ determined by [d(hF, H(Cf))].

Consider the mapping cocylinder

$$E_h = \{(z, \omega) \in M \times F(I, N); h(z) = \omega(0)\}$$

of $h: M \to N$. The G-map $p: E_h \to N$ defined to be $p(z, \omega) = \omega(1)$ is a G-fibration. Let us denote by F_h the fiber of p over the basepoint of N, which is called the mapping fiber of h. The G-map $q: F_h \to M$ defined to be $q(z, \omega) = z$ is a G-fibration, too. Notice that the fiber of q is just the loop space ΩN .

Assume that there exist G-maps $b: C_f \to M$, $a: \Sigma K \to N$ making the diagram below G-homotopy commutative

(2.1)
$$\begin{array}{c} L \to C_f \to \Sigma K \\ || & \downarrow b & \downarrow a \\ L \to M \to N \\ g & h \end{array}$$

where we write C_f for the mapping cone of $f: K \to L$. According to [10, Theorem 3.3] the bracket $\langle f, g, h \rangle$ is represented by the map a. So we may choose G-maps $F: CK \to M$ and $H: CL \to N$ such as $F \mid K \times \{1\} = gf$, $H \mid L \times \{1\} = hg$ and $[d(hF, H(Cf))] = [a] \in [\Sigma K, N]_G$.

Using such a map H we define a G-map $\beta: L \rightarrow F_h$ to be

$$(2.2) \beta(y) = (g(y), H(1 \wedge \tau) | \{y\} \times I) \in M \times F(I, N).$$

As is easily seen, the following diagram

(2.3)
$$K \xrightarrow{f} L \xrightarrow{g} M$$
$$a \downarrow \beta \downarrow \qquad ||$$
$$\Omega N \to F_h \xrightarrow{q} M$$

is G-homotopy commutative where \bar{a} is the adjoint of a.

A sequence $K \xrightarrow{f} L \xrightarrow{g} M \xrightarrow{h} N$ in $G \mathcal{I}$ is said to be a fiber sequence in $\bar{h}G \mathcal{I}$ if there exist weak equivalences $\beta: L \to F_h$, $\alpha: K \to \Omega N$ such that the diagram below is G-homotopy commutative:

$$(2.4) \hspace{1cm} \begin{array}{ccc} K \to L \to M \\ \alpha \downarrow & \beta \downarrow & || \\ \Omega N \to F_h \to M \,. \end{array}$$

Proposition 2.1. Let $X \rightarrow Y \rightarrow Z \rightarrow \Sigma X$ be a cofiber sequence in hGSA.

Then the sequence $\Omega^{\infty}X \rightarrow \Omega^{\infty}Y \rightarrow \Omega^{\infty}Z \rightarrow \Omega^{\infty}\Sigma X$ is a fiber sequence in $\overline{h}G\mathfrak{I}$.

Proof. Consider the following diagram

$$\Sigma^{\infty}\Omega^{\infty}X \to \Sigma^{\infty}\Omega^{\infty}Y \to \Sigma^{\infty}C_{\Omega^{\infty}u} \to \Sigma\Sigma^{\infty}\Omega^{\infty}X$$

$$\varepsilon \downarrow \qquad \qquad \varepsilon \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \Sigma\varepsilon$$

$$X \xrightarrow{u} Y \xrightarrow{v} Z: \xrightarrow{w} \Sigma X$$

in GSA where \mathcal{E} 's are the adjunction maps. Both of horizontal rows are cofiber sequences in hGSA and the left square is commutative. So there exists a G-map $\tilde{b}: \Sigma^{\infty}C_{\Omega^{\infty}u} \to Z$ such that the remaining squares become G-homotopy commutative. Taking the adjoint situation the maps $b: C_{\Omega^{\infty}u} \to \Omega^{\infty}Z$ and $a: \Sigma\Omega^{\infty}X \to \Omega^{\infty}\Sigma X$ give a G-homotopy commutative diagram such as (2.1). From (2.2) and (2.3) we obtain a G-map $\beta: \Omega^{\infty}Y \to F_{\Omega^{\infty}w}$ such that the following diagram is G-homotopy commutative:

$$\begin{array}{ccc} \Omega^{\infty}X & \longrightarrow & \Omega^{\infty}Y \to \Omega^{\infty}Z \\ a \downarrow & \beta \downarrow & || \\ \Omega\Omega^{\infty}\Sigma X & \longrightarrow & F_{\Omega^{\infty}w} \to & \Omega^{\infty}Z \end{array}.$$

By use of the desuspension theorem [8, Theorem II. 6.1] we observe that the adjoint \bar{a} of a is a weak equivalence. Applying Five lemma we moreover verify that β is also a weak equivalence.

2.2. Given two sequences $\Phi: K \xrightarrow{f} L \xrightarrow{q} M \xrightarrow{h} N$, $\Phi': K' \xrightarrow{f'} L' \xrightarrow{q'} M' \xrightarrow{h'} N'$ in $G\mathcal{D}$ we consider a morphism $\xi = (k, l, m, n) : \Phi \to \Phi'$ such that the induced diagram is G-homotopy commutative. Choose a G-homotopy $P: K \land I^+ \to L'$ from f'k to lf and define a G-map $\mu: C_f \to C_{f'}$ by $\mu \mid CK = Ck \perp P$ and $\mu \mid L = l$. We here assume that there are four G-maps b, b', a and a' making the diagram below G-homotopy commutative:

$$(2.5) \begin{array}{c} M & \stackrel{h}{\rightarrow} N \\ g \nearrow \uparrow b & \uparrow a \\ L \rightarrow C_f & \rightarrow \Sigma K \\ l \downarrow i \downarrow \mu & m \downarrow \Sigma k \\ L' \rightarrow C_{f'} & \rightarrow \Sigma K' \\ g' & \downarrow b' & \downarrow a' \\ M' & \stackrel{\rightarrow}{\rightarrow} N' \end{array}$$

Choose G-homotopies $U: L \wedge I^+ \to M$ from bi to $g, U': L' \wedge I^+ \to M'$ from b'i' to g' and $V: C_f \wedge I^+ \to M'$ from mb to $b'\mu$, and then define a G-map $b_1: C_f \to M$ by $b_1 | CK = b | CK \perp U(f \wedge 1)$ and $b_1 | L = g$, and similarly a G-map $b'_1: CK \to M$ by $b_1 | CK \to M$ from $b'_1: CK \to M$ by $b_2: CK \to M$ by $b_3: CK \to M$ from $b'_2: CK \to M$ from $b'_3: CK \to M$ from b

 $C_{f'} \rightarrow M'$ using the homotopy U'. Combine U, U' and V to obtain a G-homotopy $Q: L_{\wedge}I^{+} \rightarrow M'$ from mg to g'l defined to be $Q = mU(1_{\wedge}\tau) \perp V(i_{\wedge}1) \perp U'(l_{\wedge}1)$. Putting $F = b_{1} \mid CK$ and $F' = b'_{1} \mid CK'$ we have

Claim 2.2. $mF \perp Q(f \land 1)$ is G-homotopic rel $K \land \partial I^+$ to $F'(CK) \perp g'P$.

Proof. $b'\mu \mid CK$ is G-homotopic rel $K \cap \partial I^+$ to $mb \mid CK \perp V(if \cap 1)$ and also $b'i'P \perp U'(lf \cap 1)$ is so to $U'(f'k \cap 1) \perp g'P$. Hence the result is easily shown.

Since $[b]=[b_1]\in [C_f,M]_G$ we get a G-map $H\colon CL\to N$ such that $[d(hF,H(Cf))]=[a]\in [\Sigma K,N]_G$ (see [10, Lemma 3.2 and Theorem 3.3]), and similarly a G-map $H'\colon CL'\to N'$ such that $[d(h'F',H'(Cf'))]=[a']\in [\Sigma K',N']_G$. Choose a G-homotopy $R\colon M\wedge I^+\to N'$ from h'm to nh. Then we have

Claim 2.3. There exists a G-map $W: \Sigma M \to N'$ such that $R(g \land 1) \perp nH(1 \land \tau) \perp W(\Sigma g)$ is G-homotopic rel $L \land \partial I^+$ to $h'Q \perp H'(l \land \tau)$.

Proof. nhF is G-homotopic rel $K \wedge \partial I^+$ to $h'mF \perp R(gf \wedge 1)$ and similarly $H'(f'k \wedge \tau)$ is so to $h'g'P \perp H'(lf \wedge \tau)$. By means of Claim 2.2 the equality $[d(nhF, nH(Cf)] = [d(h'F'(Ck), H'(Cf'k)] \in [\Sigma K, N']_G$ implies that $R(gf \wedge 1) \perp nH(f \wedge \tau)$ is G-homotopic rel $K \wedge \partial I^+$ to $h'Q(f \wedge 1) \perp H'(lf \wedge \tau)$. The result is now immediate.

Using the maps R and W we define a G-map $\lambda: F_h \rightarrow F_{h'}$ to be

(2.6)
$$\lambda(z, \omega) = (mz, R | \{z\} \times I \perp n\omega \perp W | \{z\} \times I).$$

By means of Claim 2.3 we see easily that the following diagrams are G-homotopy commutative:

(2.7)
$$\Omega N \to F_h \xrightarrow{q} M \qquad L \xrightarrow{\beta} F_h \\
\Omega n \downarrow \qquad \downarrow \lambda \qquad \downarrow m \qquad l \downarrow \qquad \downarrow \lambda \\
\Omega N' \to F_{h'} \xrightarrow{q'} M' \qquad L' \xrightarrow{\beta'} F_{h'}$$

where β and β' are defined as (2.2).

Let $\Phi: K \to L \to M \to N$, $\Phi': K' \to L' \to M' \to N'$ be fiber sequences in $\bar{h}G\mathfrak{I}$. A morphism $\xi = (k, l, m, n) : \Phi \to \Phi'$ is said to be a morphism between fiber sequences in $\bar{h}G\mathfrak{I}$ if there are four weak equivalences β , β' , α and α' and a G-map λ such that the diagram below is G-homotopy commutative:

(2.8)
$$k \begin{pmatrix} K & \rightarrow & L \\ \downarrow \alpha & & \downarrow \beta \\ \Omega N & \rightarrow & F_h & \rightarrow M \rightarrow N \\ \downarrow \Omega n & l & \downarrow \lambda & \downarrow m & \downarrow n \\ \Omega N' & \rightarrow & F_{h'} & \rightarrow M' \rightarrow N' \\ \uparrow \alpha' & & \uparrow \beta' & \uparrow K' & \rightarrow L' \end{pmatrix}$$

Proposition 2.4. Let $\psi: X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} \Sigma X$, $\psi': X' \xrightarrow{u'} Y' \xrightarrow{v'} \Sigma X'$ be cofiber sequences in hGSA and $\zeta = (r, s, t, \Sigma r): \psi \rightarrow \psi'$ be a morphism between cofiber sequences in hGSA. Then $\Omega^{\infty}\zeta: \Omega^{\infty}\psi \rightarrow \Omega^{\infty}\psi'$ is a morphism between fiber sequences in hGI.

Proof. Pick up a G-homotopy $P: X \wedge I^+ \to Y'$ from u'r to su and consider the G-maps $\mu: C_{\Omega^{\infty}u} \to C_{\Omega^{\infty}u'}$ given by $\mu \mid C\Omega^{\infty}X = C\Omega^{\infty}r \perp \Omega^{\infty}P$ and $\mu \mid \Omega^{\infty}Y = \Omega^{\infty}s$. By observing standard cofiber sequences in $GS\mathcal{A}$ we can easily find G-maps $\tilde{b}: \Sigma^{\infty}C_{\Omega^{\infty}u} \to Z$ and $\tilde{b}': \Sigma^{\infty}C_{\Omega^{\infty}u'} \to Z'$ in the proof of Proposition 2.1 such as $t\tilde{b}$ is G-homotopic to $\tilde{b}'(\Sigma^{\infty}\mu)$. Hence we get four G-maps $b: C_{\Omega^{\infty}u} \to \Omega^{\infty}Z$, $b': C_{\Omega^{\infty}u'} \to \Omega^{\infty}Z'$, $a: \Sigma\Omega^{\infty}X \to \Omega^{\infty}\Sigma X$ and $a': \Sigma\Omega^{\infty}X' \to \Omega^{\infty}\Sigma X'$ such that the diagram (2.5) is G-homotopy commutative. Making use of Proposition 2.1, (2.6) and (2.7) we immediately obtain four weak equivalences $\beta: \Omega^{\infty}Y \to F_{\Omega^{\infty}w}$, $\beta': \Omega^{\infty}Y' \to F_{\Omega^{\infty}w'}$, $\alpha=a: \Omega^{\infty}X \to \Omega\Omega^{\infty}\Sigma X$, $\alpha'=a': \Omega^{\infty}X' \to \Omega\Omega^{\infty}\Sigma X'$ and a G-map $\lambda: F_{\Omega^{\infty}w} \to F_{\Omega^{\infty}w'}$ making the diagram (2.8) G-homotopy commutative.

3. (E_*, Ω^{∞}) - and $(\{E_{K_*}\}, \prod \phi_K)$ -localizations

3.1. Let E_* be an RO(G; U)-graded homology theory defined on the stable homotopy category hGCWSU. A map $u: X \to Y$ in hGCWSU is called an E_* -equivalence if $u_*: E_*X \to E_*Y$ is an isomorphism, and also a map $f: A \to B$ in hGCW is called an E_* -equivalence if so is $\sum^{\infty} f: \sum^{\infty} A \to \sum^{\infty} B$. Let us denote by W^E the morphism class consisting of all E_* -equivalences in hGCWSU. We simply write W^E for the class $\sum^{\infty*}W^E$ consisting of all E_* -equivalences in hGCW. As usual we adopt the terms of E_*T - and (E_*, T) -localizations in place of those of T^*W - and (W, T)-localizations when $W=W^E$. Obviously the morphism class W^E in hGC satisfies the condition (C.0), where hGC=hGCW or hGCWSU.

Lemma 3.1. Let σ be an infinite cardinal number which is at least equal to the cardinality of E_* . Then

$$\mathcal{W}^E = Id_{\bullet}\mathcal{W}^E_{\sigma}$$

where Id denotes the identity functor.

Proof. Trivially $Id_{\sharp}W_{\sigma}^{E}\subset W^{E}$. Taking an E_{*} -equivalence $u\colon X\to Y$ in hGC, it may be regarded as an inclusion $X\subset Y$. Let γ be an infinite cardinal number of cardinality greater than $\sharp Y-\sharp X$. As in the non-equivariant case (see [3, Lemma 1.13]) we can construct a transfinite sequence $X=X_{0}\subset X_{1}\subset \cdots\subset X_{s}\subset X_{s+1}\subset \cdots$ in GC such that i) if λ is a limit ordinal then $X_{\lambda}=\bigcup_{s<\lambda}X_{s}$, ii) if $X_{s}=Y$ then $X_{s+1}=Y$, and iii) if $X_{s}\neq Y$ then $X_{s+1}=X_{s}\cup W$ for some $W\subset Y$ where $\sharp W\leq \sigma$, $W\subset X_{s}$ and the inclusion $W\cap X_{s}\to W$ is an E_{*} -equivalence. Clearly $Y=X_{7}$. Hence we observe that the inclusion $u\colon X\to Y$ admits

an $(Id, \mathcal{W}_{\sigma}^{E})$ -decomposition.

As is easily shown, we have

Corollary 3.2. Let σ be an infinite cardinal number which is at least equal to the cardinality of E_* . Then $\Sigma_{\sigma}^* \mathcal{W}_{\sigma}^E$ satisfies the condition (C.2).

It is known that \mathcal{W}^E admits a calculus of left fractions in hGC (see [1, Lemma 3.6]). In particular, $\mathcal{W}^E = Id_{\sharp}\mathcal{W}^E_{\sigma}$ satisfies the condition (C.1).

Lemma 3.3. Fix an infinite cardinal number σ . The morphism class $\Sigma_{\bullet}^{\infty}W_{\sigma}^{E}$ admits a calculus of left fractions in hGCWSU. In particular, it satisfies the condition (C.1).

Proof. We only show that $\Sigma_{\sharp}^{\infty} \mathcal{W}_{\sigma}^{E}$ satisfies the condition (C.1) because the remainders are easy. Represent $u: X \to Y$ in $\Sigma_{\sharp}^{\infty} \mathcal{W}_{\sigma}^{E}$ by a transfinite sequence $X = X_{0} \subset X_{1} \subset \cdots \subset X_{s} \subset X_{s+1} \subset \cdots \subset X_{\gamma} = Y$ in GCWSU, where $X_{s} \subset X_{s+1}$ is given by a pushout square as (1.2). Put $V_{t} = Y \times \{0\} \cup X_{t} \wedge I^{+} \cup Y \times \{1\}$ and consider the square

$$\bigvee_{\mathbf{a}} \Sigma^{\infty}(B_{\mathbf{a}} \times \{0\} \cup A_{\mathbf{a}} \wedge I^{+} \cup B_{\mathbf{a}} \times \{1\}) \rightarrow V_{s}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\bigvee_{\mathbf{a}} \Sigma^{\infty}(B_{\mathbf{a}} \wedge I^{+}) \longrightarrow V_{s+1},$$

which is also pushout. The transfinite sequence

$$Y \times \{0\} \cup X \wedge I^+ \cup Y \times \{1\} = V_0 \subset V_1 \subset \cdots \subset V_s \subset V_{s+1} \subset \cdots \subset V_r = Y \wedge I^+$$

gives a $(\Sigma^{\infty}, \mathcal{W}_{\sigma}^{E})$ -decomposition for the inclusion $v: V_{0} \to V_{\gamma}$. Given $f, g: Y \to Z$ such that fu = gu in hGCWSU, there is a map $k: V_{0} \to Z$ with $k \mid Y \times \{0\} = f$ and $k \mid Y \times \{1\} = g$. Take the double mapping cylinder W of v and k, then it follows immediately that the inclusion $w: Z \to W$ has a $(\Sigma^{\infty}, \mathcal{W}_{\sigma}^{E})$ -decomposition and wf = wg in hGCWSU.

Without use of the existence theorem of (E_*, Ω^{∞}) -localization Kuhn [7, Proposition 2.4] proved that $(\mathcal{W}^E, \Omega^{\infty}\Sigma^{\infty})$ satisfies the condition (C.4) in the non-equivariant case. By virtue of [8, Theorem V. 5.6] we can apply the method of Kuhn in the finite groups case to show

Proposition 3.4. Assume that G is a finite group. If a map $f: A \to B$ in GCW is an E_* -equivalence, then so is $\Omega^{\infty}\Sigma^{\infty}f: \Omega^{\infty}\Sigma^{\infty}A \to \Omega^{\infty}\Sigma^{\infty}B$. (Cf., [7] and [5]).

Proposition 3.5. Given a homotopy pushout square

$$Y \xrightarrow{v} Z$$

$$s \downarrow \qquad \downarrow t$$

$$Y' \xrightarrow{v'} Z'$$

in GCWSU such that $\Omega^{\infty}s: \Omega^{\infty}Y \to \Omega^{\infty}Y'$ is an E_* -equivalence, then $\Omega^{\infty}t: \Omega^{\infty}Z \to \Omega^{\infty}Z'$ is an E_* -equivalence, too.

Proof. Let ΣX be the cofiber of $v: Y \rightarrow Z$. Then there is a G-homotopy commutative diagram

$$\Omega^{\infty}X \to \Omega^{\infty}Y \to \Omega^{\infty}Z \to \Omega^{\infty}\Sigma X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Propositions 2.1 and 2.4 assert that the horizontal rows may be regarded as fiber sequences of G-CW complexes. Compare the Atiyah-Hirzebruch spectral sequences (see [6, Theorem 1]). Since the base space $\Omega^{\infty}\Sigma X$ is a G-homotopy commutative H-space and $\pi_0^K(\Omega^{\infty}\Sigma X)$ is an abelian group for each closed subgroup K of G, the result is now easily shown.

Making use of Propositions 3.4 and 3.5 we have

Corollary 3.6. Assume that G is a finite group and fix an infinite cardinal number σ . The morphism class $\Sigma_i^{\infty} W_{\sigma}^{E}$ satisfies the condition (C.3).

Let σ be an infinite cardinal number which is at least equal to the cardinality of E_* . Lemma 3.3 and Corollaries 3.2 and 3.6 say that the morphism class $\Sigma_*^\infty \mathcal{W}_\sigma^E$ satisfies the conditions (C.1), (C.2) and (C.3) when G is finite. So we can apply Proposition 1.4 to show the existence theorem of (E_*, Ω^∞) -localization.

Theorem 3.7. Assume that G is a finite group. Then there exists an (E_*, Ω^{∞}) -localization (L, η) in hGCWSU. (Cf., [4, Theorem 1.1]).

Let $hGCWSU_0$ denote the full subcategory of hGCWSU (consisting of (-1)-connected G-CW spectra. The 0-th space functor Ω^{∞} : $hGCWSU_0 \rightarrow hGCW$ satisfies the assumption in Proposition 1.2. So we get

Corollary 3.8. Assume that G is a finite group. Then there exists an $E_*\Omega^{\infty}$ -localization (L, η) in $hGCWSU_0$. (See [4]).

3.2. Let G be a compact Lie group and \mathcal{F} be a collection of closed subgroups of G which are not conjugate subgroups each other. We partially order a list \mathcal{F} by writing $H \leq K$ if H is subconjugate to K. Let $\mathcal{E}_{\mathcal{F}} = \{E_{K^*}\}_{K \in \mathcal{F}}$ be a family of homology theories defined on $h\mathcal{CWSU}$. A family $\mathcal{E}_{\mathcal{F}}$ is said

to be order preserving if $E_{K^*}X=0$ implies $E_{H^*}X=0$ for each pair $H \leq K$ in \mathcal{F} . Write $\mathcal{W}^{\mathcal{E}_{\mathcal{F}}}$ for the morphism class $\prod_{K \in \mathcal{F}} \mathcal{W}^{E_K}$ in $\prod_{K \in \mathcal{F}} h\mathcal{CW} \mathcal{S} U$.

For each closed subgroup K of G the K-fixed point functor $\phi_K \colon G \mathcal{I} \to \mathcal{I}$ or $G \mathcal{S} \mathcal{A} \to \mathcal{S} \mathcal{A}$ has a left adjoint functor $(G/K)^+ \wedge -$ (see [8, Proposition II. 4.6]). Abbreviate by \mathcal{C} the category $\mathcal{C} \mathcal{W}$ or $\mathcal{C} \mathcal{W} \mathcal{S} \mathcal{U}$ and similarly by $G \mathcal{C}$. The fixed points functor $\phi_{\mathcal{F}} = \prod_{K \in \mathcal{F}} \phi_K \colon G \mathcal{C} \to \prod_{K \in \mathcal{F}} \mathcal{C}$ has a left adjoint $\psi_{\mathcal{F}} \colon \prod_{K \in \mathcal{F}} \mathcal{C} \to G \mathcal{C}$ defined to be $\psi_{\mathcal{F}}(\{X_K\}) = \bigvee_K (G/K)^+ \wedge X_K$. We here show that $(\mathcal{W}^{\mathcal{C}}\mathcal{F}, \phi_{\mathcal{F}}\psi_{\mathcal{F}})$ satisfies the condition (C.4).

Lemma 3.9. Assume that a family $\mathcal{E}_{\mathcal{F}} = \{E_K^*\}$ is order preserving. Given E_{K^*} -equivalences $f_K \colon X_K \to Y_K$ in $h\mathcal{C}$ for all $K \in \mathcal{F}$, then $\phi_H \psi_{\mathcal{F}}(\{f_K\}) \colon (\bigvee_K (G/K)^+ \bigwedge X_K)^H \to (\bigvee_K (G/K)^+ \bigwedge Y_K)^H$ is also an E_{H^*} -equivalence for each $H \in \mathcal{F}$. (Cf., [11, Lemma 2.2]).

Proof. Under the hypothesis on $\mathcal{E}_{\mathcal{F}}$ it follows that $1 \wedge f_K : (G/K)^{H+} \wedge X_K \rightarrow (G/K)^{H+} \wedge Y_K$ is an E_{H*} -equivalence since $(G/K)^H = \phi$ unless $H \leq K$.

Let $\mathcal{E}_{\mathcal{F}} = \{E_{K^*}\}$ be an order preserving family and σ be an infinite cardinal number which is at least equal to the cardinality of $\bigoplus_{K \in \mathcal{F}} E_{K^*}$. By similar arguments to Lemma 3.3 and Corollaries 3.2 and 3.6 involving Lemma 3.9 we easily verify that $\psi_{\mathcal{F}_{\pi}^*} \mathcal{W}_{\sigma}^{\mathcal{E}_{\mathcal{F}}}$ in $hG\mathcal{C}$ satisfies the conditions (C.1), (C.2) and (C.3). Applying Proposition 1.4 we obtain

Theorem 3.10. Let G be a compact Lie group and $\mathcal{E}_{\mathfrak{F}} = \{E_{K^*}\}$ be a family of homology theories defined on hCWSU. Assume that $\mathcal{E}_{\mathfrak{F}}$ is order preserving. Then there exists an $(\mathcal{E}_{\mathfrak{F}}, \phi_{\mathfrak{F}})$ -localization (L, η) in hGCW or in hGCWSU where $\phi_{\mathfrak{F}} = \prod_{K \in \mathfrak{F}} \phi_K$ denotes the fixed points functor.

If a list \mathcal{F} contains precisely one subgroup from every conjugacy class of closed subgroups of G, then it is said to be *complete*. As is well known, the fixed points functor $\phi_{\mathcal{F}}$ satisfies the assumption in Proposition 1.2 when \mathcal{F} is complete. Hence we have

Corollary 3.11. Assume that a list \mathcal{F} is complete and a family $\mathcal{E}_{\mathcal{F}} = \{E_{K^*}\}$ is order preserving. Then there exists an $\mathcal{E}_{\mathcal{F}}\phi_{\mathcal{F}}$ -localization (L, η) in hGCW or in hGCWSU. (Cf., [12], Theorem 2.1]).

References

[1] A.K. Bousfield: The localization of spaces with respect to homology, Topology 14 (1975), 133-150.

- [2] A.K. Bousfield: The Boolean algebra of spectra, Comment. Math. Helv. 54 (1979), 368-377.
- [3] A.K. Bousfield: The localization of spectra with respect to homology, Topology 18 (1979), 257-281.
- [4] A.K. Bousfield: K-localizations and K-equivalences of infinite loop spaces, Proc. London Math. Soc. 44 (1982), 291-311.
- [5] A.K. Bousfield: On homology equivalences and homological localizations of spaces, Amer. J. Math. 104 (1982), 1025-1042.
- [6] A. Dold: Relations between ordinary and extraordinary homology, Colloq. on algebraic topology, Aarhus Univ., 1962, 2-9.
- [7] N.J. Kuhn: Suspension spectra and homology equivalences, Trans. Amer. Math. Soc. 283 (1984), 303-313.
- [8] G. Lewis, J.P. May, J. McClure and M. Steinberger: Equivariant stable homotopy, Lecture Notes in Math., Springer, to appear.
- [9] J.P. May: The geometry of iterated loop spaces, Lecture Notes in Math. no. 271, Springer, 1972.
- [10] E. Spanier: Secondary operations on mappings and cohomology, Ann. of Math. 75 (1962), 260-282.
- [11] Z. Yosimura: Localization of Eilenberg-MacLane G-spaces with respect to homology theory, Osaka J. Math. 20 (1983), 521-537.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan