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0. Introduction

We shall study smooth actions of symplectic group Sp(n) on a closed ori-
entable manifold X such that X~ P, (H)X P,(H), under the conditions: a-b
<2n—2 and n=7. Our result is stated in §2 and proved in §5. Typical
examples are given in §1. Similar result on smooth actions of special unitary
group SU(n) on a closed orientable manifold X such that X~P,(C)X P,(C)
is stated in the final section.

Throughout this paper, let H*( ) denote the singular cohomology theory
with rational coefficients, and let P,(H), P,(C) and P,(R) denote the quaternion,
complex and real projective n-space, respectively. By X~X’, we mean that
H*(X)=H*(X") as graded algebras.

1. Typical examples

1.1. We regard S*-! as the unit sphere of the quaternion k-space H*
with the right scalar multiplication. Let Y be a compact Sp(1) manifold.
By the diagonal action, Sp(1l) acts fieely on the product manifold S#!x Y.
Here we consider the cohomology ring of the orbit manifold (S*~'x Y)/Sp(1)
for the case Y~P,(H).

Consider the fibration: Y —(S*'x Y)/Sp(1)— P,_,(H). By the Leray—
Hirsch theorem, H*((S*"'x Y)/Sp(1)) is freely generated by 1, u, u? ---, u®
as an H*(P,_,(H)) module for an element v H*(S*'x Y)/Sp(1)). If u can
be so chosen as u**'=0, then we see that (S*~'XY)/Sp(1)~P,_,(H)X P,(H).

Lemma 1.1. Denote by F, the fixed point set of the restricted U(1) action
on'Y. If F~PyC), then (S* ' X Y)/[Sp(1)~P,_,(H) X P,(H).

Proof. Consider the fibration: Y —(S* !X Y)/U(1)— Py_,(C). We see
that H*((S*~'x Y)/U(1)) is freely generated by 1, v, 27, +--, v® as an H*(P,,_,(C))
module for an element veH*((S*'x Y)/U(1)). We shall show first that
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v can be so chosen as **'=0. We regard S~ as the inductive limit of S*¥-?
on which U(1) acts naturally. Consider the following commutative diagram:

H¥(S=X V) U()-> H¥(S%~x V)/U(1))
o X *
H*(P.(C)XF) —ﬁ% H*(Py-(C)X F)

where i, 1., j, jr are natural inclusions. Since H°%(Y)=0, we see that i* is
injective [4] and j* is surjective. Let v, be an element of H*(S>x Y)/U(1))
such that j*(v.)=v. Let x be the canonical generator of H*(P.(C))=H*P,,_,
(€)). Then we can express

1%5(v.) = X fr+a X fi+1Xf,

where f,€ H*(F) for r=0, 1,2. Since F~P,(C), we see that there are rational
numbers a,, a;, a; and a non-zero element y H*(F), such that f,=a,y" for
r=0, 1, 2. Then we obtain

*(V0—a@?)™ = (xXfiH1X ) =0,

Since #* is injective, we obtain (v.—a?)**'=0. Put v;=j*(v.—a¥?). Then
23+1=0, and hence

HX(S*'X Y)[U(1)) = Q[x, v,]/(+*, v1*"); deg x=2, deg v;=4.

Consider next the following commutative diagram:
S — ($**x VUM £ (841 x Visa()

q
Sp(1)/U(1) —— Pyu(C) ——> Py (H).
Let tHYP,_,(H)) be the canonical generator such that ¢*(#)=«’. There
exist rational numbers A, g such that p*(u)=rv,4pux*. Put u;=u—put. Then
p*(w,)=xv,, and hence p*(u;)’*'=0. Since the homomorphism p*: H*((S*"*
x ¥)/Sp(1)) = H*((S*~'x Y)/U(1)) is injective, we obtain u{*'=0, and hence

H¥(S*'% ¥)/Sp(1) = QIt, 1] /(#, ut*"); deg t=degu,—4.
Thus we obtain (S%~!'X Y)/Sp(1)~P,_,(H) X Py(H). q.e.d.
1.2. We give here examples of a closed orientable Sp(1) manifold Y

such that Y~P,(H) and F~P,(C), where F denotes the fixed point set of the

restricted U(1) action on Y. ‘
Consider the Sp(1) action on P,(H)=S**%/Sp(1) by the left scalar multi-
plication. Then the fixed point set of the restricted U(1) action is naturally
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diffeomorphic to P,(C), the fixed point set of the Sp(1) action is naturally diffeo-
morphic to P;(R), and the isotropy representation at each fixed point of the
Sp(1) action is equivalent to bpP6*, where 5 denotes the canonical 3-dimen-
sional real representation of Sp(1), bn denotes the b-fold direct sum of 5, and §°
is the trivial representation of degree b.

Let D% denote the unit disk of the representation space by. Let W be
a (b+1)-dimensional compact orientable smooth manifold which is rationally
acyclic. Then the boundary 8(D* X W) is a 4b-dimensional compact orientable
smooth Sp(1) manifold which is a rational homology sphere, and the isotropy
representation at each fixed point of the Sp(1) action is equivalent to bn6°.
Hence we can construct an equivariant connected sum

Y(W) = P,(H) $3(D¥x W).

Denote by F(W) the fixed point set of the restricted U(1) action on Y(W).
Then F(W) is naturally diffeomorphic to P,(C)#0(D*x W). It is easy to
see that

Y(W)~P,(H), F(W)~Py(C).

1.3. Let ¢ be a quaternion k-plane bundle and &, its complexification
under the restriction of the filed. Its i-th symplectic Pontrjagin class e,($)
is by definition [2, §9.6]

&) = (—1)i¢'zi(Cc) ’

where ¢,(§¢) is the 2i-th Chern class. Denote by P({) the total space of the
associated quaternion projective space bundle. Let ¢ be the canonical quater-
nion line bundle over P({) and put t=e¢,(). It is known that there is an iso-
morphism:

(1.3) H*(P(£)) = H*(B) [1]] (Xi-0es-i5)E) ,

where B is the base space of the bundle § (cf. [3, §3]).

Let £ be the canonical quaternion line bundle over P,(H) and &* its dual
line bundle. Let W be a 4b-dimensional closed orientable smooth manifold
and let f: W— P,(H) be a smooth mapping such that f*: H*(P,(H))=H*(W).
Let ¢ be a non-negative integer such that b<c+1. Then, there is a quaternion
(c+1)-plane bundle & over W such that

(n+c+1)f*E* = DOy,

where 0% is a trivial quaternion n-plane bundle. Put X=P((n+c+1)f*¥£¥).
Since X is diffeomorphic to 8(D(§)x D**)/Sp(1), we can act Sp(n) on X in order
that the fixed point set is diffeomorphic to P({). We see that by (1.3)
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H*(X) o~ Q[u, v]/(un+c+l’ 7)b-l"l) ,
H*(P(})) = Q[t, v]/(v**, Xt (— 1)¢<n+l€+ 1) t+1-igf) |

where v=f*e,(£), t=e(f) and u+tv is the first symplectic Pontrjagin class of
the canonical line bundle over P((n-+c+1)f*£*).

2. Classification theorems

We shall prove the following results in this paper.

Theorem 2.1. Let X be a closed orientable manifold on which Sp(n) acts
smoothly and non-trivially. Suppose X ~P,(H)X Py(H); a=b=1, a+b<2n—2
and n=7. Then there are four cases:

(0) a=n—1and X=P, (H)XY,, where Y, is a closed orientable manifold
such that Yy~Py(H), and Sp(n) acts naturally on P,_,(H) and trivially on Y,

- (i) a=n—1 and X=(S*""'XxY,)/Sp(1), where Y, is a closed orientable
Sp(1) manifold such that Y,~Py(H), Sp(1) acts as right scalar multiplication
on S*\, the unit sphere of H", and Sp(n) acts naturally on S**~* and trivially on Y,.
In addition, the fixed point set of the restricted U(1) action on Y, is ~P,(C),

(ii) a=b=n—1and X=P,_ (H)XP,_,(H) with the diagonal Sp(n) action,

(i) a=n and X=3(D*"XY,)/Sp(l), where Y, is a compact orientable
Sp(1) manifold such that dim Y,=4(a+b+1—n) and Y,~P,(H), Sp(l) acts
as right scalar multiplication on D**, the unit disk of H", and Sp(n) acts naturally
on D** and trivially on Y,. In addition, the Sp(1) action on the boundary 3Y,
is free and the fixed point set of the restricted U(1) action on Y, is ~P;(C) or ~P,
(H).

Remark. By X=X’ we mean that X is equivariantly diffeomorphic to
X' as Sp(n) manifolds. In the case (iii), the fixed point set of the Sp(n) action
on X is naturally diffeomorphic to the orbit manifold 8Y,/Sp(1).

Theorem 2.2. In the case (iii) of Theorem 2.1, the cohomology ring H*
(8Y,/Sp(1)) is isomorphic to one of the following:

(1) @ 21/ 3,
(2) QL% 31/(*, Theo(— 1 (“ T )aerriyh); b=t 1-m,

where deg x=deg y=4, and x is the Euler class of the principal Sp(1) bundle 0Y,
—9Y,/Sp(1).

RemArRk. The Sp(n) action given in §1.3 is an example of the case (iii)-
(2). Lemma 1.1 assures that a converse of Theorem 2.1 (i) is true.



AcTIONS OF SYMPLECTIC GROUPS 777

3. Cohomology of certain homogeneous spaces

Here we consider the cohomology of V,,/G=8p(n)/Sp(n—2)xG for
certain closed subgroups G of Sp(2). Let £ be the canonical quaternion line
bundle over P,_,(H) and ¢ its orthogonal complement, that is, { is a quaternion
(n—1)-plane bundle over P,_,(H) such that its total space is

E®) = {(u, [¢]))EH"X P,_(H): ulv} .

It is easy to see that the total space P() of the associated quaternion projective

space bundle is naturally diffeomorphic to V,,/Sp(1)xSp(1). Since EDE

is a trivial bundle, we obtain ¢,(§)=(—1)*,(£)*. By definition, P({) is naturally

identified with a subspace of P,_,(H) X P,_,(H). Leti: P({)—P,_ (H)xX P,_,(H)

be the inclusion. Put {=:*(£*x1). Then by (1.3) there is an isomorphism:
(3.1)  HXV,./Sp(1)xSp(1)) = Q[x, y]/ (=", Zix'y"),

deg x=deg y=4, by the identification x=7*(1xXe(&)) and y=i*(e,(¥) X 1).
Let p: V,,/Sp(1)xSp(1)—V,,/Sp(2) be the natural projection and &,
the standard quaternion 2-plane bundle over V, ,/Sp(2).

Lemma 3.2. The graded algebra H*(V,,/Sp(2)) is generated by e(£,),
e)&,). The algebra is isomorphic to the subalgebra of Q[x, y]/(x", 2 y"'7%),
consisting of symmetric polynomials.

Proof. Since the fibration p is a 4-sphere bundle and H*¥(V, ,/Sp(2))
=0 (cf. [1, §26]), the homomorphism p*: H¥(V, ,/Sp(2)) = H*(V,./Sp(1) X
Sp(1)) is injective. Since p*(&,)=:*(& X £), we obtain
pre(E,) = i*e(EXE) = xty,
prefE,) = i*e(EXE) = xy.
Then the desired result is obtained by the Leray-Hirsch theorem. q.e.d.
Corollary 3.3. ¢/(£,)"*==0 and e,(£,)*3=0.

Proof. Put I=(x", 2);x'y*1~%). It is easy to see that y"€I. In the
quotient ring Q[x, y]/I, we obtain

(x+y)2n—4 — (2”—4) xn—lyn—3+ (ZZ:;') xn—zyn—2+ (ZZ:?) xn—-ayn—-l

n—1
2n—4 2n—4A4\\ -2
={(52) -G,
and hence ¢,(£,)" *=%0. We obtain ¢,(£,)*3=0 similarly. q.e.d.

4. Preliminary results

First we state the following two lemmas which are proved by a standard
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method (cf. [5, §5]).

Lemma 4.1. Suppose n=7. Let G be a closed connected proper subgroup
of Sp(n) such that dim Sp(n)|G<8n. Then G coincides with Sp(n—i)X K
(1=1,2,3) up to an inner automorphism of Sp(n), where K is a closed connected
subgroup of Sp(i).

Lemma 4.2. Suppose r=5 and k<<8r. Then an orthogonal non-trivial
representation of Sp(r) of degree k is equivalent to (v,) gD 0* . Here (v,)g: Sp(r)
—O(4r) is the canonical inclusion, and ' is the trivial representation of degree t.

In the following, let X be a closed connected orientable manifold with
a non-trivial smooth Sp(n) action, and suppose =7 and dim X<8n. Put

F, = {»€X: Sp(n—i)CSp(n),CSp(n—i) X Sp(i)}
Xoy=8Spm)F, = {gx: g=Sp(n), x€F} .

Here Sp(n), denotes the isotropy group at x. Then, by Lemma 4.1, we obtain
X=XpUXyUXepUXeq.

Proposition 4.3. If X, is non-empty, then X,y is empty for each i=k+-2.

Proof. Let us denote by F(Sp(n—j), X(») the fixed point set of the re-
stricted Sp(n—j) action on X;). It is easy to see that the set is empty for each
j<i=<m—i. Suppose that X, is non-empty and fix x& F,). Let o be the slice
representation at x. Then the restriction o |Sp(n—&) is trivial or equivalent to
(s-1)rPO* by Lemma 4.2. Anyhow, a principal isotropy group of the given
action contains Sp(n—k—1), and hence F(Sp(n—k—1), X(;,) is non-empty
if so is X(;). q.e.d.

Propositior 4.4. Suppose X=XuyU X If Xw and X4y are non-
empty, then the codimension of each connected component of Fy in X is equal to

4(k+1) (n—F).

Proof. Fix xF. Let o and p denote the slice representation at x
and the isotropy representation of the orbit Sp(n)x, respectively. The restric-
tion o |Sp(n—k) is equivalent to (v,-;)zP0° by Lemma 4.2 and the assumption
that X4, is non-empty. On the other hand, p|Sp(n—k) is equivalent to
k(v,_1)rDE' by considering adjoint representations. Hence (c@p)|Sp(n—Fk)
is equivalent to (k+1) (v,_,)gP 6. This shows that the codimension of Fy,
at x is equal to 4(k+1) (n—k). q.e.d.

Corollary 4.5. Suppose X=X U X5). Then either Xy or X is empty.
ReMARK. dim Sp(n)/Sp(n—k) X Sp(k)=4k(n—k) and X(Sp(n)/Sp(n—Fk)
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X Sp(k))= (Z), where X( ) denotes the Euler characteristic, and (Z) denotes

the binomial coefficient.

5. Proof of the classification theorems

Throughout this section, suppose that X is a closed orientable manifold
with a non-trivial smooth Sp(#) action such that

* H*(X) = Q[u, v]/ (1", v**"); degu=degv=4.

Moreover, suppose that n=7, 1<b=<a and a+b=<2n—2. By arguments and
notations in the preceding section, we see that X=X,y U X, for k=0, 1, 2.

5.1. We shall show first that X=X, UXy. Suppose X=X U X(.
Then X=X or X=X by Corollary 4.5. Looking at the Euler charac-
teristic of X, we see that X == X{,).

Suppose X=X(;. Then X=(V,,XF()/Sp(2). Here we consider the
following commutative diagram of natural projections:

(VoaX Fo)|T —L5 ¥, T

q
X = (V2 xFo)Sp2) 2 V,,/Sp(2),

where T is a maximal torus of Sp(2). Since X(F(»)+0, we see that the re-
stricted T action on F(, has a fixed point, and hence the projection p, has a
cross-section. Therefore p¥: H¥(V, ,/T)— H*((V,.X F)/T) is injective. On
the other hand, ¢*: H*(V, ,/Sp(2))— H*(V,,/T) is injective, because H*%(V, ,/
Sp(2))=H*%YSp(2)/T)=0 (cf. [1, §26]). Consequently, we see that p*: H*(V, ,/
Sp(2))— H*(X) is injective. In particular, we obtain a+5b=>2n—4. If a+b=
2n—4, then X=V,,/Sp(2). Because rank H*X)=2 and rank H*V, ,/Sp(2))
=1, we get a contradiction.

Syppose a+b=2n—3, and put p*e,(&,)=au+Bv; a, BEQ. Since e,(&,)*"?
=0 by Corollary 3.3, we obtain

0 = p¥e (&)’ = (‘”a‘b) (aw)*(Bv)°,

and hence 8=0. On the other hand, ¢,(£,)***<0 by Corollary 3.3, and hence
p*e(E)"*+0. Thus we obtain a=2n—4. Looking at the Euler character-
istic of F(,, we get a contradiction.

5.2. We consider now the case X=X, UX(,. Suppose that both X,
and X, are non-empty. We see that codim F(;,=8r—8 by Proposition 4.4.
Since dim X <8n—8, we obtain dim F(;,=0 and a-+4-b=2n—2.
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Fix x€F(. Since X, is non-empty, we see that the slice representation
o at x is equivalent to v,_,Q gv¥ or (v,-,)gr by Lemma 4.2, where = is a natural
projection of Sp(n—1)xSp(l) onto Sp(n—1). Then the principal isotropy
group is of the form Sp(n—2)x K, where K=ASp(1) (resp. 1xSp(1)) for
o=0,_1Qgv¥ (resp. o=(v,-;)gz). Here ASp(1l) (resp. 1xSp(1)) is a closed

subgroup of Sp(2) consisting of the matrices of the form <g 2) (resp. (é 2))

Anyhow, we see that the Sp(n) action on X has a codimension one orbit, and
hence X is a union of closed invariant tubular neighborhoods of just two non-
principal orbits (cf. [6]). We already see that one of the non-principal orbits
is P,_,(H). Looking at the Euler characteristic of X, we see that a=b=n—1
and another non-principal orbit is V, ,/Sp(1) X Sp(1).

Suppose K=1x8Sp(1). Then the normalizer of the principal isotropy
group is connected, and hence such an Sp(n) manifold is unique up to equivari-
ant diffeomorphism (cf. [6, §5.3]). On the other hand, the product manifold
P, (H)XP,_,(H) with the diagonal Sp(n) action is such one. Therefore X is
equivariantly diffeomorphic to P,_,(H)X P,_,(H) with the diagonal Sp(#) action.

Suppose next K=ASp(1). Then the normalizer of the principal isotropy
group has just two connected components, and its generator corresponds to
the antipodal involution of the slice representation at a point of ¥, ,/Sp(1)
X 8p(1). Hence such an Sp(n) manifold is unique up to equivariant diffeo-
morphism (cf. [6, §5.3]). Here we construct such one. Let & be the canon-
ical quaternion line bundle over P,_,(H) and ¢ its orthogonal complement (see
§3). Then Sp(n) acts naturally on the total space E({) as the bundle mappings.
Denote by @} a trivial quaternion line bundle. We see that the Sp(n) action
on the total space P({@0}) of the associated quaternion projective space bundle
is the desired one. On the other hand, we see that by (1.3)

H*(P(£D0y) =Q[x, y]/(x", 2;x'y"~); deg x=degy=4.

Hence the cohomology ring of P({@0}) is not isomorphic to that of P,_,(H)
X P, n—l(H )‘

5.3. We consider next the case X=X, U X(, for ¢<<n. We shall show
first that X, is empty.

Suppose that X, is non-empty. Let U be an invariant closed tubular
neighborhood of X, in X, and put E=X—intU. Put W=ENF;. Then
W is a compact connected orientable manifold with non-empty boundary aW,

and Sp(l) acts naturally on W. Since there is a natural diffeomorphism
E=(S*""'x W)/Sp(1), we obtain

dim W = 4(a+b+1—n) = 4k, k<b=Za<n.
Let i: E— X be the inclusion. Then *: HY(X)— H!(E) is an isomorphism
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for each #<4n—2, because the codimension of each connected component of
X is 4n by Lemma 4.2. By the Gysin sequence of the principal Sp(1) bundle
S IXW—E and the cohomology ring of X, we obtain rank H*(W)—rank
H*"Y(W)=1. On the other hand, we see that H*(W)=H,,(W)=0 and rank
H*-Y(W)=0; this is a contradiction. Thus we see that X, is empty.

Consequently, we obtain X=X,,=(S*"'X F,,)/Sp(1). Put Y=F,;. We
see that

dim Y = 4(a+b+1—n) = 4k, k=b<a<n=a+b.

We shall show next that a=n—1 and Y ~P,(H).
By the Gysin sequence of the principal Sp(1) bundle p: S**"'x Y —X,
we obtain H**!(S*~1x YV)=H*"%S*!x Y)=0 and an exact sequence:

F
0— H4i—I(S4n—l>< Y)— H“"(X) f’) L{h‘(){)g> H4(S*"1xY)—0

for any 7, where p is the multiplication by e,(p), the first symplectic Pontrjagin
class of the quaternion line bundle associated with the Sp(1) bundle p. We
can represent p*u=1xu,, p*v=1xv, for u, v,€HYY). Then we see that
H*¥(Y)=0 and H*(Y) is generated by at most two elements u;, v;, We can
represent e (p)=au+Bv; a, Q. By definition, the Sp(1) bundle p is a
pull-back of a bundle over P,_,(H), and hence e(p)"=0. Since n=<a-+b, we
see that @B@=0. Suppose ¢,(p)=0. Then p* is injective, and hence 1xuio}
#0. Thus we get a contradiction. Therefore we see that e,(p)=au (a=0)
or ¢(p)=RBv (B=+0), and hence u,=0 or v,=0, respectively. Looking at the
Euler characteristic of X we see that a=n—1 and Y ~P,(H).

When b<n—1, we see that e(p)=au (¢+0) and H*(Y)=Q[v,]/(v}*").
When b=n—1, interchanging # and v if necessary we can assume that ¢(p)
=au (a#%0) and H*(Y)=Q[v,]/(v}). It remains to consider the Sp(1) action
on Y=F;. We shall show that either F~P,(C) or the Sp(l) action on Y
is trivial, where F denotes the fixed point set of the restricted U(1) action on Y.

Put w==*(v), where = is a natural projection of (S**~'Xx Y)/U(1) onto
X=(S*""'xY)/Sp(1). Consider the fibration: Y — (S* !X Y)/U(1)— P,,-,(C).
We see that w'*'=0 and H*((S**~'x Y)/U(1)) is freely generated by 1, w, @,
-+, w® as an H*(P,,_,(C)) module. Consider next the following commutative
diagram:

H'((S*x Y)[U(1)) L H'((S*" ><1Y)/U(1))
i* . i*
J¥

H'(P.(C)XF) ——> H'(Py,,(C)xF)

where i, i., j, jr are natural inclusions.Since H°¥(Y)=0, we see that [4] %
is injective for each r and surjective for each »>>4b and j* is surjective. Let
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w. be an element of H(S=x Y)/U(1)) such that j*(w.)=w. Let x be the
canonical generator of H%(P.(C))=H*(P,,_,(C)). Then we can express

i¥(w.) = X fotx X fi-+1Xf,

where f,€ H*(F) for t=0, 1, 2. It is known that [4] F,~P,(C) or Fy~P,(H)
(0=<d<b) for each connected component F, of F. We shall show that F is
connected.

Consider first the case b<<n—1. We see that i¥(w..)=xXf,+1Xf,, that is,
fo=0 by the relation (¥*Xfy+xXfi+1Xxf)"*"'=0 in H***(P,,_,(C)x F). Con-
sequently, we can show that if F is not connected then i¥(w%)=0 and hence
w?=0; this is a contradiction.

Consider next the case b=n—1. Since j*(wl)=w"=0, we see that .
=vx* for some YEQ, and hence ¥(wi)=x"x7. Suppose v=0. Then
fo=0, and hence we can show that F is connected by the same argument as
above. Suppose next ¥==0. We shall show that i¥(w..)=a?Xf;, thatis f,=0
and f,=0. For any connected component F; of F, we have an equation

(xzxft)lFo+fo1|Fo‘|‘1szIFo)” = ¥ XY

in H*(P.(C)x F,). Then we see that (f,|F,)"=v=+0 and f,| Fy=0 for t=1, 2.
Thus we obtain #%(w..)=x*xf, and fi=v. Let F, (resp. F,) be the union
of connected components F, of F on which f|F, is positive (resp. negative).
Since f3=", we can regard f,|F, and f,| F, as constant rational numbers. Then
each element of H'(P.(C)X F,) for r=4n is expressed as a polynomial of xx 1
with rational coefficients for s=1,2 because H*((S”X Y)/U(1)) is generated
by an element w.. as a graded H*(P..(C)) algebra and #¥ is surjective for » =4n.
Then we see that F, (s=1, 2) consists of just one point, and hence F consists
of at most two points. This is a contradiction to the fact: X(F)=X(Y)=n=7.

Anyhow we see that F is connected, and hence F~P,(C) or F~P,(H).
The Sp(1) action on Y 1s trivial for the latter case.

5.4. Finally, we consider the case X=X ,yUX(y for a=n. We shall
show first that X, is non-empty.

Suppose that X, is empty. Then X=X ,=(S*"'xF)/Sp(l). By
the Gysin sequence of the principal Sp(1) bundle S* !X F;,— X, we see that
Fy~Py(H). Looking at the Euler characteristic of the fibration: F¢)—X
— P,_,(H) we obtain a=n—1; this is a contradiction.

Consequently, we see that (cf. [8]) there is an equivariant decomposition
X=08(D*"x Y)/Sp(l), where Y is a compact connected orientable manifold
with a smooth Sp(1) action, and Y has a non-empty boundary 9Y on which
the Sp(1) action is free. We see that

dim Y = 4(a+b+1—n)
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and the fixed point set of the Sp(n) action on X is naturally diffeomorphic to
the orbit manifold 9Y/Sp(1). Moreover, we see that there is a natural de-
composition X=X, U X,, where

X, = (S*'x Y)/Sp(1) and X, = (D*x3Y)/Sp(1).

Put X,=X, N X,=(S*"'x8Y)/Sp(1).

Let z: 3(D*x Y)— X be the projection of the principal Sp(l) bundle.
Denote by 7z, the projection of the restricted principal Sp(l) bundle over X,.
Let j,: X;— X and 7;: X,— X, be inclusions. Put u,=j¥(u) and v,=j¥(v).
We can express

e(z) = au+pv; a, BEQ,
where e(r) is the Euler class of the principal Sp(1) bundle z. Then we obtain
e(n;) = j¥e(n) = au,+Bo,.

Since H'(X, X,)=~H'(X,, X,)=H"*(0Y/Sp(1)) for each r, we obtain
an isomorphism j¥: H'(X)=H'(X,) for each r<4n—2. Because Y is a com-
pact connected manifold with non-empty boundary and dim Y <4n—4, we see
that z¥(ui~')=0 and hence u}'=ux'e(r,) for some x'€H*"3X,). Then
u* '=uxe(r) for some x=H* %X) by the isomorphism j¥. In particular
we see that =0 in the expression: e(z)=au+Bv. Looking at the isomor-
phism j§¥ and the Gysin sequence of the principal Sp(1) bundle =, we see
that 7¥(2})=+0 and the algebra H®(S*!xY) is generated by =¥v,. Hence
we obtain Y~P,(H). In addition, we see that X,~P,_,(H)X P,(H) by the
fibration: Y- X,—P,_,(H).

Since b<n—2, by the same argument as in the second half of §5.3, we
see that F~P,(C) or F~P,(H), where F denotes the fixed point set of the
restricted U(1) action on Y.

Here we complete the proof of Theorem 2.1.

RemarRk. The case o830 in the expression e(z)=au-+Bv occurs only
when b=<a-1-—n, because

(e(m)—Boy)*™ = (aw)** = 0
in H*(X,)=QJe(m,), vi]/(e(m1)", ‘U’l’“).

5.5. In the following, we consider the cohomology of 8Y/Sp(1). Regard-
ing au and Bv as new # and v if necessary, we can assume that e(z)=u if 8=0
and e(r)=u-+tv if B=40.

Since the algebra H*(X)) is generated by e(z,) and v,, we obtain an short
exact sequence:
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k¥ J¥
0 — H*(X, X,) > H*X)D> H*(X,) > 0.

Moreover, we see that the kernel of j¥ is an ideal generated by e(z)”, that is,
ker j¥=H*(X)e(z)". Let reH*(X, X,) be an element such that k¥(7)=e(z)".
Then H*(X, X)) is generated by 7 as an H*(X) module, that is, H*(X, X))
=H*X)r.

Let j*: H*(X, X,)=H*(X,, X,) be an excision isomorphism. Denote
by te H"(X,, X,) the Thom class of the quaternion n-plane bundle over 8Y/
Sp(1). Then j*(r)=»\t for non-zero AEQ. Since j*(wt)=jF(w)j*(7)=nsF(w)t
for each we H*(X), we see that j¥: H*(X)— H*(X,) is surjective. In addition,
J¥(w)=0 if and only if e(z)"w=0 for weH*(X). Then we can show that
{j¥(w*?); 0= p<a—n, 0<¢=b} are linearly independent in the graded module
H*(X,)=H*(X)/ker j¥. On the other hand, we obtain

rank H*(X,) = rank H*(X)—rank H*(X,) = (a+1—n) (b+1).

Therefore the set {wfv; 0<p<a—n, 0<¢=<b} is an additive base of the
graded module H*(X,).

Suppose first e(z)=u, i.e. 8=0. Then j¥u* **')=0, and hence H*(X))
=Q[u,, v,]/(u5™"*", v3*'). Therefore dY/Sp(1)~P,_,(H)X P,(H).

Suppose next that b<a+1—n and e(z)=u+v, i.e. B+0. We see that

e(n)"ELo(—1)‘(‘1—1}71)(1;—}—7))““‘”"‘7)‘ = ((u+v)—20)**' =0,
hence we obtain
H*(0Y/Sp(1))=H*(X,)=Q[x, y]/(»**, Lo(_l)i(a'{ljl)xaﬂ—n—iyi) ,

where x=u,+v, and y=uv,.
Here we complete the proof of Theorem 2.2.

6. Construction

We regard D** as the unit disk of the quaternion n-space H" with the right
scalar multiplication and the left Sp(n) action. Let Y be a compact oritentable
smooth Sp(1) manifold such that the Sp(1) action is free on the non-empty
boundary 8Y. By the diagonal action, Sp(l) acts freely on the boundary
d(D*"xY). Here we consider the cohomology ring of the orbit manifold
X=0(D*"x Y)/Sp(1) on which Sp(n) acts naturally.

Suppose that dim Y=4d+4, Y~P,(H), 1=b<d=<n—2, and F~P,(C) or
F~P,(H), where F denotes the fixed point set of the restricted U(1) action
on Y. Moreover suppose that *: H*(Y)=H*@Y), where ¢ is an inclusion.
Put ¢c=d—b. In addition, we suppose that the graded algebra H*(0Y/Sp(1))
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is isomorphic to one of the following:

(1) @51/, 5,
@ Qw3 (0*, Do (— 1 (T ety b=t 1,

where deg x=deg y=4, and «x is the Euler class of the principal Sp(1) bundle
0Y—0aY/Sp(1).

Put X,=(S*""'x Y)/Sp(1), X,=(D**x0Y)/Sp(1) and X,=X, N X,=(S**
x8Y)/Sp(1). Then X=X,UX,. Let z: 8(D*xY)—X be the projection
of the principal Sp(1) bundle. Let us denote by 7, the projection of the re-
stricted principal Sp(1) bundle over X,. Let j;: X,—»X and 7,;: X,—X be
the inclusions. Let p: X,—8Y/Sp(l) be the natural projection of 4n-disk
bundle, and put p,=p| X,: X;—0Y/Sp(1).

Since d=<n—2, we see that H*(X,) is freely generated by 1, ¢ as an H*
(0Y/Sp(1)) module for an element o€ H* (X)) and ¥: H¥(X,)— H*(X,) is
injective. Put x,=pF(x), yo=pF(y), x,=p*(x) and y,=p*(y). Then x,=e(x,)
and x,=e(r,), the Euler classes of the principal Sp(1) bundles.

By the fibration: Y—X,—P,_(H) and the assumption that F~ P,;(C) or
F~PyH) and Y~P,(H), we see that by Lemma 1.1,

H*(X,) = Q[xy, y1]/(#1, ¥1*"); deg », = degy, = 4,

where x,=e(z,), the Euler class of the principal Sp(1) bundle.
Consider the Mayer—Vietoris sequence of a triad (X; X, X,):

xS oL mx)erx) S rx) S

where j*(a)=(j¥(a), j¥(a)) and 1*(b,, b,)=1i¥(b,)—1F(b,). We see that H'(X)=0
for each 7340 (mod 4) and there is the following short exact sequence for each
k:

A¥* J¥
* 0— H*Y(X,) > H*(X)=> H*X,)—0.
Notice that dim X=4(n+d) and
**) j¥: H%(X)= H*(X,) for k<n.

Let u, v be elements of H%X) such that j¥(u)=x, j¥(v)=y,. We see that
u=e(r), the Euler class of the principal Sp(1) bundle. Moreover, we see
that ©**'=0 by (**) and the assumption 5<n—2. Since j¥(u"'2%)%0, there
is an element 2 H***(X) such that u""'9°2=0, by the Poincaré duality. Then
we see that #"*°0’+0, by (**) and the fact v**'=0. In particular, we obtain
#"+0. Looking at the exact sequence (*), we can assume that #"=A*(g).

We can express i (y;)=Ax+uY,; A, #EQ. Since z¥(y,)+0, we see that
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r=+0 by the assumption ¢*: H{(Y)=H*0Y). Then
A¥(oxbyl) = p~ U (v—ru)’

because A*(gj§(w))=A%(c)w for each weH*(X). Looking at the exact se-
quence (*), we see that the graded algebra H*(X) is generated by two elements
u, v and rank H*(X)=(n+c+1) (b+1).

In the expression #f(y,)=Axy+py, if A=0 then we see that u"***'=0
in the case (1) and (#—p"'0)****'=0 in the case (2), and hence X~P,  (H)X
P,(H).

Since if: H*(X,)— H*(X,) is injective, we see that j¥(v)=\x,+puy,
and hence (Ax;+puy,)"*'=0. Then we obtain A=0 in the case (1), because
H¥(X,)=Q[x, ]/ (x"", 347,

Next we consider the case (2). We obtain a relation

('Yx2+y2)b+161 — (ygu, ?-o(—l)‘("_‘_g"'_l)x;*“‘yi) ,

where y=Ap"'. We see that y=0 for the case b<<c or b=c=2. Suppose
b=c+1. Looking at the relation (vx,+y,)°** I, we obtain v=0 or

@ () (e (M)
—(c+2) (w)"-l(”‘,!;flrl) —0

for each k=2, 3, -+, c+1. Suppose Y40 and c=2. Then we get a contradic-
tion from (A4,) and (A4;). Hence we obtain y=0 for ¢=2. Suppose 7=0
and c=1. We see that the quadratic equation (4,) has a rational solution %
if and only if 3n(n+-2) is a square number.

Summing up the above arguments, we obtain a partial converse of Theo-
rem 2.1 (iii).

RemaRrk. For a positive integer 7, 3n(n+2) is a square number if and
only if 41 is one of the following:

Eigo(zlz->2k_2i3‘; k=123,

7. Concluding remark

By parallel arguments, we obtain the following result which is a generaliza-
tion of a theorem [7].

Theorem 7.1. Let X be a closed orientable manifold on which SU(n) acts
smoothly and mnon-trivially. Suppose X~P,(C)XPy(C); a=b=1, a+b=<2n—2
and n=7. Then there are three cases:
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(0) a=n—1 and X=P, (C)XY,, where Y, is a closed orientable manifold
such that Y~Py(C), and SU(n) acts naturally on P,_(C) and trivially on Y,

(i) a=b=n—1 and X=P,_,(C)X P,_,(C) with the diagonal SU(n) action,

(i) a=n and X=3(D*x Y,)/U(1), where Y, is a compact orientable U(1)
manifold such that dim Y,=2(a+b+1—n) and Y,~P,(C), U(1) acts as right
scalar multiplication on D*", the unit disk of C”", and SU(n) acts naturally on D**
and trivially on Y,. In addition, the U(1) action on the boundary 0Y, is free
and the fixed point set of the U(1) action on Y, is ~Py(C).

Theorem 7.2. In the case (i) of Theorem 7.1, the cohomology ring H*
(0Y,/U(1)) is isomorphic to one of the following:

(1) Q[x, y]/(x*+", ¥,
@) Q[x, y]/(y*, Eg’o(_l)i<a—}—1>xa+1—n—iyi); b<atl—n,

where deg x=deg y=2, and x is the Euler class of the principal U(1) bundle 9Y,
—aY,/U(1).
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