ACTIONS OF SYMPLECTIC GROUPS ON A PRODUCT OF QUATERNION PROJECTIVE SPACES

Dedicated to Professor Minoru Nakaoka on his 60th birthday

FUICHI UCHIDA

(Received November 7, 1983)

0. Introduction

We shall study smooth actions of symplectic group Sp(n) on a closed orientable manifold X such that $X \sim P_a(H) \times P_b(H)$, under the conditions: $a+b \leq 2n-2$ and $n \geq 7$. Our result is stated in §2 and proved in §5. Typical examples are given in §1. Similar result on smooth actions of special unitary group SU(n) on a closed orientable manifold X such that $X \sim P_a(C) \times P_b(C)$ is stated in the final section.

Throughout this paper, let $H^*(\)$ denote the singular cohomology theory with rational coefficients, and let $P_n(H)$, $P_n(C)$ and $P_n(R)$ denote the quaternion, complex and real projective *n*-space, respectively. By $X \sim X'$, we mean that $H^*(X) \simeq H^*(X')$ as graded algebras.

1. Typical examples

1.1. We regard S^{4k-1} as the unit sphere of the quaternion k-space H^k with the right scalar multiplication. Let Y be a compact Sp(1) manifold. By the diagonal action, Sp(1) acts freely on the product manifold $S^{4k-1} \times Y$. Here we consider the cohomology ring of the orbit manifold $(S^{4k-1} \times Y)/Sp(1)$ for the case $Y \sim P_b(H)$.

Consider the fibration: $Y \rightarrow (S^{4k-1} \times Y)/Sp(1) \rightarrow P_{k-1}(H)$. By the Leray-Hirsch theorem, $H^*((S^{4k-1} \times Y)/Sp(1))$ is freely generated by 1, u, u^2, \dots, u^b as an $H^*(P_{k-1}(H))$ module for an element $u \in H^4((S^{4k-1} \times Y)/Sp(1))$. If u can be so chosen as $u^{b+1}=0$, then we see that $(S^{4k-1} \times Y)/Sp(1) \sim P_{k-1}(H) \times P_b(H)$.

Lemma 1.1. Denote by F, the fixed point set of the restricted U(1) action on Y. If $F \sim P_b(C)$, then $(S^{4k-1} \times Y)/Sp(1) \sim P_{k-1}(H) \times P_b(H)$.

Proof. Consider the fibration: $Y \rightarrow (S^{4k-1} \times Y)/U(1) \rightarrow P_{2k-1}(C)$. We see that $H^*((S^{4k-1} \times Y)/U(1))$ is freely generated by 1, v, v^2, \dots, v^b as an $H^*(P_{2k-1}(C))$ module for an element $v \in H^4((S^{4k-1} \times Y)/U(1))$. We shall show first that

v can be so chosen as $v^{b+1}=0$. We regard S^{∞} as the inductive limit of S^{4N-1} on which U(1) acts naturally. Consider the following commutative diagram:

$$\begin{array}{ccc} H^*((S^{\infty} \times Y)/U(1)) \xrightarrow{j^*} & H^*((S^{4k-1} \times Y)/U(1)) \\ & & \downarrow_{i_{\infty}^*} & \downarrow_{i^*} \\ H^*(\mathbf{P}_{\infty}(\mathbf{C}) \times F) \xrightarrow{j_F^*} & H^*(\mathbf{P}_{2k-1}(\mathbf{C}) \times F) \end{array}$$

where i, i_{∞}, j, j_F are natural inclusions. Since $H^{\text{odd}}(Y)=0$, we see that i_{∞}^* is injective [4] and j^* is surjective. Let v_{∞} be an element of $H^4((S^{\infty} \times Y)/U(1))$ such that $j^*(v_{\infty})=v$. Let x be the canonical generator of $H^2(\mathbf{P}_{\infty}(\mathbf{C}))\cong H^2(\mathbf{P}_{2k-1}(\mathbf{C}))$. Then we can express

$$i^*_{\infty}(v_{\infty}) = x^2 imes f_0 + x imes f_1 + 1 imes f_2$$

where $f_r \in H^{2r}(F)$ for r=0, 1, 2. Since $F \sim P_b(C)$, we see that there are rational numbers a_0 , a_1 , a_2 and a non-zero element $y \in H^2(F)$, such that $f_r = a_r y^r$ for r=0, 1, 2. Then we obtain

$$i_{\infty}^{*}(v_{\infty}-a_{0}x^{2})^{b+1}=(x\times f_{1}+1\times f_{2})^{b+1}=0$$
.

Since i_{∞}^* is injective, we obtain $(v_{\infty}-a_0x^2)^{b+1}=0$. Put $v_1=j^*(v_{\infty}-a_0x^2)$. Then $v_1^{b+1}=0$, and hence

$$H^*((S^{4k-1} \times Y)/U(1)) \simeq Q[x, v_1]/(x^{2k}, v_1^{b+1}); \text{ deg } x = 2, \text{ deg } v_1 = 4.$$

Consider next the following commutative diagram:

Let $t \in H^4(\mathbf{P}_{k-1}(\mathbf{H}))$ be the canonical generator such that $q^*(t) = x^2$. There exist rational numbers λ, μ such that $p^*(u) = \lambda v_1 + \mu x^2$. Put $u_1 = u - \mu t$. Then $p^*(u_1) = \lambda v_1$, and hence $p^*(u_1)^{b+1} = 0$. Since the homomorphism $p^* \colon H^*((S^{4k-1} \times Y)/Sp(1)) \to H^*((S^{4k-1} \times Y)/U(1))$ is injective, we obtain $u_1^{b+1} = 0$, and hence

$$H^*((S^{4k-1} \times Y) / Sp(1)) \simeq Q[t, u_1] / (t^k, u_1^{b+1}); \deg t = \deg u_1 = 4.$$

Thus we obtain $(S^{4k-1} \times Y)/Sp(1) \sim P_{k-1}(H) \times P_{b}(H)$. q.e.d.

1.2. We give here examples of a closed orientable Sp(1) manifold Y such that $Y \sim P_b(H)$ and $F \sim P_b(C)$, where F denotes the fixed point set of the restricted U(1) action on Y.

Consider the Sp(1) action on $P_b(H) = S^{4b+3}/Sp(1)$ by the left scalar multiplication. Then the fixed point set of the restricted U(1) action is naturally

diffeomorphic to $P_b(C)$, the fixed point set of the Sp(1) action is naturally diffeomorphic to $P_b(R)$, and the isotropy representation at each fixed point of the Sp(1) action is equivalent to $b_\eta \oplus \theta^b$, where η denotes the canonical 3-dimensional real representation of Sp(1), $b\eta$ denotes the *b*-fold direct sum of η , and θ^b is the trivial representation of degree *b*.

Let D^{3b} denote the unit disk of the representation space $b\eta$. Let W be a (b+1)-dimensional compact orientable smooth manifold which is rationally acyclic. Then the boundary $\partial(D^{3b} \times W)$ is a 4b-dimensional compact orientable smooth Sp(1) manifold which is a rational homology sphere, and the isotropy representation at each fixed point of the Sp(1) action is equivalent to $b\eta \oplus \theta^b$. Hence we can construct an equivariant connected sum

$$Y(W) = \boldsymbol{P}_{b}(\boldsymbol{H}) \ \sharp \ \partial(D^{3b} imes W)$$
.

Denote by F(W) the fixed point set of the restricted U(1) action on Y(W). Then F(W) is naturally diffeomorphic to $P_b(C) \not\equiv \partial(D^b \times W)$. It is easy to see that

$$Y(W) \sim P_b(H), F(W) \sim P_b(C)$$
.

1.3. Let ζ be a quaternion k-plane bundle and ζ_c its complexification under the restriction of the filed. Its *i*-th symplectic Pontrjagin class $e_i(\zeta)$ is by definition [2, §9.6]

$$e_i(\zeta) = (-1)^i c_{2i}(\zeta_C),$$

where $c_{2i}(\zeta_c)$ is the 2*i*-th Chern class. Denote by $P(\zeta)$ the total space of the associated quaternion projective space bundle. Let $\hat{\zeta}$ be the canonical quaternion line bundle over $P(\zeta)$ and put $t=e_1(\hat{\zeta})$. It is known that there is an isomorphism:

(1.3)
$$H^*(\mathbf{P}(\zeta)) \simeq H^*(B) [t] / (\sum_{i=0}^k e_{k-i}(\zeta) t^i),$$

where B is the base space of the bundle ζ (cf. [3, §3]).

Let ξ be the canonical quaternion line bundle over $P_b(H)$ and ξ^* its dual line bundle. Let W be a 4*b*-dimensional closed orientable smooth manifold and let $f: W \to P_b(H)$ be a smooth mapping such that $f^*: H^*(P_b(H)) \cong H^*(W)$. Let c be a non-negative integer such that $b \le c+1$. Then, there is a quaternion (c+1)-plane bundle ζ over W such that

$$(n+c+1)f^*\xi^* \simeq \zeta \oplus \theta^n_H$$
,

where θ_{H}^{n} is a trivial quaternion *n*-plane bundle. Put $X = P((n+c+1)f^{*}\xi^{*})$. Since X is diffeomorphic to $\partial(D(\zeta) \times D^{4n})/Sp(1)$, we can act Sp(n) on X in order that the fixed point set is diffeomorphic to $P(\zeta)$. We see that by (1.3)

$$H^{*}(X) \simeq \mathbf{Q}[u, v] / (u^{n+c+1}, v^{b+1}),$$

$$H^{*}(\mathbf{P}(\zeta)) \simeq \mathbf{Q}[t, v] / (v^{b+1}, \sum_{i=0}^{c+1} (-1)^{i} {n+c+1 \choose i} t^{c+1-i} v^{i}),$$

where $v=f^*e_1(\xi)$, $t=e_1(\hat{\zeta})$ and u+v is the first symplectic Pontrjagin class of the canonical line bundle over $P((n+c+1)f^*\xi^*)$.

Classification theorems 2.

We shall prove the following results in this paper.

Theorem 2.1. Let X be a closed orientable manifold on which Sp(n) acts smoothly and non-trivially. Suppose $X \sim P_a(H) \times P_b(H)$; $a \ge b \ge 1$, $a+b \le 2n-2$ and $n \ge 7$. Then there are four cases:

(0) a=n-1 and $X \cong P_{n-1}(H) \times Y_0$, where Y_0 is a closed orientable manifold such that $Y_0 \sim P_b(H)$, and Sp(n) acts naturally on $P_{n-1}(H)$ and trivially on Y_0 ,

(i) a=n-1 and $X \approx (S^{4n-1} \times Y_1)/Sp(1)$, where Y_1 is a closed orientable Sp(1) manifold such that $Y_1 \sim P_b(H)$, Sp(1) acts as right scalar multiplication on S^{4n-1} , the unit sphere of H^n , and Sp(n) acts naturally on S^{4n-1} and trivially on Y_1 . In addition, the fixed point set of the restricted U(1) action on Y_1 is $\sim P_b(C)$,

(ii) a=b=n-1 and $X \cong P_{n-1}(H) \times P_{n-1}(H)$ with the diagonal Sp(n) action,

(iii) $a \ge n$ and $X \simeq \partial (D^{4n} \times Y_2) / Sp(1)$, where Y_2 is a compact orientable Sp(1) manifold such that dim $Y_2 = 4(a+b+1-n)$ and $Y_2 \sim P_b(H)$, Sp(1) acts as right scalar multiplication on D^{4n} , the unit disk of H^n , and Sp(n) acts naturally on D^{4n} and trivially on Y_2 . In addition, the Sp(1) action on the boundary ∂Y_2 is free and the fixed point set of the restricted U(1) action on Y_2 is $\sim P_b(C)$ or $\sim P_b$ $(\boldsymbol{H}).$

REMARK. By $X \cong X'$ we mean that X is equivariantly diffeomorphic to X' as Sp(n) manifolds. In the case (iii), the fixed point set of the Sp(n) action on X is naturally diffeomorphic to the orbit manifold $\partial Y_2/Sp(1)$.

Theorem 2.2. In the case (iii) of Theorem 2.1, the cohomology ring H^* $(\partial Y_2 | \mathbf{Sp}(1))$ is isomorphic to one of the following:

- (1) $Q[x, y]/(x^{a+1-n}, y^{b+1})$, (2) $Q[x, y]/(y^{b+1}, \sum_{i=0}^{b} (-1)^{i} {a+1 \choose i} x^{a+1-n-i} y^{i}); b \leq a+1-n$,

where deg x=deg y=4, and x is the Euler class of the principal Sp(1) bundle ∂Y_2 $\rightarrow \partial Y_2/Sp(1).$

REMARK. The Sp(n) action given in §1.3 is an example of the case (iii)-(2). Lemma 1.1 assures that a converse of Theorem 2.1 (i) is true.

3. Cohomology of certain homogeneous spaces

Here we consider the cohomology of $V_{n,2}/G = Sp(n)/Sp(n-2) \times G$ for certain closed subgroups G of Sp(2). Let ξ be the canonical quaternion line bundle over $P_{n-1}(H)$ and ζ its orthogonal complement, that is, ζ is a quaternion (n-1)-plane bundle over $P_{n-1}(H)$ such that its total space is

$$E(\zeta) = \{(u, [v]) \in \boldsymbol{H}^{n} \times \boldsymbol{P}_{n-1}(\boldsymbol{H}) : u \perp v\}.$$

It is easy to see that the total space $P(\zeta)$ of the associated quaternion projective space bundle is naturally diffeomorphic to $V_{n,2}/Sp(1) \times Sp(1)$. Since $\xi \oplus \zeta$ is a trivial bundle, we obtain $e_k(\zeta) = (-1)^k e_1(\xi)^k$. By definition, $P(\zeta)$ is naturally identified with a subspace of $P_{n-1}(H) \times P_{n-1}(H)$. Let $i: P(\zeta) \to P_{n-1}(H) \times P_{n-1}(H)$ be the inclusion. Put $\hat{\zeta} = i^*(\xi^* \times 1)$. Then by (1.3) there is an isomorphism:

(3.1)
$$H^*(V_{n,2}/Sp(1)\times Sp(1)) \simeq Q[x, y]/(x^n, \sum_i x^i y^{n-1-i}),$$

deg x=deg y=4, by the identification $x=i^*(1 \times e_1(\xi))$ and $y=i^*(e_1(\xi) \times 1)$.

Let $p: V_{n,2}/Sp(1) \times Sp(1) \rightarrow V_{n,2}/Sp(2)$ be the natural projection and ξ_2 the standard quaternion 2-plane bundle over $V_{n,2}/Sp(2)$.

Lemma 3.2. The graded algebra $H^*(V_{n,2}/Sp(2))$ is generated by $e_1(\xi_2)$, $e_2(\xi_2)$. The algebra is isomorphic to the subalgebra of $Q[x, y]/(x^n, \sum_i x^i y^{n-1-i})$, consisting of symmetric polynomials.

Proof. Since the fibration p is a 4-sphere bundle and $H^{\text{odd}}(V_{n,2}|\boldsymbol{Sp}(2)) = 0$ (cf. [1, §26]), the homomorphism $p^* \colon H^*(V_{n,2}|\boldsymbol{Sp}(2)) \to H^*(V_{n,2}|\boldsymbol{Sp}(1) \times \boldsymbol{Sp}(1))$ is injective. Since $p^*(\xi_2) = i^*(\xi \times \xi)$, we obtain

$$p^*e_1(\xi_2) = i^*e_1(\xi \times \xi) = x + y,$$

 $p^*e_2(\xi_2) = i^*e_2(\xi \times \xi) = xy.$

Then the desired result is obtained by the Leray-Hirsch theorem. q.e.d.

Corollary 3.3. $e_1(\xi_2)^{2n-4} \neq 0$ and $e_1(\xi_2)^{2n-3} = 0$.

Proof. Put $I = (x^n, \sum_i x^i y^{n-1-i})$. It is easy to see that $y^n \in I$. In the quotient ring Q[x, y]/I, we obtain

$$(x+y)^{2n-4} = {\binom{2n-4}{n-1}} x^{n-1} y^{n-3} + {\binom{2n-4}{n-2}} x^{n-2} y^{n-2} + {\binom{2n-4}{n-1}} x^{n-3} y^{n-1} = \left\{ {\binom{2n-4}{n-2}} - {\binom{2n-4}{n-1}} \right\} x^{n-2} y^{n-2},$$

and hence $e_1(\xi_2)^{2n-4} \neq 0$. We obtain $e_1(\xi_2)^{2n-3} = 0$ similarly. q.e.d.

4. Preliminary results

First we state the following two lemmas which are proved by a standard

method (cf. [5, §5]).

Lemma 4.1. Suppose $n \ge 7$. Let G be a closed connected proper subgroup of Sp(n) such that dim Sp(n)/G < 8n. Then G coincides with $Sp(n-i) \times K$ (i=1, 2, 3) up to an inner automorphism of Sp(n), where K is a closed connected subgroup of Sp(i).

Lemma 4.2. Suppose $r \ge 5$ and k < 8r. Then an orthogonal non-trivial representation of Sp(r) of degree k is equivalent to $(v_r)_R \oplus \theta^{k-4r}$. Here $(v_r)_R : Sp(r) \rightarrow O(4r)$ is the canonical inclusion, and θ^i is the trivial representation of degree t.

In the following, let X be a closed connected orientable manifold with a non-trivial smooth Sp(n) action, and suppose $n \ge 7$ and dim X < 8n. Put

$$F_{(i)} = \{x \in X: Sp(n-i) \subset Sp(n)_x \subset Sp(n-i) \times Sp(i)\}$$

$$X_{(i)} = Sp(n)F_{(i)} = \{gx: g \in Sp(n), x \in F_{(i)}\}.$$

Here $Sp(n)_x$ denotes the isotropy group at x. Then, by Lemma 4.1, we obtain $X=X_{(0)}\cup X_{(1)}\cup X_{(2)}\cup X_{(3)}$.

Proposition 4.3. If $X_{(k)}$ is non-empty, then $X_{(i)}$ is empty for each $i \ge k+2$.

Proof. Let us denote by $F(\mathbf{Sp}(n-j), X_{(i)})$ the fixed point set of the restricted $\mathbf{Sp}(n-j)$ action on $X_{(i)}$. It is easy to see that the set is empty for each $j < i \leq n-i$. Suppose that $X_{(k)}$ is non-empty and fix $x \in F_{(k)}$. Let σ be the slice representation at x. Then the restriction $\sigma | \mathbf{Sp}(n-k)$ is trivial or equivalent to $(\nu_{n-k})_R \oplus \theta^t$ by Lemma 4.2. Anyhow, a principal isotropy group of the given action contains $\mathbf{Sp}(n-k-1)$, and hence $F(\mathbf{Sp}(n-k-1), X_{(i)})$ is non-empty if so is $X_{(i)}$. q.e.d.

Proposition 4.4. Suppose $X = X_{(k)} \cup X_{(k+1)}$. If $X_{(k)}$ and $X_{(k+1)}$ are nonempty, then the codimension of each connected component of $F_{(k)}$ in X is equal to 4(k+1)(n-k).

Proof. Fix $x \in F_{(k)}$. Let σ and ρ denote the slice representation at x and the isotropy representation of the orbit Sp(n)x, respectively. The restriction $\sigma | Sp(n-k)$ is equivalent to $(\nu_{n-k})_R \oplus \theta^s$ by Lemma 4.2 and the assumption that $X_{(k+1)}$ is non-empty. On the other hand, $\rho | Sp(n-k)$ is equivalent to $k(\nu_{n-k})_R \oplus \theta^t$ by considering adjoint representations. Hence $(\sigma \oplus \rho) | Sp(n-k)$ is equivalent to $(k+1) (\nu_{n-k})_R \oplus \theta^{s+t}$. This shows that the codimension of $F_{(k)}$ at x is equal to 4(k+1) (n-k). q.e.d.

Corollary 4.5. Suppose $X=X_{(2)}\cup X_{(3)}$. Then either $X_{(2)}$ or $X_{(3)}$ is empty. REMARK. dim $Sp(n)/Sp(n-k)\times Sp(k)=4k(n-k)$ and $\chi(Sp(n)/Sp(n-k))$

 $\times Sp(k) = \binom{n}{k}$, where $\chi()$ denotes the Euler characteristic, and $\binom{n}{k}$ denotes the binomial coefficient.

5. Proof of the classification theorems

Throughout this section, suppose that X is a closed orientable manifold with a non-trivial smooth Sp(n) action such that

(*)
$$H^*(X) = Q[u, v]/(u^{a+1}, v^{b+1}); \deg u = \deg v = 4.$$

Moreover, suppose that $n \ge 7$, $1 \le b \le a$ and $a+b \le 2n-2$. By arguments and notations in the preceding section, we see that $X=X_{(k)} \cup X_{(k+1)}$ for k=0, 1, 2.

5.1. We shall show first that $X \neq X_{(2)} \cup X_{(3)}$. Suppose $X = X_{(2)} \cup X_{(3)}$. Then $X = X_{(2)}$ or $X = X_{(3)}$ by Corollary 4.5. Looking at the Euler characteristic of X, we see that $X \neq X_{(3)}$.

Suppose $X=X_{(2)}$. Then $X=(V_{n,2}\times F_{(2)})/Sp(2)$. Here we consider the following commutative diagram of natural projections:

where T is a maximal torus of Sp(2). Since $\chi(F_{(2)}) \neq 0$, we see that the restricted T action on $F_{(2)}$ has a fixed point, and hence the projection p_1 has a cross-section. Therefore $p_1^*: H^*(V_{n,2}/T) \to H^*((V_{n,2} \times F_{(2)})/T)$ is injective. On the other hand, $q^*: H^*(V_{n,2}/Sp(2)) \to H^*(V_{n,2}/T)$ is injective, because $H^{\text{odd}}(V_{n,2}/Sp(2)) = H^{\text{odd}}(Sp(2)/T) = 0$ (cf. [1, §26]). Consequently, we see that $p^*: H^*(V_{n,2}/Sp(2)) \to H^*(X)$ is injective. In particular, we obtain $a+b \ge 2n-4$. If a+b=2n-4, then $X=V_{n,2}/Sp(2)$. Because rank $H^4(X)=2$ and rank $H^4(V_{n,2}/Sp(2))$ =1, we get a contradiction.

Syppose $a+b \ge 2n-3$, and put $p^*e_1(\xi_2) = \alpha u + \beta v$; $\alpha, \beta \in \mathbb{Q}$. Since $e_1(\xi_2)^{2n-3} = 0$ by Corollary 3.3, we obtain

$$0 = p^* e_1(\xi_2)^{a+b} = {a+b \choose a} (\alpha u)^a (\beta v)^b$$
,

and hence $\alpha\beta=0$. On the other hand, $e_1(\xi_2)^{2n-4} \neq 0$ by Corollary 3.3, and hence $p^*e_1(\xi_2)^{2n-4} \neq 0$. Thus we obtain a=2n-4. Looking at the Euler characteristic of $F_{(2)}$, we get a contradiction.

5.2. We consider now the case $X=X_{(1)}\cup X_{(2)}$. Suppose that both $X_{(1)}$ and $X_{(2)}$ are non-empty. We see that codim $F_{(1)}=8n-8$ by Proposition 4.4. Since dim $X \leq 8n-8$, we obtain dim $F_{(1)}=0$ and a+b=2n-2.

Fix $x \in F_{(1)}$. Since $X_{(2)}$ is non-empty, we see that the slice representation σ at x is equivalent to $v_{n-1} \otimes_{\mathbf{H}} v_1^*$ or $(v_{n-1})_{\mathbf{R}} \pi$ by Lemma 4.2, where π is a natural projection of $Sp(n-1) \times Sp(1)$ onto Sp(n-1). Then the principal isotropy group is of the form $Sp(n-2) \times K$, where $K = \Delta Sp(1)$ (resp. $1 \times Sp(1)$) for $\sigma = v_{n-1} \otimes_{\mathbf{H}} v_1^*$ (resp. $\sigma = (v_{n-1})_{\mathbf{R}} \pi$). Here $\Delta Sp(1)$ (resp. $1 \times Sp(1)$) is a closed subgroup of Sp(2) consisting of the matrices of the form $\begin{pmatrix} q & 0 \\ 0 & q \end{pmatrix}$ (resp. $\begin{pmatrix} 1 & 0 \\ 0 & q \end{pmatrix}$). Anyhow, we see that the Sp(n) action on X has a codimension one orbit, and hence X is a union of closed invariant tubular neighborhoods of just two non-principal orbits (cf. [6]). We already see that one of the non-principal orbits is $P_{n-1}(\mathbf{H})$. Looking at the Euler characteristic of X, we see that a=b=n-1 and another non-principal orbit is $V_{n,2}/Sp(1) \times Sp(1)$.

Suppose $K=1\times Sp(1)$. Then the normalizer of the principal isotropy group is connected, and hence such an Sp(n) manifold is unique up to equivariant diffeomorphism (cf. [6, §5.3]). On the other hand, the product manifold $P_{n-1}(H) \times P_{n-1}(H)$ with the diagonal Sp(n) action is such one. Therefore X is equivariantly diffeomorphic to $P_{n-1}(H) \times P_{n-1}(H)$ with the diagonal Sp(n) action.

Suppose next $K = \Delta Sp(1)$. Then the normalizer of the principal isotropy group has just two connected components, and its generator corresponds to the antipodal involution of the slice representation at a point of $V_{n,2}/Sp(1)$ $\times Sp(1)$. Hence such an Sp(n) manifold is unique up to equivariant diffeomorphism (cf. [6, §5.3]). Here we construct such one. Let ξ be the canonical quaternion line bundle over $P_{n-1}(H)$ and ζ its orthogonal complement (see §3). Then Sp(n) acts naturally on the total space $E(\zeta)$ as the bundle mappings. Denote by θ_H^1 a trivial quaternion line bundle. We see that the Sp(n) action on the total space $P(\zeta \oplus \theta_H^1)$ of the associated quaternion projective space bundle is the desired one. On the other hand, we see that by (1.3)

$$H^*(\boldsymbol{P}(\boldsymbol{\zeta} \oplus \boldsymbol{\theta}_{\boldsymbol{H}}^1)) \simeq \boldsymbol{Q}[x, y]/(x^n, \sum_i x^i y^{n-i}); \deg x = \deg y = 4.$$

Hence the cohomology ring of $P(\zeta \oplus \theta_H^1)$ is not isomorphic to that of $P_{n-1}(H) \times P_{n-1}(H)$.

5.3. We consider next the case $X = X_{(0)} \cup X_{(1)}$ for c < n. We shall show first that $X_{(0)}$ is empty.

Suppose that $X_{(0)}$ is non-empty. Let U be an invariant closed tubular neighborhood of $X_{(0)}$ in X, and put E=X-intU. Put $W=E\cap F_{(1)}$. Then W is a compact connected orientable manifold with non-empty boundary ∂W , and Sp(1) acts naturally on W. Since there is a natural diffeomorphism $E=(S^{4n-1}\times W)/Sp(1)$, we obtain

dim
$$W = 4(a+b+1-n) = 4k, k \le b \le a < n$$
.

Let $i: E \to X$ be the inclusion. Then $i^*: H^i(X) \to H^i(E)$ is an isomorphism

for each $t \leq 4n-2$, because the codimension of each connected component of $X_{(0)}$ is 4n by Lemma 4.2. By the Gysin sequence of the principal Sp(1) bundle $S^{4n-1} \times W \to E$ and the cohomology ring of X, we obtain rank $H^{4k}(W)$ —rank $H^{4k-1}(W)=1$. On the other hand, we see that $H^{4k}(W) \simeq H_{4k}(W)=0$ and rank $H^{4k-1}(W) \geq 0$; this is a contradiction. Thus we see that $X_{(0)}$ is empty.

Consequently, we obtain $X=X_{(1)}=(S^{4n-1}\times F_{(1)})/Sp(1)$. Put $Y=F_{(1)}$. We see that

dim
$$Y = 4(a+b+1-n) = 4k, k \le b \le a < n \le a+b$$
.

We shall show next that a=n-1 and $Y \sim P_b(H)$.

By the Gysin sequence of the principal Sp(1) bundle $p: S^{4n-1} \times Y \to X$, we obtain $H^{4i+1}(S^{4n-1} \times Y) = H^{4i+2}(S^{4n-1} \times Y) = 0$ and an exact sequence:

$$0 \to H^{4i-1}(S^{4n-1} \times Y) \to H^{4i-4}(X) \xrightarrow{\mu} H^{4i}(X) \xrightarrow{p^*} H^{4i}(S^{4n-1} \times Y) \to 0$$

for any *i*, where μ is the multiplication by $e_1(p)$, the first symplectic Pontrjagin class of the quaternion line bundle associated with the Sp(1) bundle *p*. We can represent $p^*u=1\times u_1$, $p^*v=1\times v_1$ for u_1 , $v_1\in H^4(Y)$. Then we see that $H^{\text{odd}}(Y)=0$ and $H^*(Y)$ is generated by at most two elements u_1, v_1 . We can represent $e_1(p)=\alpha u+\beta v$; $\alpha, \beta \in Q$. By definition, the Sp(1) bundle *p* is a pull-back of a bundle over $P_{n-1}(H)$, and hence $e_1(p)^n=0$. Since $n\leq a+b$, we see that $\alpha\beta=0$. Suppose $e_1(p)=0$. Then p^* is injective, and hence $1\times u_1^a v_1^b$ ± 0 . Thus we get a contradiction. Therefore we see that $e_1(p)=\alpha u$ ($\alpha \pm 0$) or $e_1(p)=\beta v$ ($\beta \pm 0$), and hence $u_1=0$ or $v_1=0$, respectively. Looking at the Euler characteristic of X we see that a=n-1 and $Y \sim P_b(H)$.

When b < n-1, we see that $e_1(p) = \alpha u$ $(\alpha \neq 0)$ and $H^*(Y) \simeq \mathbf{Q}[v_1]/(v_1^{b+1})$. When b=n-1, interchanging u and v if necessary we can assume that $e_1(p) = \alpha u$ $(\alpha \neq 0)$ and $H^*(Y) \simeq \mathbf{Q}[v_1]/(v_1^n)$. It remains to consider the Sp(1) action on $Y = F_{(1)}$. We shall show that either $F \sim \mathbf{P}_b(\mathbf{C})$ or the Sp(1) action on Y is trivial, where F denotes the fixed point set of the restricted U(1) action on Y.

Put $w = \pi^*(v)$, where π is a natural projection of $(S^{4n-1} \times Y)/U(1)$ onto $X = (S^{4n-1} \times Y)/Sp(1)$. Consider the fibration: $Y \to (S^{4n-1} \times Y)/U(1) \to P_{2n-1}(C)$. We see that $w^{b+1} = 0$ and $H^*((S^{4n-1} \times Y)/U(1))$ is freely generated by 1, w, w^2 , \cdots , w^b as an $H^*(P_{2n-1}(C))$ module. Consider next the following commutative diagram:

$$\begin{array}{c} H'((S^{\infty} \times Y)/U(1)) \xrightarrow{j^{*}} H'((S^{4n-1} \times Y)/U(1)) \\ \downarrow i^{*}_{\infty} & \downarrow i^{*} \\ H'(\boldsymbol{P}_{\infty}(\boldsymbol{C}) \times F) \xrightarrow{j^{*}_{F}} H'(\boldsymbol{P}_{2n-1}(\boldsymbol{C}) \times F) \end{array}$$

where i, i_{∞} , j, j_F are natural inclusions. Since $H^{\text{odd}}(Y)=0$, we see that [4] i_{∞}^* is injective for each r and surjective for each r>4b and j^* is surjective. Let

 w_{∞} be an element of $H^4((S^{\infty} \times Y)/U(1))$ such that $j^*(w_{\infty}) = w$. Let x be the canonical generator of $H^2(\mathbf{P}_{\infty}(\mathbf{C})) \cong H^2(\mathbf{P}_{2n-1}(\mathbf{C}))$. Then we can express

$$i^*_{\infty}(w_{\infty}) = x^2 imes f_0 + x imes f_1 + 1 imes f_2$$

where $f_t \in H^{2t}(F)$ for t=0, 1, 2. It is known that [4] $F_0 \sim P_d(C)$ or $F_0 \sim P_d(H)$ $(0 \le d \le b)$ for each connected component F_0 of F. We shall show that F is connected.

Consider first the case b < n-1. We see that $i_{\infty}^{*}(w_{\infty}) = x \times f_{1} + 1 \times f_{2}$, that is, $f_{0}=0$ by the relation $(x^{2} \times f_{0} + x \times f_{1} + 1 \times f_{2})^{b+1} = 0$ in $H^{4b+4}(\mathbf{P}_{2n-1}(\mathbf{C}) \times F)$. Consequently, we can show that if F is not connected then $i_{\infty}^{*}(w_{\infty}^{b}) = 0$ and hence $w^{b}=0$; this is a contradiction.

Consider next the case b=n-1. Since $j^*(w_{\infty}^n)=w^n=0$, we see that $w_{\infty}^n = \gamma x^{2n}$ for some $\gamma \in \mathbf{Q}$, and hence $i_{\infty}^*(w_{\infty}^n)=x^{2n}\times\gamma$. Suppose $\gamma=0$. Then $f_0=0$, and hence we can show that F is connected by the same argument as above. Suppose next $\gamma \neq 0$. We shall show that $i_{\infty}^*(w_{\infty})=x^2\times f_0$, that is $f_1=0$ and $f_2=0$. For any connected component F_0 of F, we have an equation

$$(x^2 \times f_0 | F_0 + x \times f_1 | F_0 + 1 \times f_2 | F_0)^n = x^{2n} \times \gamma$$

in $H^{4n}(\mathbf{P}_{\infty}(\mathbf{C}) \times F_0)$. Then we see that $(f_0|F_0)^n = \gamma \neq 0$ and $f_t|F_0 = 0$ for t=1, 2. Thus we obtain $i_{\infty}^*(w_{\infty}) = x^2 \times f_0$ and $f_0^n = \gamma$. Let F_1 (resp. F_2) be the union of connected components F_{σ} of F on which $f_0|F_{\sigma}$ is positive (resp. negative). Since $f_0^n = \gamma$, we can regard $f_0|F_1$ and $f_0|F_2$ as constant rational numbers. Then each element of $H'(\mathbf{P}_{\infty}(\mathbf{C}) \times F_s)$ for $r \geq 4n$ is expressed as a polynomial of $x \times 1$ with rational coefficients for s=1, 2 because $H^*((S^{\infty} \times Y)/U(1))$ is generated by an element w_{∞} as a graded $H^*(\mathbf{P}_{\infty}(\mathbf{C}))$ algebra and i_{∞}^* is surjective for $r \geq 4n$. Then we see that F_s (s=1, 2) consists of just one point, and hence F consists of at most two points. This is a contradiction to the fact: $\chi(F) = \chi(Y) = n \geq 7$.

Anyhow we see that F is connected, and hence $F \sim P_b(C)$ or $F \sim P_b(H)$. The Sp(1) action on Y is trivial for the latter case.

5.4. Finally, we consider the case $X=X_{(0)}\cup X_{(1)}$ for $a\geq n$. We shall show first that $X_{(0)}$ is non-empty.

Suppose that $X_{(0)}$ is empty. Then $X=X_{(1)}=(S^{4n-1}\times F_{(1)})/Sp(1)$. By the Gysin sequence of the principal Sp(1) bundle $S^{4n-1}\times F_{(1)}\to X$, we see that $F_{(1)}\sim P_b(H)$. Looking at the Euler characteristic of the fibration: $F_{(1)}\to X$ $\to P_{n-1}(H)$ we obtain a=n-1; this is a contradiction.

Consequently, we see that (cf. [8]) there is an equivariant decomposition $X=\partial(D^{4n}\times Y)/Sp(1)$, where Y is a compact connected orientable manifold with a smooth Sp(1) action, and Y has a non-empty boundary ∂Y on which the Sp(1) action is free. We see that

$$\dim Y = 4(a+b+1-n)$$

and the fixed point set of the Sp(n) action on X is naturally diffeomorphic to the orbit manifold $\partial Y/Sp(1)$. Moreover, we see that there is a natural decomposition $X=X_1 \cup X_2$, where

$$X_1 = (S^{4n-1} \times Y) / Sp(1)$$
 and $X_2 = (D^{4n} \times \partial Y) / Sp(1)$.

Put $X_0 = X_1 \cap X_2 = (S^{4n-1} \times \partial Y) / Sp(1)$.

Let $\pi: \partial(D^{4n} \times Y) \to X$ be the projection of the principal Sp(1) bundle. Denote by π_s the projection of the restricted principal Sp(1) bundle over X_s . Let $j_s: X_s \to X$ and $i_s: X_0 \to X_s$ be inclusions. Put $u_s = j_s^*(u)$ and $v_s = j_s^*(v)$. We can express

$$e(\pi) = \alpha u + \beta v; \alpha, \beta \in \mathbf{Q},$$

where $e(\pi)$ is the Euler class of the principal Sp(1) bundle π . Then we obtain

$$e(\pi_s) = j_s^* e(\pi) = \alpha u_s + \beta v_s \,.$$

Since $H'(X, X_1) \simeq H'(X_2, X_0) \simeq H^{r-4n}(\partial Y/Sp(1))$ for each r, we obtain an isomorphism $j_1^*: H'(X) \simeq H'(X_1)$ for each $r \leq 4n-2$. Because Y is a compact connected manifold with non-empty boundary and dim $Y \leq 4n-4$, we see that $\pi_1^*(u_1^{n-1}) = 0$ and hence $u_1^{n-1} = x'e(\pi_1)$ for some $x' \in H^{4n-8}(X_1)$. Then $u^{n-1} = xe(\pi)$ for some $x \in H^{4n-8}(X)$ by the isomorphism j_1^* . In particular we see that $\alpha \neq 0$ in the expression: $e(\pi) = \alpha u + \beta v$. Looking at the isomorphism j_1^* and the Gysin sequence of the principal Sp(1) bundle π_1 , we see that $\pi_1^*(v_1^b) \neq 0$ and the algebra $H^{ev}(S^{4n-1} \times Y)$ is generated by $\pi_1^*v_1$. Hence we obtain $Y \sim P_b(H)$. In addition, we see that $X_1 \sim P_{n-1}(H) \times P_b(H)$ by the fibration: $Y \to X_1 \to P_{n-1}(H)$.

Since $b \le n-2$, by the same argument as in the second half of §5.3, we see that $F \sim P_b(C)$ or $F \sim P_b(H)$, where F denotes the fixed point set of the restricted U(1) action on Y.

Here we complete the proof of Theorem 2.1.

REMARK. The case $\alpha\beta \neq 0$ in the expression $e(\pi) = \alpha u + \beta v$ occurs only when $b \leq a+1-n$, because

$$(e(\pi_1) - \beta v_1)^{a+1} = (\alpha u_1)^{a+1} = 0$$

in $H^*(X_1) = \mathbf{Q}[e(\pi_1), v_1]/(e(\pi_1)^n, v_1^{b+1}).$

5.5. In the following, we consider the cohomology of $\partial Y/Sp(1)$. Regarding αu and βv as new u and v if necessary, we can assume that $e(\pi)=u$ if $\beta=0$ and $e(\pi)=u+v$ if $\beta \neq 0$.

Since the algebra $H^*(X_1)$ is generated by $e(\pi_1)$ and v_1 , we obtain an short exact sequence:

$$0 \to H^*(X, X_1) \stackrel{k_1^*}{\to} H^*(X) \stackrel{j_1^*}{\to} H^*(X_1) \to 0 .$$

Moreover, we see that the kernel of j_1^* is an ideal generated by $e(\pi)^n$, that is, ker $j_1^* = H^*(X)e(\pi)^n$. Let $\tau \in H^{4n}(X, X_1)$ be an element such that $k_1^*(\tau) = e(\pi)^n$. Then $H^*(X, X_1)$ is generated by τ as an $H^*(X)$ module, that is, $H^*(X, X_1) = H^*(X)\tau$.

Let j^* : $H^*(X, X_1) \cong H^*(X_2, X_0)$ be an excision isomorphism. Denote by $t \in H^{4n}(X_2, X_0)$ the Thom class of the quaternion *n*-plane bundle over $\partial Y/$ Sp(1). Then $j^*(\tau) = \lambda t$ for non-zero $\lambda \in Q$. Since $j^*(w\tau) = j_2^*(w)j^*(\tau) = \lambda j_2^*(w)t$ for each $w \in H^*(X)$, we see that $j_2^*: H^*(X) \to H^*(X_2)$ is surjective. In addition, $j_2^*(w) = 0$ if and only if $e(\pi)^n w = 0$ for $w \in H^*(X)$. Then we can show that $\{j_2^*(u^p v^q); 0 \le p \le a - n, 0 \le q \le b\}$ are linearly independent in the graded module $H^*(X_2) \cong H^*(X)/\ker j_2^*$. On the other hand, we obtain

rank
$$H^*(X_2) = \operatorname{rank} H^*(X) - \operatorname{rank} H^*(X_1) = (a+1-n)(b+1)$$
.

Therefore the set $\{u_2^{b}v_2^{q}; 0 \leq p \leq a-n, 0 \leq q \leq b\}$ is an additive base of the graded module $H^*(X_2)$.

Suppose first $e(\pi) = u$, i.e. $\beta = 0$. Then $j_2^*(u^{a-n+1}) = 0$, and hence $H^*(X_2) \cong \mathbf{Q}[u_2, v_2]/(u_2^{a-n+1}, v_2^{b+1})$. Therefore $\partial Y/\mathbf{Sp}(1) \sim \mathbf{P}_{a-n}(\mathbf{H}) \times \mathbf{P}_b(\mathbf{H})$.

Suppose next that $b \leq a+1-n$ and $e(\pi)=u+v$, i.e. $\beta \neq 0$. We see that

$$e(\pi)^{n}\sum_{i=0}^{b}(-1)^{i}\binom{a+1}{i}(u+v)^{a+1-n-i}v^{i}=((u+v)-v)^{a+1}=0$$

hence we obtain

$$H^{*}(\partial Y/Sp(1)) \simeq H^{*}(X_{2}) \simeq Q[x, y]/(y^{b+1}, \sum_{i=0}^{b} (-1)^{i} {a+1 \choose i} x^{a+1-n-i} y^{i}),$$

where $x = u_2 + v_2$ and $y = v_2$.

Here we complete the proof of Theorem 2.2.

6. Construction

We regard D^{4n} as the unit disk of the quaternion *n*-space H^n with the right scalar multiplication and the left Sp(n) action. Let Y be a compact oritentable smooth Sp(1) manifold such that the Sp(1) action is free on the non-empty boundary ∂Y . By the diagonal action, Sp(1) acts freely on the boundary $\partial(D^{4n} \times Y)$. Here we consider the cohomology ring of the orbit manifold $X=\partial(D^{4n} \times Y)/Sp(1)$ on which Sp(n) acts naturally.

Suppose that dim Y=4d+4, $Y \sim P_b(H)$, $1 \leq b \leq d \leq n-2$, and $F \sim P_b(C)$ or $F \sim P_b(H)$, where F denotes the fixed point set of the restricted U(1) action on Y. Moreover suppose that $\iota^* \colon H^4(Y) \simeq H^4(\partial Y)$, where ι is an inclusion. Put c=d-b. In addition, we suppose that the graded algebra $H^*(\partial Y/Sp(1))$

is isomorphic to one of the following:

(1) $Q[x, y]/(x^{c+1}, y^{b+1}),$

(2)
$$\mathbf{Q}[x, y]/(y^{b+1}, \sum_{i=0}^{b} (-1)^{i} {\binom{n+c+1}{i}} x^{c+1-i} y^{i}); b \leq c+1,$$

where deg x = deg y = 4, and x is the Euler class of the principal Sp(1) bundle $\partial Y \rightarrow \partial Y/Sp(1)$.

Put $X_1 = (S^{4n-1} \times Y)/Sp(1)$, $X_2 = (D^{4n} \times \partial Y)/Sp(1)$ and $X_0 = X_1 \cap X_2 = (S^{4n-1} \times \partial Y)/Sp(1)$. Then $X = X_1 \cup X_2$. Let $\pi: \partial(D^{4n} \times Y) \to X$ be the projection of the principal Sp(1) bundle. Let us denote by π_s the projection of the restricted principal Sp(1) bundle over X_s . Let $j_s: X_s \to X$ and $i_s: X_0 \to X_s$ be the inclusions. Let $p: X_2 \to \partial Y/Sp(1)$ be the natural projection of 4n-disk bundle, and put $p_0 = p \mid X_0: X_0 \to \partial Y/Sp(1)$.

Since $d \leq n-2$, we see that $H^*(X_0)$ is freely generated by 1, σ as an $H^*(\partial Y/Sp(1))$ module for an element $\sigma \in H^{4n-1}(X_0)$ and $i_2^* \colon H^*(X_2) \to H^*(X_0)$ is injective. Put $x_0 = p_0^*(x)$, $y_0 = p_0^*(y)$, $x_2 = p^*(x)$ and $y_2 = p^*(y)$. Then $x_0 = e(\pi_0)$ and $x_2 = e(\pi_2)$, the Euler classes of the principal Sp(1) bundles.

By the fibration: $Y \to X_1 \to P_{n-1}(H)$ and the assumption that $F \sim P_b(C)$ or $F \sim P_b(H)$ and $Y \sim P_b(H)$, we see that by Lemma 1.1,

$$H^*(X_1) = \mathbf{Q}[x_1, y_1]/(x_1^n, y_1^{b+1}); \deg x_1 = \deg y_1 = 4,$$

where $x_1 = e(\pi_1)$, the Euler class of the principal Sp(1) bundle.

Consider the Mayer-Vietoris sequence of a triad $(X; X_1, X_2)$:

$$\stackrel{i^*}{\to} H^{r-1}(X_0) \stackrel{\Delta^*}{\to} H^r(X) \stackrel{j^*}{\to} H^r(X_1) \oplus H^r(X_2) \stackrel{i^*}{\to} H^r(X_0) \stackrel{\Delta^*}{\to}$$

where $j^*(a) = (j_1^*(a), j_2^*(a))$ and $i^*(b_1, b_2) = i_1^*(b_1) - i_2^*(b_2)$. We see that $H^r(X) = 0$ for each $r \neq 0 \pmod{4}$ and there is the following short exact sequence for each k:

(*)
$$0 \to H^{4k-1}(X_0) \xrightarrow{\Delta^*} H^{4k}(X) \xrightarrow{j_1^*} H^{4k}(X_1) \to 0$$

Notice that dim X=4(n+d) and

(**)
$$j_1^*: H^{4k}(X) \cong H^{4k}(X_1)$$
 for $k < n$.

Let u, v be elements of $H^4(X)$ such that $j_1^*(u) = x_1, j_1^*(v) = y_1$. We see that $u = e(\pi)$, the Euler class of the principal Sp(1) bundle. Moreover, we see that $v^{b+1}=0$ by (**) and the assumption $b \le n-2$. Since $j_1^*(u^{n-1}v^b) \ne 0$, there is an element $z \in H^{4c+4}(X)$ such that $u^{n-1}v^bz \ne 0$, by the Poincaré duality. Then we see that $u^{n+c}v^b \ne 0$, by (**) and the fact $v^{b+1}=0$. In particular, we obtain $u^n \ne 0$. Looking at the exact sequence (*), we can assume that $u^n = \Delta^*(\sigma)$.

We can express $i_1^*(y_1) = \lambda x_0 + \mu y_0$; $\lambda, \mu \in \mathbf{Q}$. Since $\pi_1^*(y_1) \neq 0$, we see that

 $\mu \neq 0$ by the assumption $\iota^* \colon H^4(Y) \cong H^4(\partial Y)$. Then

$$\Delta^*(\sigma x_0^p y_0^q) = \mu^{-q} u^{n+p} (v - \lambda u)^q$$

because $\Delta^*(\sigma j_0^*(w)) = \Delta^*(\sigma)w$ for each $w \in H^*(X)$. Looking at the exact sequence (*), we see that the graded algebra $H^*(X)$ is generated by two elements u, v and rank $H^*(X) = (n+c+1)$ (b+1).

In the expression $i_1^*(y_1) = \lambda x_0 + \mu y_0$, if $\lambda = 0$ then we see that $u^{n+c+1} = 0$ in the case (1) and $(u - \mu^{-1}v)^{n+c+1} = 0$ in the case (2), and hence $X \sim P_{n+c}(H) \times P_b(H)$.

Since i_2^* : $H^*(X_2) \rightarrow H^*(X_0)$ is injective, we see that $j_2^*(v) = \lambda x_2 + \mu y_2$, and hence $(\lambda x_2 + \mu y_2)^{b+1} = 0$. Then we obtain $\lambda = 0$ in the case (1), because $H^*(X_2) \simeq \mathbf{Q}[x_2, y_2]/(x_2^{b+1}, y_2^{b+1}).$

Next we consider the case (2). We obtain a relation

$$(\gamma x_2 + \gamma_2)^{b+1} \in I = (\gamma_2^{b+1}, \sum_{i=0}^{b} (-1)^i \binom{n+c+1}{i} x_2^{c+1-i} \gamma_2^i),$$

where $\gamma = \lambda \mu^{-1}$. We see that $\gamma = 0$ for the case b < c or $b = c \ge 2$. Suppose b = c+1. Looking at the relation $(\gamma x_2 + \gamma_2)^{c+2} \in I$, we obtain $\gamma = 0$ or

$$(A_k) \qquad \binom{c+2}{k} - (-\gamma)^k \binom{n+c+1}{k} + (n+c+1) (-\gamma)^k \binom{n+c+1}{k-1} - (c+2) (-\gamma)^{k-1} \binom{n+c+1}{k-1} = 0$$

for each $k=2, 3, \dots, c+1$. Suppose $\gamma \neq 0$ and $c \geq 2$. Then we get a contradiction from (A_2) and (A_3) . Hence we obtain $\gamma=0$ for $c \geq 2$. Suppose $\gamma \neq 0$ and c=1. We see that the quadratic equation (A_2) has a rational solution γ if and only if 3n(n+2) is a square number.

Summing up the above arguments, we obtain a partial converse of Theorem 2.1 (iii).

REMARK. For a positive integer n, 3n(n+2) is a square number if and only if n+1 is one of the following:

$$\sum_{i \ge 0} \binom{k}{2i} 2^{k-2i} 3^i; k = 1, 2, 3, \cdots$$

7. Concluding remark

By parallel arguments, we obtain the following result which is a generalization of a theorem [7].

Theorem 7.1. Let X be a closed orientable manifold on which SU(n) acts smoothly and non-trivially. Suppose $X \sim P_a(C) \times P_b(C)$; $a \ge b \ge 1$, $a+b \le 2n-2$ and $n \ge 7$. Then there are three cases:

(0) a=n-1 and $X \cong P_{n-1}(C) \times Y_0$, where Y_0 is a closed orientable manifold such that $Y_0 \sim P_b(C)$, and SU(n) acts naturally on $P_{n-1}(C)$ and trivially on Y_0 ,

(i) a=b=n-1 and $X \cong P_{n-1}(C) \times P_{n-1}(C)$ with the diagonal SU(n) action,

(ii) $a \ge n$ and $X \simeq \partial (D^{2n} \times Y_1)/U(1)$, where Y_1 is a compact orientable U(1)manifold such that dim $Y_1=2(a+b+1-n)$ and $Y_1 \sim P_b(C)$, U(1) acts as right scalar multiplication on D^{2n} , the unit disk of C^n , and SU(n) acts naturally on D^{2n} and trivially on Y_1 . In addition, the U(1) action on the boundary ∂Y_1 is free and the fixed point set of the U(1) action on Y_1 is $\sim P_b(C)$.

Theorem 7.2. In the case (ii) of Theorem 7.1, the cohomology ring H^* $(\partial Y_1/U(1))$ is isomorphic to one of the following:

(1) $Q[x, y]/(x^{a+1-n}, y^{b+1})$,

(2)
$$\mathbf{Q}[x, y]/(y^{b+1}, \sum_{i=0}^{b} (-1)^{i} \binom{a+1}{i} x^{a+1-n-i} y^{i}); b \leq a+1-n,$$

where deg x = deg y = 2, and x is the Euler class of the principal U(1) bundle $\partial Y_1 \rightarrow \partial Y_1/U(1)$.

References

- [1] A. Borel: Sur la cohomologie des espaces fibres principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207.
- [2] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.
- [3] R. Bott: Lectures on K(X), Math. Lecture Note Ser., Benjamin, 1969.
- [4] G.E. Bredon: The cohomology ring structure of a fixed point set, Ann. of Math. 80 (1964), 524-537.
- [5] A. Nakanishi and F. Uchida: Actions of symplectic groups on certain manifolds, Tôhoku Math. J. to appear.
- [6] F. Uchida: Classification of compact transformation groups on cohomology complex projective spaces with codimension one orbits, Japan. J. Math. New Ser. 3 (1977), 141-189.
- [7] F. Uchida: Actions of special unitary groups on a product of complex projective spaces, Osaka J. Math. 20 (1983), 513-520.
- [8] T. Wada: Smooth Sp(n)-actions on cohomology quaternion projective spaces, Tôhoku Math. J. 29 (1977), 375-384.

Department of Mathematics Faculty of Science Yamagata University Yamagata 990, Japan