MINIMAL IMMERSIONS OF 3-DIMENSIONAL SPHERE INTO SPHERES

Katsuya MASHIMO

(Received April 8, 1983)
(Revised March 19, 1984)

Introduction

Let S_{c}^{n} be the n-dimensional sphere with constant curvature c. Let Δ be the Laplace-Beltrami operator on S_{1}^{n}. The spectre and eigen-functions of Δ are well-known [2]. Let V^{d} be the eigen-space of Δ corresponding to the d-th eigen-value $\lambda_{d}=d(d+n-1)$. Let $f_{0}, f_{1}, \cdots, f_{m(d)}$ be an orthonormal basis of V^{d} with respect to the inner product. Then

$$
\begin{aligned}
\psi_{n, d} & : S_{k(d)}^{n} \rightarrow S_{1}^{m(d)}\left(\subset \boldsymbol{R}^{m(d)+1}\right) \\
& ; p \rightarrow 1 /(m(d)+1)\left(f_{0}(p), f_{1}(p), \cdots, f_{m(d)}(p)\right),
\end{aligned}
$$

is an isometric minimal immersion, where $k(d)$ and $m(d)$ are as follows [6];

$$
\begin{aligned}
& k(d)=n / d(d+n-1) \\
& m(d)=(2 d+n-1)(d+n-2)!/ d!(n-1)!-1
\end{aligned}
$$

It is proved that any isometric minimal immersion of S_{c}^{2} into S_{1}^{N} is equivalent to $\psi_{2, d}$ for some d, [3], [6]. But it is not true if the dimension n is greater than 3. In fact do Carmo and Wallach proved the following

Theorem 0.1 (do Carmo and Wallach, [7]). Let $f: S_{c}^{n} \rightarrow S_{1}^{N}$ be an isometric minimal immersion. Then
(i) there exists an integer d such that $c=k(d)$.
(ii) There exists a positive semi-definite matrix A of size $(m(d)+1) \times(m(d)+1)$ such that f is equivalent to $A \circ \psi_{n, d}$.
(iii) If $n=2$ or $d \leqq 3$, then A is the identity matrix.
(iv) If $n \geqq 3$ and $d \geqq 4$, then A is parametrized by a compact convex body L in some finite dimensional vector space, $\operatorname{dim} L \geqq 18$. If A is an interior point of L then $N=m(d)$, and if A is a boundary point of L then $N<m(d)$.

There are some problems concerning (iv) of the above Theorem.

Problem 0.2 (Chern, [4]). Let $S_{c}^{3} \rightarrow S_{1}^{7}$ be an isometric minimal immersion. Is it totally geodesic?

In [5], do Carmo posed a more general
Problem 0.3. Determine the lower bound $1(d)$ of the dimension N of the sphere S_{1}^{N} into which a given $S_{k(d)}^{n}$ can be isometrically and minimally immersed.

Recently Problem 0.2 was negatively answered by N. Ejiri [8]. In fact he proved that there exists an isometric minimal immersion $S_{1 / 16}^{3} \rightarrow S_{1}^{6}$.

As for the Problem 0.3, scarcely anything is known.
In this paper we confine our consideration to the case $n=3$. In this case S^{3} has a structure of a Lie group, $S^{3}=S U(2)$. We investigate whether there exists an orbit in a representation space V of $S U(2)$, which is a minimal submanifold in the unit sphere in V. And we give an estimate for $1(d)$ (of the Problem 0.3 in the case $n=3$). The following will be proved.

Theorem A. Let d be an integer, $d \geqq 4$. Then there exists an isometric minimal immersion of $S_{3 / d(d+2)}^{3}$ into $S_{1}^{2 d+1}$.

Theorem B. Let d be an even integer, $d \geqq 6$. Then there exists an isometric minimal immersion of $S_{3 / d(d+2)}^{3}$ into S_{1}^{d}.

1. Complex linear representations of $S U(2)$

In this section we give a brief review on the complex linear representation of $S U(2)$.

The special unitary group $S U(2)$ is the group of matrices which acts on \boldsymbol{C}^{2} and leaves invariant the usual Hermitian inner product on \boldsymbol{C}. We can identify $S U(2)$ with the 3-dimensional unit sphere $S_{1}^{3}\left(\subset C^{2}\right)$ by

$$
S U(2) \rightarrow S_{1}^{3}: g \rightarrow g \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right], g \in S U(2)
$$

Then the induced metric on $S U(2)$ by the above diffeomorphism is the biinvariant metric on $S U(2)$.

A homogeneous polynomial on \boldsymbol{C}^{2} is called of degree d if it satisfies

$$
P(\lambda z, \lambda w)=\lambda^{d} P(z, w), \lambda \in \boldsymbol{C}, z, w \in \boldsymbol{C} .
$$

For each positive integer d, let $V(d)$ be the space of homogeneous polynomials of type $(d, 0)$ on \boldsymbol{C}^{2}. Then $S U(2)$ acts on $V(d)$ as follows

$$
(\rho(g)(P))(z, w)=P\left(^{t}\left(g^{-1} \cdot t(z, w)\right)\right), g \in S U(2), z, w \in \boldsymbol{C}, P \in V(d) .
$$

Then $(V(d), \rho)$ is a complex irreducible representation and each complex irreducible representation of $S U(2)$ is equivalent to $(V(d), \rho)$ for some d [12].

Define a Hermitian inner product in $V(d)$ by

$$
\begin{equation*}
(P, Q)=(d+1) \int_{g \in S U(2)} P\left(^{t}\left(g \cdot{ }^{t}(1.0)\right)\right) \overline{Q\left(^{t}\left(g \cdot \cdot^{t}(1.0)\right)\right)} d g \tag{1.1}
\end{equation*}
$$

where $d g$ is the normalized Haar measure on $S U(2)$. Let P_{i} be the polynomial in $V(d)$ defined by

$$
P_{i}(z, w)=\left({ }_{d} C_{i}\right)^{1 / 2} z^{d-i} w^{i}, z, w \in \boldsymbol{C} .
$$

Then $P_{0}, P_{1}, \cdots, P_{d}$ is an orthonormal basis of $V(d)$.
Let $\mathfrak{n t}(2)$ be the Lie algebra of $S U(2)$. Take the following basis of $\mathfrak{s u t (2)}$ and fix them once for all.

$$
X_{1}=\left[\begin{array}{cc}
(-1)^{1 / 2} & 0 \\
0 & -(-1)^{1 / 2}
\end{array}\right], \quad X_{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad X_{3}=\left[\begin{array}{cc}
0 & (-1)^{1 / 2} \\
(-1)^{1 / 2} & 0
\end{array}\right]
$$

Then the bracket relations of X_{1}, X_{2} and X_{3} are

$$
\left[X_{1}, X_{2}\right]=2 X_{3}, \quad\left[X_{2}, X_{3}\right]=2 X_{1}, \quad\left[X_{3}, X_{1}\right]=2 X_{2} .
$$

We denote also by ρ the representation of $\mathfrak{A l}(2)$ induced by the representation of $S U(2)$, i.e.,

$$
\rho(A)(P)=d /\left.d t\right|_{t=0} \rho(\exp t A)(P), A \in \mathfrak{B l u}(2)
$$

Then by a direct calculation we get

$$
\begin{array}{rr}
\rho\left(X_{1}\right)\left(P_{j}\right)=(-1)^{1 / 2}(2 j-d) P_{j}, & 0 \leqq j \leqq d, \\
\rho\left(X_{2}\right)\left(P_{j}\right)=-((d-j)(j+1))^{1 / 2} P_{j+1}+(j(d-j+1))^{1 / 2} P_{j-1} \\
& 0 \leqq j \leqq d, \\
\rho\left(X_{3}\right)\left(P_{j}\right)=-(-(d-j)(j+1))^{1 / 2} P_{j+1}-(-j(d-j+1))^{1 / 2} P_{j-1}, \tag{1.2}\\
0 \leqq j \leqq d,
\end{array}
$$

where we put $P_{-1}=P_{d+1}=0$.

2. Real irreducible representations of $\boldsymbol{S U (2)}$

In this section we give a brief review on real irreducible representations of $S U(2)$.

Let G be a compact Lie group and (V, ρ) be a complex irreducible representation of G. Then (V, ρ) is said to be self-conjugate if V has a structure map j, i.e., a conjugate linear map on V such that

$$
\begin{aligned}
& j(\rho(g) v)=\rho(g) j(v), \quad g \in G, \quad v \in V, \\
& j(\alpha v+\beta w)=\bar{\alpha} j(v)+\bar{\beta} j(w), \quad \alpha, \beta \in C, v, w \in V, \\
& j^{2}= \pm 1 .
\end{aligned}
$$

A self-conjugate representation (V, ρ) is said to be of index 1 (resp. -1) if $j^{2}=1$ (resp. $j^{2}=-1$). For simple Lie groups self-conjugate representations and their indices are known [13]. We denote by $\left(V_{\boldsymbol{R}}, \rho\right)$ the representation of G over \boldsymbol{R} obtained by the restriction of the coefficient field from \boldsymbol{C} to \boldsymbol{R}.

Let (V, ρ) be a self-conjugate representation of G of index -1 . Then $\left(V_{\boldsymbol{R}}, \rho\right)$ is also irreducible. But $\left(V_{\boldsymbol{R}}, \rho\right)$ is reducible if (V, ρ) is a self-conjugate representation of G of index 1 . Namely $(1+j) V_{\boldsymbol{R}}$ and $(1-j) V_{\boldsymbol{R}}$ are mutually equivalent real irreducible representation of G and

$$
V_{\boldsymbol{R}}=(1+j) V_{\boldsymbol{R}}+(1-j) V_{\boldsymbol{R}},(\text { direct sum })
$$

For these facts we refer, for instance, to [1].
Now we confine our attention to the case $G=S U(2)$.
Let j be a conjugate-linear automorphism on \boldsymbol{C}^{2} defined by

$$
j(z, w)=(-\bar{w}, \bar{z}), \quad z, w \in \boldsymbol{C}
$$

Extend j to an automorphism on $V(d)$ by

$$
(j P)(z, w)=\overline{P(j(z, w))}, \quad z, w \in \boldsymbol{C}
$$

Then j is a structure map on $V(d)$ with $j^{2}=(-1)^{d} 1$. So $\left(V(d)_{R}, \rho\right)$ is a selfconjugate representation of index $(-1)^{d}$. Let d be an even integer $d=2 d^{\prime}$ and put $Q_{i}=(-1)^{1 / 2} P_{i}, 0 \leqq i \leqq d$. Then

$$
j P_{i}=(-1)^{i} P_{d-i}, \quad j Q_{i}=-(-1)^{i} Q_{d-i}, \quad 0 \leqq i \leqq d
$$

Since $P_{0}, P_{1}, \cdots, P_{d}, Q_{0}, Q_{1}, \cdots, Q_{d}$ are basis of $V(d)_{R},(1+j) P_{i},(1+j) Q_{i}, 0 \leqq$ $i \leqq d$, are generators of $(1+j) V(d)_{R}$. It is easily seen that $(1+j) P_{i},(1-j) Q_{i}$, $0 \leqq i \leqq d-1$ and $(1+j) P_{d^{\prime}}\left[\right.$ resp. $\left.(1+j) Q_{d^{\prime}}\right]$ are basis of $(1+j) V(d)_{R}$ if a^{\prime} is an even [resp. odd] integer. We denote $(1+j) V(d)_{\boldsymbol{R}}$ by $V_{0}(d)$.

Lemma 2.1. Let d be an even integer, $d=2 d^{\prime}$. Then $\sum_{i=0}^{d} z_{i} P_{i}$ is contained in $V_{0}(d)$ if and only if

$$
z_{i}=(-1)^{i} \bar{z}_{d-i}, \quad 0 \leqq i \leqq d^{\prime}
$$

Proof.

$$
\begin{aligned}
\sum_{i=0}^{d} z_{i} P_{i}= & \left(\operatorname{Re} z_{0} P_{0}+\operatorname{Re} z_{d} P_{d}\right)+\left(\operatorname{Im} z_{0} Q_{0}+\operatorname{Im} z_{d} Q_{d}\right) \\
& +\left(\operatorname{Re} z_{1} P_{1}+\operatorname{Re} z_{d-1} P_{d-1}\right)+\left(\operatorname{Im} z_{1} Q_{1}+\operatorname{Im} z_{d-1} Q_{d-1}\right) \\
& +\cdots \cdots \cdots \\
& +z_{d^{\prime}} P_{d^{\prime}} .
\end{aligned}
$$

Remember that $P_{j}+(-1)^{j} P_{d-j}, Q_{j}-(-1)^{j} Q_{d-j}, 0 \leqq j \leqq d^{\prime}-1$ and $P_{d^{\prime}}$ [resp. $Q_{d^{\prime}}$] are basis of $V_{0}(d)$ if d^{\prime} is an even [resp. odd] integer. So $\sum_{i=0}^{d} z_{i} P_{i}$ is contained in $V_{0}(d)$ if and only if
$\operatorname{Re} z_{i}=(-1)^{i} \operatorname{Re} z_{d-i}, \quad \operatorname{Im} z_{i}=-(-1)^{i} \operatorname{Im} z_{d-i}, \quad 0 \leqq i \leqq d^{\prime}-1$. $\operatorname{Im} z_{d^{\prime}}=0$ [resp. $\left.\operatorname{Re} z_{d^{\prime}}=0\right]$ if d^{\prime} is even [resp. odd].

So we get the Lemma.
Q.E.D.

3. Orbits in a sphere

Let G be a Lie subgroup in $S O(N+1)$. Then G acts on the unit sphere S_{1}^{N} in \boldsymbol{R}^{N+1} centered at the origin in a natural manner. Take a point p_{0} in S_{1}^{N} and let M be the orbit of the action of G through p_{0}.

Let g be the Lie algebra of G. We denote by A^{*} the vector field on S_{1}^{N} defined by

$$
\begin{equation*}
A_{\mid p}^{*}=d / d t_{\mid t=0} \exp (t A)(p), \quad p \in S_{1}^{N} \tag{3.1}
\end{equation*}
$$

We consider elements of g as skew symmetric $(N+1) \times(N+1)$-matrices in a natural manner. Then we get from (3.1) the following

$$
A_{\mid p}^{*}=A(p), \quad A \in \mathrm{~g}, p \in S_{1}^{N}
$$

So the tangent space of M at p is

$$
T_{p}(M)=\{A(p) \mid A \in \mathrm{~g}\}
$$

Let $N_{p}(M)$ be the normal space at p in S_{1}^{N}. Consider the tangent space $T_{p}(M)$ and the normal space $N_{p}(M)$ as a subspace in \boldsymbol{R}^{N+1}. Then \boldsymbol{R}^{N+1} is decomposed into the direct sum

$$
\begin{equation*}
\boldsymbol{R}^{N+1}=\boldsymbol{R} p+T_{p}(M)+N_{p}(M) . \tag{3.2}
\end{equation*}
$$

For a vector A in \boldsymbol{R}^{N+1}, we denote A^{T} and A^{N} the $T_{p}(M)$-component and $N_{p}(M)$-component of A in the decomposition (3.2) respectively.

Lemma 3.1. Let G be a Lie subgroup in $S O(N+1)$. Let α be the second fundamental form of the orbit $G \cdot p$ in S_{i}^{N}. Then

$$
\begin{align*}
& \alpha\left(A^{*}, B^{*}\right)_{\mid p}=(A(B(p)))^{N}, \tag{3.3}\\
& \nabla_{B^{*}} A^{*}{ }_{\mid p}=(A(B(p)))^{T}, \quad A, B \in \mathrm{~g} . \tag{3.4}
\end{align*}
$$

where ∇ is the Riemannian connecion on M.
Proof. Let D be the Riemannian connection in \boldsymbol{R}^{N+1}. Then

$$
\begin{aligned}
D_{B^{*}} A_{\mid p}^{*} & =d / d t_{\mid t=0} A_{\operatorname{lexp}(t B)(p)} \\
& =d / d t_{\mid t=0} A(\exp (t B)(p)) \\
& =A(B(p))
\end{aligned}
$$

Since $\alpha\left(A^{*}, B^{*}\right)_{\mid p}=\left(D_{B^{*}} A^{*}{ }_{\mid p}\right)^{N}$ and $\nabla_{B^{*}} A^{*}{ }_{\mid p}=\left(D_{B^{*}} A^{*}{ }_{\mid p}\right)^{T}$, we get the Lemma. Q.E.D.

4. Left invariant metrics on $S U(2)$ and $S O(3)$

In this section we denote by G the Lie group $S U(2)$ or $S O(3)$. The Lie algebras of $S U(2)$ and $S O(3)$ are mutually isomorphic. We denote them by $\mathfrak{S u t}(2)$.

Let B be the Killing form of $\mathfrak{H l}(2)$. Then X_{1}, X_{2}, X_{3} defined in $\S 1$ are orthonormal with respect to $-B / 8$. Let g_{0} be the Riemannian metric on G which is the bi-invariant extension of $-B / 8$.
 an element σ in G such that
(i) $X_{i}^{\prime}=\operatorname{Ad}(\sigma)\left(X_{i}\right), i=1,2,3$, are mutually orthogonal with respect to g.
(ii) $g=\lambda_{1} \omega_{1}^{2}+\lambda_{2} \omega_{2}^{2}+\lambda_{3} \omega_{3}^{2}$, where λ_{i} are positive constants and $\omega_{i}(\cdot)=g_{0}\left(X_{i}^{\prime}, \cdot\right)$, $i=1,2,3$.

Let g be the Riemannian metric on G which is the left invariant extension of the inner product g on $\mathfrak{H l}(2)$. Extend $X_{i}^{\prime} /\left(\lambda_{i}\right)^{1 / 2}, 1 \leqq i \leqq 3$, to the left invariant vector fields $Y_{i}, 1 \leqq i \leqq 3$. Let $\theta_{i}, 1 \leqq i \leqq 3$, be the dual coframe fields on G to $Y_{i}, 1 \leqq i \leqq 3$. Let $\theta_{i j}$ (resp. $\Omega_{i j}$) be the connection (resp. curvature) form of (G, g) with respect to the orthonormal frame fields Y_{1}, Y_{2}, Y_{3}. Then we get easily

$$
\begin{aligned}
& \theta_{12}=-\left(\lambda_{1}+\lambda_{2}-\lambda_{3}\right) /\left(\lambda_{1} \lambda_{2} \lambda_{3}\right)^{1 / 2} \theta_{3}, \\
& \theta_{23}=-\left(\lambda_{2}+\lambda_{3}-\lambda_{1}\right) /\left(\lambda_{1} \lambda_{2} \lambda_{3}\right)^{1 / 2} \theta_{1}, \\
& \theta_{31}=-\left(\lambda_{3}+\lambda_{1}-\lambda_{2}\right) /\left(\lambda_{1} \lambda_{2} \lambda_{3}\right)^{1 / 2} \theta_{2}, \\
& \Omega_{12}=\left(\left(\left(\lambda_{1}-\lambda_{2}\right)^{2}-3 \lambda_{3}^{2}+2 \lambda_{3}\left(\lambda_{1}+\lambda_{2}\right)\right) / \lambda_{1} \lambda_{2} \lambda_{3}\right) \theta_{1} \Lambda \theta_{2}, \\
& \Omega_{23}=\left(\left(\left(\lambda_{2}-\lambda_{3}\right)^{2}-3 \lambda_{1}^{2}+2 \lambda_{1}\left(\lambda_{2}+\lambda_{3}\right)\right) / \lambda_{1} \lambda_{2} \lambda_{3}\right) \theta_{2} \Lambda \theta_{3}, \\
& \Omega_{31}=\left(\left(\left(\lambda_{3}-\lambda_{1}\right)^{2}-3 \lambda_{2}^{2}+2 \lambda_{2}\left(\lambda_{3}+\lambda_{1}\right)\right) / \lambda_{1} \lambda_{2} \lambda_{3}\right) \theta_{3} \Lambda \theta_{1} .
\end{aligned}
$$

So (G, g) is a space of constant curvature k if and only if $\lambda_{1}=\lambda_{2}=\lambda_{3}=1 / k$, i.e., $g=(1 / k) g_{0}$.

Let (V, ρ) be a real representation of G and \langle,$\rangle be a G$-invariant inner product on V. Then an orbit M of G through a unit vector $p \in V$ is contained in the unit sphere S_{1} (in V centered at the origin).

Lemma 4.2. (i) The orbit M is a 3-dimensional space of constant curvature k if and only if

$$
\left\langle\rho\left(X_{i}\right)(p), \rho\left(X_{j}\right)(p)\right\rangle=\delta_{i j} / k, \quad 1 \leqq i, j \leqq 3 .
$$

(ii) Assume that the orbit M is a 3-dimensional space of constant curvature k.

Then M is a minimal submanifold in S_{1} if and only if

$$
\sum_{j=1}^{3} \rho\left(X_{j}\right)^{2}(p)=-3 k p
$$

Proof. Define a map $f: G \rightarrow S_{1}$ by

$$
f(\sigma)=\rho(\sigma)(p), \quad \sigma \in S_{1}
$$

Then

$$
f_{*}\left(X_{i}\right)=\rho\left(X_{i}\right)(p)
$$

Let g be the induced metric on G of f_{*}. Then g is a left invariant metric. So (G, g) is a 3 -dimensional space of constant curvature k if and only if $g=(1 / k) g_{0}$. By definition of g

$$
\begin{aligned}
g\left(X_{i}, X_{j}\right) & =\left\langle\rho\left(X_{i}\right)(p), \rho\left(X_{j}\right)(p)\right\rangle \\
& =g_{0}\left(X_{i}, X_{j}\right) / k \\
& =\delta_{i j} / k, \quad 1 \leqq i, j \leqq 3
\end{aligned}
$$

if and only if $g=(1 / k) g_{0}$.
(ii) Since (G, g) is a space of constant curvature, $\exp t X_{i}$ are geodesics in (G, g). By Lemma 3.1, $\left(\rho\left(X_{i}\right)\right)^{2}(p)$ is normal to M. Consider the vector $\sum_{i=1}^{3}\left(\rho\left(X_{i}\right)\right)^{2}(p)$ in V, which is normal to M. Then its $N_{p}(M)$-components in the decomposition (3.2) is the mean curvature vector of M in S_{1} at p. Since M is an orbit of a representation of G, M is a minimal submanifold in S_{1} if and only if the mean curvature vector of M in S_{1} at one point is 0 . So M is a minimal submanifold if and only if

$$
\begin{equation*}
\sum_{i=1}^{3}\left(p\left(X_{i}\right)\right)^{2}(p)=c p \tag{4.1}
\end{equation*}
$$

for some constant c. Assume that (4.1) holds, then

$$
\begin{aligned}
c & =\left\langle\sum_{i=1}^{3}\left(\rho\left(X_{i}\right)\right)^{2}(p), p\right\rangle \\
& =-\sum_{i=1}^{3}\left\langle\rho\left(X_{i}\right)(p), \rho\left(X_{i}\right)(p)\right\rangle \\
& =-3 k
\end{aligned}
$$

Q.E.D.

5. Proof of Theorems

For each integer d, there exists a (complex) irreducible linear representation of $S U(2)$. We denote by $\left(V(d)_{R}, \rho\right)$ the real representation of $S U(2)$ obtained by the restriction of the coefficient field. Then $\left(V(d)_{\boldsymbol{R}}, \rho\right)$ is irreducible if d is odd. $\left(V(d)_{\boldsymbol{R}}, \rho\right)$ is reducible if d is even and we denote by $V_{0}(d)$ one of the irreducible component of $V(d)_{\boldsymbol{R}}$. In this section we study whether there exists an orbit of constant curvature which is a minimal submanifold in the unit sphere in $V(d)_{\boldsymbol{R}}$ or $V_{0}(d)$.

Let \langle,$\rangle be the real part of the S U(2)$-invariant Hermitian inner product (,) on $V(d)$ defined in (1.1). Then \langle,$\rangle is an S U(2)$-invariant inner product on $V(d)_{\boldsymbol{R}}$.

Let $p=\sum_{i=0}^{d} z_{i} P_{i} \in S_{1}^{2 d+1}$, i.e.,

$$
\begin{equation*}
\sum_{i=0}^{d} z_{i} \bar{z}_{i}=1 \tag{5.1}
\end{equation*}
$$

By a formula of Freudenthal [14], we have

$$
\begin{equation*}
\rho\left(X_{1}\right)^{2}+\rho\left(X_{2}\right)^{2}+\rho\left(X_{3}\right)^{2}=-d(d+2) 1 \tag{5.2}
\end{equation*}
$$

Then the following is an immediate consequence of Lemma 4.2.
Lemma 5.1. If an orbit $M=\rho(S U(2))(p)$ is a space of constant curvature k, then
(i) $k=3 / d(d+2)$,
(ii) M is a minimal submanifold in $S_{1}^{2 d+1}$.

By virtue of the above Lemma, we have only to verify the existence of an orbit of constant curvature in $S_{1}^{2 d+1}$ to prove Theorem A.

Extend $\rho: \mathfrak{S u}(2) \rightarrow \mathfrak{g l}(d+1, \boldsymbol{C})$ to $\mathfrak{s l}(2, \boldsymbol{C})=(\mathfrak{B u}(2))^{\boldsymbol{C}}$ and put

$$
\begin{aligned}
& H=-(-1)^{1 / 2} X_{1}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right], \quad X=X_{2}-(-1)^{1 / 2} X_{3}=\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right] \\
& Y=-X_{2}-(-1)^{1 / 2} X_{3}=\left[\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right]
\end{aligned}
$$

Then from (1.2), we get

$$
\begin{align*}
& \rho(H)\left(P_{j}\right)=(2 j-d) P_{j}, \quad 0 \leqq j \leqq d, \tag{5.3}\\
& \rho(X)\left(P_{j}\right)=-2((d-j)(j+1))^{1 / 2} P_{j+1}, \quad 0 \leqq j \leqq d, \tag{5.3}\\
& \rho(Y)\left(P_{j}\right)=-2(j(d-j+1))^{1 / 2} P_{j-1}, \quad 0 \leqq j \leqq d
\end{align*}
$$

where we put $P_{-1}=P_{d+1}=0$.
Lemma 5.2. An orbit $M=\rho(S U(2))(p)$ is a space of constant curvature $3 / d(d+2)$ if and on!y if

$$
\begin{align*}
& (\rho(H)(p), \rho(X)(p))+\overline{(\rho(H)(p), \rho(Y)(p))}=0 \tag{5.4}\\
& (\rho(X)(p), \rho(Y)(p))=0 \tag{5.4}\\
& (\rho(H)(p), \rho(H)(p))=d(d+2) / 3 \tag{5.4}
\end{align*}
$$

Proof. By definition of H, X and Y

$$
X_{1}=(-1)^{1 / 2} H, \quad X_{2}=X-Y, \quad X_{3}=(-1)^{1 / 2}(X+Y)
$$

A simple computation shows

$$
\begin{aligned}
& \left\langle\rho\left(X_{1}\right)(p), \rho\left(X_{2}\right)(p)\right\rangle \\
= & \left\langle(-1)^{1 / 2} \rho(H)(p), \rho(X)(p)-\rho(Y)(p)\right\rangle \\
= & -\operatorname{Im}(\rho(H)(p), \rho(X)(p))+\operatorname{Im}(\rho(H)(p), \rho(Y)(p)) .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& \left\langle\rho\left(X_{1}\right)(p), \rho\left(X_{3}\right)(p)\right\rangle \\
= & \operatorname{Re}(\rho(H)(p), \rho(X)(p))+\operatorname{Re}(\rho(H)(p), \rho(Y)(p)), \\
& \left\langle\rho\left(X_{2}\right)(p), \rho\left(X_{3}\right)(p)\right\rangle \\
= & 2 \operatorname{Im}(\rho(X)(p), \rho(Y)(p)), \\
& \left\langle\rho\left(X_{1}\right)(p), \rho\left(X_{1}\right)(p)\right\rangle \\
= & (\rho(H)(p), \rho(H)(p)), \\
& \left\langle\rho\left(X_{2}\right)(p), \rho\left(X_{2}\right)(p)\right\rangle \\
= & (\rho(X)(p), \rho(X)(p))+(\rho(Y)(p), \rho(Y)(p))-2 \operatorname{Re}(\rho(X)(p), \rho(Y)(p)) \\
& \left\langle\rho\left(X_{3}\right)(p), \rho\left(X_{3}\right)(p)\right\rangle \\
= & (\rho(X)(p), \rho(X)(p))+(\rho(Y)(p), \rho(Y)(p))+2 \operatorname{Re}(\rho(X)(p), \rho(Y)(p)) .
\end{aligned}
$$

An orbit $M=\rho(S U(2))(p)$ is a space of constant curvature $3 / d(d+2)$ if and only if

$$
\left\langle\rho\left(X_{i}\right)(p), \rho\left(X_{j}\right)(p)\right\rangle=d(d+2) / 3 \delta_{i j}, \quad 1 \leqq i, i \leqq 3,
$$

by Lemma 4.2. Taking (5.2) into account, the Lemma is an immediate consequence.
Q.E.D.

Proof of Theorems. Let $p=\sum_{j=0}^{d} z_{j} P_{j}$ be a point in $S_{1}^{2 d+1}$, i.e.,

$$
\begin{equation*}
\sum_{j=0}^{d} z_{j} \bar{z}_{j}=1 \tag{5.1}
\end{equation*}
$$

From $(5.3)_{1},(5.3)_{2}$ and $(5.3)_{3}$, we get

$$
\begin{aligned}
& \rho(H)(p)=\sum_{j=0}^{d}(2 j-d) z_{j} P_{j}, \\
& \rho(X)(p)=-2 \sum_{j=0}^{d-1}((d-j)(j+1))^{1 / 2} z_{j} P_{j+1}, \\
& \rho(Y)(p)=-2 \sum_{j=1}^{d}(j(d-j+1))^{1 / 2} z_{j} P_{j-1} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \rho((H)(p), \rho(X)(p))+\overline{(\rho(H)(p), \rho(Y)(p)}) \\
= & -2 \sum_{j=1}^{d}(2 j-d)(j(d-j+1))^{1 / 2} z_{j} \bar{z}_{j-1}-2 \sum_{j=0}^{d-1}(2 j-d)((j+1)(d-j))^{1 / 2} z_{j} \bar{z}_{j+1}, \\
& (\rho(X)(p), \rho(Y)(p)) \\
= & 4 \sum_{j=0}^{d-1}(j(j+1)(d-j+1)(d-j))^{1 / 2} z_{j-1} \bar{z}_{j+1}, \\
& (\rho(H)(p), \rho(H)(p)) \\
= & \sum_{j=0}^{d}\left(d^{2}-4 d j+4 j^{2}\right) z_{j} \bar{z}_{j} .
\end{aligned}
$$

So (5.4) $)_{1}$ and $(5.4)_{2}$ is equivalent to the following
$(5.5)_{1} \quad \sum_{j=1}^{d}(2 j-d)(j(d-j+1))^{1 / 2} z_{j} \bar{z}_{j-1}+\sum_{j=0}^{d-1}(2 j-d)((j+1)(d-j))^{1 / 2} z_{j} \bar{z}_{j+1}=0$, $(5.5)_{2} \quad \sum_{j=1}^{d-1}(j(j+1)(d-j+1)(d-j))^{1 / 2} z_{j-1} \bar{z}_{j+1}=0$.
Taking (5.1) into account, (5.4) ${ }_{3}$ is equivalent to
$(5.5)_{3} \quad \sum_{j=0}^{d}\left(6 j^{2}-6 d j+d^{2}-d\right) z_{j} \bar{z}_{j}=0$.
Now we prove the system of equations $(5.5)_{1},(5.5)_{2}$ and $(5.5)_{3}$ has a solution under the condition (5.1)

When $d=4$ we put

$$
z_{i}= \begin{cases}1 / 2, & \text { if } i=0,4 \\ (-2)^{1 / 2} / 2, & \text { if } i=2 \\ 0, & \text { if } i=1,3\end{cases}
$$

When d is an even integer $d=2 d^{\prime}$ and $d \geqq 6$, we put

$$
z_{i}= \begin{cases}\left(\left(d^{\prime}+1\right) / 6 d^{\prime}\right)^{1 / 2} & , \\ (-1)^{d^{\prime} / 2}\left(\left(2 d^{\prime}-1\right) / 3 d^{\prime}\right)^{1 / 2}, & \text { if } j=d^{\prime} \\ 0 & , \\ \text { if otherwise }\end{cases}
$$

When d is an odd integer $d=2 d^{\prime}+1, d^{\prime} \geqq 2$, we put

$$
z_{i}= \begin{cases}\left(\left(d^{\prime}+2\right) /\left(3 d^{\prime}+3\right)\right)^{1 / 2}, & \text { if } i=0 \\ \left(\left(2 d^{\prime}+1\right) /\left(3 d^{\prime}+3\right)\right)^{1 / 2}, & \text { if } i=d^{\prime}+1 \\ 0, & \text { if otherwise }\end{cases}
$$

Then it is easily verified that $\left(z_{0}, z_{1}, \cdots, z_{d}\right)$ is a solution of the equation. So Theorem A is proved.

When d is an even integer, $d \geqq 6, \sum_{i=0}^{d} z_{i} P_{i}$ is contained in $V_{0}(d)$ by Lemma 2.1. So the orbit passing this point must be contained in the unit sphere in $V_{0}(d)$. So we get Theorem B.
Q.E.D.

In Theorem B the case $d=4$ is excluded. But this is a natural consequence of the following

Theorem 5.7 (J.D. Moore, [10]). Let M be a connected n-dimensional Riemannian manifold of constant curvature k isometrically and minimally immersed in a simply connected ($2 n-1$)-dimensional Riemannian manifold N of constant curvature K. Then either M is totally geodesic or it is flat.

Recently Li [9] proved the following

Theorem. If $\Phi: S^{m} \rightarrow S_{1}^{n}$ is an isometric minimal immersion, then $\Phi\left(S^{m}\right)$ is either an embedded sphere or an embedded projective space.

But this is not true if the codimension is not maximal. Let M be the orbit passing $\left(2^{1 / 2} P_{0}-(-5)^{1 / 2} P_{3}+2^{1 / 2} P_{6}\right) / 3$ in $V_{0}(6)$. As we proved, M is a space of constant curvature $1 / 16$ and is a minimal submanifold in S_{1}^{6}. But the orbit is neither an embedded sphere nor an embedded projective space in S_{1}^{6}. Namely we have the following

Proposition 5.8. Let π be the covering map

$$
\pi: S U(2) \rightarrow M ; g \rightarrow \rho(g)\left(\left(2^{1 / 2} P_{0}-(-5)^{1 / 2} P_{3}+2^{1 / 2} P_{6}\right) / 3\right)
$$

Then π is at least 6-fold.

$$
\begin{aligned}
\text { Proof. Put } g= & {\left[\begin{array}{cc}
\alpha & \\
& \alpha^{-1}
\end{array}\right], \alpha=e^{(-1)^{1 / 2} k \pi / 3}(0 \leqq k \leqq 5) . \quad \text { Then } } \\
& =\left(2^{1 / 2} \alpha^{-6} P_{0}-(-5)^{1 / 2} \alpha^{-3} \alpha^{3} P_{3}+2^{1 / 2} \alpha^{6} P_{6}\right) / 3 \\
& =\left(2^{1 / 2} P_{0}-(-5)^{1 / 2} P_{3}+2^{1 / 2} P_{6}\right) / 3
\end{aligned}
$$

So the covering π is at least 6 -fold.
Q.E.D.

References

[1] J.F. Adams: Lectures on Lie groups, The University of Chicago Press, Chicago \& London, 1969.
[2] M. Berger, P. Gauduchon et E. Mazet: Le spectre d'une variété Riemannienne, Lecture Notes in Math., Springer Verlag, Berlin-Heiderberg-New York, 1971.
[3] E. Calabi: Minimal immersions of surfaces in Euclidean spheres, J. Differential Geom. 1 (1967), 111-126.
[4] S.S. Chern: Brief survey of minimal submanifolds, Berichte aus dem Math, Forshungsinstitut Oberwolfach, 4 (1971), 43-59.
[5] M.P. do Carmo: Brief survey of minimal submanifolds II, ibid, 9-23.
[6] M.P. do Carmo and N. Wallach: Representations of compact Lie groups and minimal immersions into spheres, J. Differential Geom. 4 (1970), 91-104.
[7] -: Minimal immersions of spheres into spheres, Ann. of Math. 93 (1971), 43-62.
[8] N. Ejiri: Totally real submanifold in a 6-sphere, Proc. Amer. Math. Soc. 83 (1981), 759-763.
[9] P. Li: Minimal immersions of compact irreducible homogeneous Riemannian manifolds, J. Differential Geom. 16 (1981), 105-115.
[10] J.D. Moore: Isometric immersions of space forms in space forms, Pacific J. Math. 40 (1972), 157-166.
[11] K. Sugahara: The sectional curvature and the diameter estimate, Math. Japon. 26 (1981), 153-159.
[12] M. Sugiura: Unitary representations and harmonic analysis, John Wiley and Sons, New York-London-Sidney-Toronto, 1975.
[13] J. Tits: Tabellen zu den einfachen Lieshen Gruppen und ihre Darstellungen, Springer Verlag, Berlin, 1967.
[14] N. Wallach: Harmonic analysis on homogeneous spaces, Marcel Dekker, New York, 1973.

Institute of Mathematics
University of Tsukuba
Sakura-mura Niihari-gun
Ibaraki 305 Japan

