TACHIKAWA'S THEOREM ON ALGEBRAS OF LEFT COLOCAL TYPE

Dedicated to Professor Hirosi Nagao on his 60th birthday

Takeshi SUMIOKA

(Received December 14, 1982)

Introduction

Let A be an artinian ring. Then A is said to be of right local type if any finitely generated indecomposable right A-module M is local (i.e. M has a unique maximal submodule) and a ring of left colocal type is defined as the dual notion. We say A is left serial if a left A-module A is a direct sum of uniserial submodules. Tachikawa [4, 5] gave characterizations of algebras of right local (or equivalently of left colocal) type.

Theorem (Tachikawa). For a finite dimensional algebra A with the Jacobson radical N, the following conditions (a)-(d) are equivalent.
(a) A is of right local type.
(b) A is of left colocal type.
(c) $\left(c_{1}\right) A$ is left serial.
(c_{2}) For any uniserial left A-modules L_{1} and L_{2} with $\left|L_{1}\right| \leq\left|L_{2}\right|$, any isomorphism $\theta: S_{1}\left(L_{1}\right) \rightarrow S_{1}\left(L_{2}\right)$ is $\left(L_{1}, L_{2}\right)$-maximal or $\left(L_{1}, L_{2}\right)$-extendible (see Section 1 for the definitions), where $\left|L_{i}\right|$ is the composition length of L_{i} and $S_{1}\left(L_{i}\right)$ is the socle of L_{i} for $i=1,2$.
(c3) $\left|e N / e N^{2}\right| \leq 2$ for any primitive idempotent e of A.
(d) $\left(\mathrm{d}_{1}\right) \quad A$ is left serial.
(d_{2}) $e N=M_{1} \oplus M_{2}$ for any primitive idempotent e of A, where M_{i} is either zero or a uniserial submodule of the right A-module $e N$ for each $i=1,2$.

More precisely Tachikawa [4] gave a proof of the equivalence of (b) and (c) for any artinian ring. But in the proof of the implication from (c) to (b), there were two gaps. He himself pointed out one of them, namely [4, Lemma 4.9], and informed Fuller of it and that the lemma holds for any artinian ring under a suitable assumption (D) which is satisfied for any finite dimensional algebra over a field (cf. Section 3 for the definition of (D). See also Fuller [3, Note p. 165].). Now the other one (which is related to [4, Corollary 4, 6])
can be filled with an elementary lemma (i.e. Lemma 1.1 below, which is essentially used in [5, Proposition 4, 2]) under the additional assumption (D).

In Section 3 we shall give a self-contained proof for the above stated implication from (c) to (b). On the other hand we shall point out in Section 4 that the equivalence of (c) and (d) holds for any artinian rings. Unfortunately it remains open whether any ring of colocal type satisfies (D), however in the last Section we shall give an example of an artinian ring which satisfies (c) but not (b) and remark that some simultaneous equations with 6 -unknowns are closely related to this problem.

For the sake of completeness we shall also give a proof of the implication from (b) to (c) together with proofs for results which have been shown in [4] and [1].

Throughout this paper A is a left and right artinian ring with unity, N is the Jacobson radical of A and all modules are finitely generated (unitary) left A-module unless otherwise stated. For a module M, we denote the top $M / N M$ of M by \bar{M}, the composition length of M by $|M|$. For any integer $i \geq 0$ we define a submodule $S_{i}(M)$ of a module M inductively as following: $S_{0}(M)=0$ and $S_{i}(M) / S_{i-1}(M)$ is the socle of $M / S_{i-1}(M)$. We denote by $p(A)$ the set of primitive idempotents of A. Symbols (a), $\cdots,(\mathrm{d})$ always mean the conditions in the theorem above.

The author wishes to express his thanks to Professor H. Tachikawa for his valuable advice.

1. Preliminaries

Let M_{1} and M_{2} be modules with submodules T_{1} and T_{2}, respectively. If a homomorphism $\varphi: M_{1} \rightarrow M_{2}$ canonically induces a map $T_{1} \rightarrow T_{2}$, the map is also denoted by $\varphi: T_{1} \rightarrow T_{2}$. Let $\theta: T_{1} \rightarrow T_{2}$ be a homomorphism. We say θ is $\left(M_{1}, M_{2}\right)$-extendible if θ is induced from some homomorphism $\varphi: M_{1} \rightarrow M_{2}$, and in this case φ is an extension of θ. We say θ is $\left(M_{1}, M_{2}\right)$-maximal if there is no module U such that $T_{1} \subsetneq U \subset M_{1}$ and θ is $\left(U, M_{2}\right)$-extendible. In case $T=T_{1}=T_{2}$ and θ is 1_{T} the identity map of T, we simply say T is $\left(M_{1}, M_{2}\right)$ extendible (resp.-maximal) if 1_{T} is (M_{1}, M_{2})-extendible (resp.-maximal).

The following lemma is clear.
Lemma 1.1. Let M_{1}, M_{2} and T be submodules of a module M such that $M=M_{1}+M_{2}$ and $T=M_{1} \cap M_{2}$. If T^{\prime} is a submodule of T and $\varphi: M_{1} \rightarrow M_{2}$ is an extension of $1_{T^{\prime}}$, then for $M_{1}^{\prime}=\left\{x-x \varphi \mid x \in M_{1}\right\}$ the following hold.
(1) $M=M_{1}^{\prime}+M_{2}$.
(2) $M_{1}^{\prime} \cap M_{2}=\{x-x \varphi \mid x \in T\}$.
(3) The epimorphism $M_{1} \rightarrow M_{1}^{\prime}$ defined by $x \rightarrow(x-x \varphi) ; x \in M_{1}$, induces epimorphisms $M_{1} / T^{\prime} \rightarrow M_{1}^{\prime}$ and $T / T^{\prime} \rightarrow M_{1}^{\prime} \cap M_{2}$, in particular $\left|M_{1}^{\prime} \cap M_{2}\right| \leq|T|-\left|T^{\prime}\right|$.

The following lemmas 1.2 and 1.3 are due to Tachikawa [4, Lemma 1.3 and Lemma 4.4].

Lemma 1.2. Let M_{1}, M_{2} and T be submodules of a module M such that $M=M_{1}+M_{2}$ and $T=M_{1} \cap M_{2}$. Then
(1) T is $\left(M_{1}, M_{2}\right)$-extendible if and only if $M=M_{1}^{\prime} \oplus M_{2}$ for some submodule M_{1}^{\prime} of M.
(2) T is $\left(M_{1}, M_{2}\right)$-maximal if and only if $S_{1}(M)=S_{1}\left(M_{2}\right)$.

Proof. (1) 'Only if' part is immediate from Lemma 1.1. If $M=M_{1}^{\prime} \oplus M_{2}$, then the restriction map $\pi_{2}: M_{1} \rightarrow M_{2}$ of the projection $\pi_{2}: M_{1}^{\prime} \oplus M_{2} \rightarrow M_{2}$ is clearly an extension of 1_{T}.
(2) 'Only if' part: Assume $S_{1}(M)=U^{\prime} \oplus S_{1}\left(M_{2}\right)$ for a non-zero module U^{\prime}. Since $U^{\prime} \cap M_{2}=0$ and $U^{\prime} \oplus M_{2} \supset M_{2}, U^{\prime} \oplus M_{2}=\left(M_{1}+M_{2}\right) \cap\left(U^{\prime} \oplus M_{2}\right)=$ $\left(M_{1} \cap\left(U^{\prime} \oplus M_{2}\right)\right)+M_{2}$. Put $U=M_{1} \cap\left(U^{\prime}+M_{2}\right)$. Then we have $U+M_{2}=$ $U^{\prime} \oplus M_{2}, T=U \cap M_{2}$ and $T \subsetneq U \subset M_{1}$. Applying (1) to $U+M_{2}, T$ is $\left(U, M_{2}\right)-$ extendible.
'If' part: Assume $\varphi: U \rightarrow M_{2}$ is an extension of 1_{T} with $T \subsetneq U \subset M_{1}$. From (1) we have $U+M_{2}=U^{\prime} \oplus M_{2}$ for some module $U^{\prime} \neq 0$. Thus $S_{1}(M) \supset$ $S_{1}\left(U^{\prime}\right) \oplus S_{1}\left(M_{2}\right) \supsetneq S_{1}\left(M_{2}\right)$.

Lemma 1.3. Let $M_{i}(i=1,2,3)$ and T be submodules of a module M such that $M=M_{1}+\left(M_{2} \oplus M_{3}\right)$ and $T=M_{1} \cap\left(M_{2} \oplus M_{3}\right)$, and $\pi_{3}: T \rightarrow M_{3}$ the restriction map of the projection $M_{2} \oplus M_{3} \rightarrow M_{3}$. Then π_{3} is $\left(M_{1}, M_{3}\right)$-extendible if and only if $M=\left(M_{1}^{\prime}+M_{2}\right) \oplus M_{3}$ for some submodule M_{1}^{\prime} of M.

Proof. This is shown by the method similar to the proof of (1) in Lemma 1.2.

Let M and $P_{i}(i=1, \cdots, n)$ be modules. Then a map $\varphi: M \rightarrow \bigoplus_{i=1}^{n} P_{i}$ has a matrix representation $\varphi=\left(\varphi_{1}, \cdots, \varphi_{n}\right)$ by the composition maps $\varphi_{j}: M \rightarrow P_{j}$ of $\varphi: M \rightarrow \oplus_{i=1}^{n} P_{i}$ and the projections ${\underset{i=1}{n} P_{i} \rightarrow P_{j} \text {. Similarly a map } \psi: \oplus_{i=1}^{n} P_{i} \rightarrow M}^{\varphi_{i}}$ has a matrix representation $\psi=\left(\psi_{1}, \cdots, \psi_{n}\right)^{T}$ (the transposed matrix of $\left.\left(\psi_{1}, \cdots, \psi_{n}\right)\right)$ by the maps $\psi_{i}: P_{i} \rightarrow M$. For idempotents e and f of A, we assume that $u \in t\left(e N^{r-1} f\right)$ means $e N^{r-1} f \supsetneq e N^{r} f, u \in e N^{r-1} f$ and $u \notin e N^{r} f$.

Let $u_{i} \in t\left(e N^{r-1} f_{i}\right)$, where $e, f_{i} \in p(A)$ and $i=1, \cdots, n$. Denote a residue class of $x \in e A$ in $e A / e N^{r}$ by \bar{x} and that of $y \in A f_{i}$ in $A f_{i} / N^{r} f_{i}$ by [$\left.y\right]_{i}$ or simply by $[y]$.

Lemma 1.4. Let $u_{i} \in t\left(e N^{r-1} f_{i}\right)$ and put $P_{i}=A f_{i} / N^{r} f_{i}$ for an integer $r \geq 1$, where e is an idempotent of A, f_{i} is a primitive idempotent and $i=1, \cdots, n$. Then under the above notation, the following conditions are equivalent.
(1) $\left(\bar{u}_{1} A+\cdots+\bar{u}_{n-1} A\right) \cap \bar{u}_{n} A \neq 0$.
(2) $\bar{u}_{n} \in \bar{u}_{1} A+\cdots+\bar{u}_{n-1} A$.
(3) There is a homomorphism $\psi: \oplus_{i=1}^{n-1} P_{i} \rightarrow P_{n}$ such that $\left(\sum_{i=1}^{n-1}\left[u_{i}\right]_{i}\right) \psi=\left[u_{n}\right]_{n}$.
 φ_{n} is an identity map, where $\varphi=\left(\varphi_{1}, \cdots, \varphi_{n}\right)^{T}$.

Proof. The equivalences $(1) \Leftrightarrow(2)$ and $(3) \Leftrightarrow(4)$ are clear since $\bar{u}_{n} A$ is a simple module.
(2) $\Leftrightarrow(3)$. Note that any homomorphism $P_{i} \rightarrow P_{n}$ is induced from a right multiplication map $\tilde{a}_{i}: A f_{i} \rightarrow A f_{n}$ by $a_{i} \in A$ with $a_{i}=f_{i} a_{i} f_{n}$. The condition (2) is equivalent to one that there are elements $a_{i}=f_{i} a_{i} f_{n}$ of $A, i=1, \cdots, n-1$, with $\bar{u}_{n}=\bar{u}_{1} a_{1}+\cdots+\bar{u}_{n-1} a_{n-1}$ which is equivalent to $\left[u_{n}\right]=\left[u_{1} a_{1}\right]+\cdots+\left[u_{n-1} a_{n-1}\right]$. This shows the equivalence of (2) and (3).

We say that a module M is uniserial if M has a unique composition series, and an artinian ring A is left serial if a left A-module A is a direct sum of uniserial submodules.

The following corollaries immediate from Lemma 1.4, noting $A\left[u_{1}\right] \simeq A\left[u_{2}\right] \simeq$ $\overline{A e}$ in Corollary 1.6.

Corollary 1.5. Let A be a left serial ring, e a primitive idempotent of A and r and n integers ≥ 1. Then the following conditions are equivalent.
(1) $\left|\overline{e N^{r-1}}\right|<n$.
(2) If P_{1}, \cdots, P_{n} are uniserial modules with $\left|P_{i}\right|=r$ and $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$: $\overline{A e} \rightarrow{\underset{i=1}{n} P_{i}}$ is a map with monomorphism α_{i} for each $i=1, \cdots, n$, then there exists a map $\varphi=\left(\varphi_{1}, \cdots, \varphi_{n}\right)^{T}: \oplus_{i=1}^{n} P_{i} \rightarrow P_{j}$ for some $j(1 \leq j \leq n)$ such that $\alpha \varphi=0$ and φ_{j} is an identity map.

Corollary 1.6. An artinian ring A is right serial if and only if for any $u_{i} \in t\left(e N^{r-1} f_{i}\right)(i=1,2)$ the isomorphism $\theta: A\left[u_{1}\right] \rightarrow A\left[u_{2}\right]$ with $\left[u_{1}\right] \theta=\left[u_{2}\right]$ is $\left(P_{1}, P_{2}\right)-$ extendille, where $e, f_{i} \in p(A), P_{i}=A f_{i} / N^{r} f_{i}$ and $\left[u_{i}\right]=u_{i}+N^{r} f_{i} \in P_{i}$. In particular, a left serial ring A is (left and right) serial if and only if for any uniserial modules L_{1} and L_{2} with $\left|L_{1}\right| \leq\left|L_{2}\right|$, any isomorphism $\theta: S_{1}\left(L_{1}\right) \rightarrow S_{1}\left(L_{2}\right)$ is $\left(L_{1}, L_{2}\right)-$ extendible.

2. The implication from (b) to (c)

The results in this section were essentially delt with in [1] (see [1, Theorem 2.5 and Remark 4]).

Let (E): $0 \rightarrow T \xrightarrow{\alpha} \underset{i=1}{n} P_{i} \xrightarrow{\beta} M \rightarrow 0$ be an exact sequence of modules with monomorphism $\alpha_{i}: T \rightarrow P_{i}$ for each $i=1, \cdots, n$, where $n \geq 2, \alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ and $\beta=$
$\left(\beta_{1}, \cdots, \beta_{n}\right)^{T}$. Put $L_{i}=P_{i} \beta$. Let $\alpha_{j}^{\prime}: T \rightarrow \underset{\substack{i \neq j}}{\oplus} P_{i}$ and $\beta_{j}^{\prime}: \underset{i \neq j}{\oplus} P_{j} \rightarrow M$ denote maps induced from α and β, respectively. Then as easily seen β_{j} and β_{j}^{\prime} are monomorphisms for each j and in particular $P_{i} \simeq L_{i}$ and $\sum_{i \neq j} L_{i}=\oplus_{i \neq j}^{\oplus} L_{i}$. Moreover for any non-trivial partition $I=I_{1} \cup I_{2}$ of $I=\{1, \cdots, n\}$ (i.e. $l_{1}, I_{2} \subsetneq I$ and $I_{1} \cap I_{2}=\phi$) we have $\oplus_{I_{1}} L_{i} \cap \oplus_{I_{2}} L_{i} \simeq T$.

Conversely let T be a module and $M=\sum_{i=1}^{n} L_{i}$ a sum of submodules L_{i} of a module M with the following property:
(A) For each $j=1, \cdots, n, \sum_{i \neq j} L_{i}=\underset{i \neq j}{ } L_{i}$ and for some non-trivial partition $\{1, \cdots, n\}=I_{1} \cup I_{2}, \oplus_{I_{1}} L_{i} \cap \oplus_{I_{2}} L_{i} \simeq T$.

Put $P_{i}=L_{i}$ and let $\beta: \bigoplus_{i=1}^{n} P_{i} \rightarrow M=\sum_{i=1}^{n} L_{i}$ be a canonical map (i.e. (x_{1}, \cdots, $\left.x_{n}\right) \beta=\sum_{i=1}^{n} x_{i} ; x_{i} \in P_{i}$). Then it is easy to see that we have an exact sequence (E) with monomorphism α_{i} and $L_{i}=P_{i} \beta$ as above. We say a sum $M=\sum_{i=1}^{n} L_{i}$ of submodules L_{i} with $n \geq 2$ is a T-amalgamated sum (by (E)) if it has the property (A) (and $L_{i}=P_{i} \beta$ in the exact sequence (E)).

Remark 1. Consider the above exact sequence (E) and put $T_{j}=L_{j} \cap \underset{i \neq j}{\oplus} L_{j}$. Then we have commutative diagrams

with isomorphism rows and inclusion columns. Since $\alpha_{j}^{\prime}: T \rightarrow \underset{i \neq j}{\oplus} P_{i}$ and $\alpha_{j}: T \rightarrow P_{j}$ are monomorphisms, a map $\theta: T \alpha_{j}^{\prime} \rightarrow T \alpha_{j}$ defined by $t \alpha_{j}^{\prime} \theta=t \alpha_{j}$ $(t \in T)$ is well-defined and an isomorphism. Moreover we have $\left(t \alpha_{j}^{\prime}\right)(-\theta) \beta_{j}=$ $-t \alpha_{j} \beta_{j}=\left(t \alpha_{j}^{\prime}\right) \beta_{j}^{\prime} 1_{T_{j}} ; t \in T$. Therefore it follows from the above diagrams that θ orequivalently $-\theta$ is $\left(\underset{\substack{i \neq 1}}{\oplus} P_{i}, P_{j}\right)$-extendible (resp.-maximal) if and only if T_{j} is $\left(\underset{i \neq j}{\oplus} L_{i}, L_{j}\right)$-extendible (resp.-maximal).

Lemma 2.1. Let S be a simple module and L_{1}, \cdots, L_{n} local submodules of a module M such that $M=\sum_{i=1}^{n} L_{i}$ is an S-amalgamated sum, where $n \geq 2$ and $\left|L_{i}\right| \geq 2$ for each $i=1, \cdots, n$. Then M is decomposable if and only if S_{j} is $\left.\underset{i \neq j}{\oplus} L_{i}, L_{j}\right)$-extendible for some $j, 1 \leq j \leq n$, where $S_{j}=\left(\underset{i \neq j}{\oplus} L_{i}\right) \cap L_{j}$.

Proof. Assume M has a non-trivial decomposition $M=M_{1} \oplus M_{2}$. If $\sigma: M \rightarrow \bar{M}=M / N M$ is a canonical epimorphism, $L_{i} \sigma$ is simple and we have
$\bar{M}=L_{1} \sigma \oplus \cdots \oplus L_{n} \sigma=M_{1} \sigma \oplus M_{2} \sigma$ by the assumption. Then by [1, Lemma 1.1] there exists a non-trivial partition $\{1, \cdots, n\}=I_{1} \cup I_{2}$ such that $\bar{M}=M_{1} \sigma \oplus$ $\left(\oplus_{I_{2}} L_{i} \sigma\right)=\left(\oplus_{I_{1}} L_{i} \sigma\right) \oplus M_{2} \sigma$. Hence we have $M=M_{1}+\left(\oplus_{I_{2}} L_{i}\right)=\left(\oplus_{I_{1}} L_{i}\right)+M_{2}$, for $N M$ is small in M. But it holds $2|M|=\left(\sum_{i=1}^{n}\left|L_{i}\right|-1\right)+^{\prime}\left(\left|M_{1}\right|+\left|M_{2}\right|\right)$ since $|S|=1$. This shows $M=M_{1} \oplus\left(\oplus_{I_{2}} L_{i}\right)$ or $M=\left(\oplus_{I_{1}} L_{i}\right) \oplus M_{2}$. Thus L_{j} is a direct summand of M for some j, which implies S_{j} is $\left(\underset{i \neq j}{\oplus} L_{i}, L_{j}\right)$ extendible by Lemma 1.2. The converse is also immediate from Lemma 1.2.

Remark 2. 'Only if part' of Lemma 2.1 is essentially used in Proposition 2.4 for $n=2$ or 3 . In the case $n=2$ or 3 , Lemma 2.1 is shown by applying the Krull-Schmidt Theorem instead of [1, Lemma 1.1].

Corollary 2.2. Let S be a simple module and P_{i} a local module with $\left|P_{i}\right| \geq 2$ for each $i=1, \cdots, n$. Assume $(\mathrm{E}): 0 \rightarrow S \xrightarrow{\alpha} \underset{i=1}{\underset{\sim}{*}} P_{i} \xrightarrow{\beta} M \rightarrow 0$ is an exact sequence of modues with monomorphisms α_{i}, where $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$. Then the following conditions are equivalent.
(1) M is decomposable.
(2) There is a homomorphism $\psi: \underset{i \neq j}{\oplus} P_{i} \rightarrow P_{j}$ for some j such that $\alpha_{j}^{\prime} \psi=\alpha_{j}$, where $\alpha_{j}^{\prime}: S \rightarrow \underset{i \neq j}{\oplus} P_{i}$ is a map induced from α.
(3) There is a homomorphism $\varphi: \oplus_{i=1}^{n} P_{i} \rightarrow P_{j}$ for some j such that $\alpha \varphi=0$ and φ_{j} is an identity map, where $\varphi=\left(\varphi_{1}, \cdots, \varphi_{n}\right)^{T}$.

Proof. Each condition of (1), (2) and (3) implies $n \geq 2$. Hence, considering the S-amalgamated sum by the exact sequence (E), the corollary is immediate from Lemma 2.1 (see Remark 1).

Corollary 2.3. Let $u_{i} \in t\left(e N^{r-1} f_{i}\right)$ for $r \geq 2$ and put $S=\overline{A e}$ and $P_{i}=A f_{i} / N^{r} f_{i}$, where e, $f_{i} \in p(A)$ and $i=1, \cdots, n$. Let $\alpha_{i}: S \rightarrow P_{i}$ denute the monomorphism defined by $[a e] \alpha_{i}=\left[a e u_{i}\right] ;$ ae $\in A e$, where $[-]$ is a residue class in S or P_{i}. If $0 \rightarrow$ $S \xrightarrow{\alpha} P_{1} \oplus \cdots \oplus P_{n} \xrightarrow{\beta} M \rightarrow 0$ is an exact sequence with $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$, then the following conditions are equivalent.
(1) M is indecomposable.
(2) $\bar{u}_{1} A \oplus \cdots \oplus \bar{u}_{n} A \subset \overline{e N^{r-1}}$, where $\bar{u}_{i} \in \overline{e N^{r-1}}$ is a residue class of u_{i}.

Proof. This is immediate from Corollary 2.2 and Lemma 1.4.
We say that an artinian ring A is of left colocal type if any finitely generated indecomposable left A-module is colocal.

Proposition 2.4. Let A be an artinian ring of left colocal type. Then A
satisfies the condition (c) (i.e. $\left(c_{1}\right),\left(c_{2}\right)$ and $\left.\left(c_{3}\right)\right)$.
Proof. (c_{1}) If $\overline{N^{r-1} f} \neq 0$ for $f \in p(A)$ and an integer $r \geq 1$, then by the assumption an indecomposable module $A f / N^{r} f$ has a simple socle $S_{1}\left(A f / N^{r} f\right)$ which contains $\overline{N^{r-1} f}$. This shows $\overline{N^{r-1} f}$ is simple. Thus A is left serial.
(c c_{2} Let $\theta: S_{1}\left(L_{1}\right) \rightarrow S_{1} L_{2}$) be an isomorphism, where L_{1} and L_{2} are uniserial modules with $\left|L_{1}\right| \leq\left|L_{2}\right|$. Then as easily seen we may assume L_{1} and L_{2} are submodules of a module M such that $M=L_{1}+L_{2}, S=L_{1} \cap L_{2}$ is simple and θ is the identity map of S (see Remark 1). If θ is not (L_{1}, L_{2})-maximal, then by Lemma $1.2 S_{1}(M)$? $S_{1}\left(L_{2}\right)=S$. Hence M is not colocal, so M is decomposable by the assumption. Thus θ is $\left(L_{1}, L_{2}\right)$-extendible by Lemma 2.1.
(c c_{3} Suppose $|\overline{e N}| \geq 3$, where $e \in p(A)$. Then $\overline{e N} \supset \bar{u}_{1} A \oplus \bar{u}_{2} A \oplus \bar{u}_{3} A$ for some $u_{i} \in t\left(e N f_{i}\right) ; f_{i} \in p(A)$. Then there exists an indecomposable module M such that $\left|S_{1}(M)\right| \geq 2$ by Corollary 2.3. This is a contradiction. Thus it holds $|\overline{e N}| \leq 2$ for each $e \in p(A)$.

3. The implication from (c) to (b) under a condition (D)

Throughout this section, assume that A is a left serial ring. In this case any local left A-module is quasi-projective. Let L be a uniserial module with $|L|=n$ and put $L_{i}=S_{i}(L)$ and $D_{i}(L)=\operatorname{Hom}\left(\bar{L}_{i}, \bar{L}_{i}\right)$ for each $i=1, \cdots, n$. Then $D_{i}(L)$ is a division ring. If $n \geq i \geq j \geq 1$, any element $\overline{\mathcal{\rho}}_{i}: \bar{L}_{i} \rightarrow \bar{L}_{i}$ of $D_{i}(L)$ is induced from a map $\varphi_{i}: L_{i} \rightarrow L_{i}$, and moreover φ_{i} induces an map $\bar{\varphi}_{j}: \bar{L}_{j} \rightarrow \bar{L}_{j}$. Now we define a map $\lambda_{i j}: D_{i}(L) \rightarrow D_{j}(L)$ by $\left(\bar{\varphi}_{i}\right) \lambda_{i j}=\bar{\varphi}_{j}$. Then as easily seen $\lambda_{i j}$ are well-defined and ring monomorphisms with equalities $\lambda_{i j} \lambda_{j k}=\lambda_{i k}$ for all i, j and $k(n \geq i \geq j \geq k \geq 1)$. Hence through the maps $\lambda_{i j}$, we can regard a sequence $D_{1}(L), D_{2}(L), \cdots, D_{n}(L)$ as a descending chain

$$
D_{1}(L) \supset D_{2}(L) \supset \cdots \supset D_{n}(L)
$$

of division rings (cf. [4, p. 211]).
Lemma 3.1. Let A be a left serial ring. For a uniserial module L with $|L|=n$ and an integer r with $1 \leq r \leq n$, the following conditions are equivalent.
(1) $\quad D_{r}(L)=D_{n}(L)$.
(2) Any isomorphism $\theta: S_{1}(L) \rightarrow S_{1}(L)$ is (L, L-extendible whenever θ is ($S_{r}(L), S_{r}(L)$)-extendible.

Proof. Put $L_{i}=S_{i}(L), i=1, \cdots, n$ and let $\overline{\mathcal{P}}_{r}: \bar{L}_{r} \rightarrow \bar{L}_{r}$ be a map induced from an isomorphism $\varphi_{r}: L_{r} \rightarrow L_{r}$. As easily seen (1) is equivalent to a condition that there is a map $\psi_{n}: L_{n} \rightarrow L_{n}$ with $\left(L_{r}\right)\left(\varphi_{r}-\psi_{n}\right) \subset L_{r-1}$. Since L is uniserial, the last conditions is equivalent to $\left(L_{1}\right)\left(\varphi_{r}-\psi_{n}\right)=0$ which implies (2).

Remark 3. For an integer $r \geq 2$, the condition (2) of Lemma 3.1 does not
imply that any isomorphism $\varphi_{r}: S_{r}(L) \rightarrow S_{r}(L)$ is (L, L)-extendible (see Example 1).

It is called by S_{r}-classes isomorphism classes of uniserial modules with composition length r. Note that for e and f in $p(A)$ and an integer $r \geq 1, \overline{f A}$ is embedded in $\overline{e N^{r-1}}$ if and only if $\overline{A e}$ is embedded in $\overline{N^{r-1}} f$, since these conditions are equivalent to $e N^{r-1} f / e N^{r} f \neq 0$.

Lemma 3.2. Let A be a left serial ring and e, f_{1}, \cdots, f_{s} and f be primitive idempotents with $f_{i} A \neq f_{j} A$ for $i \neq j$. Then for any integer $r \geq 1$ the following hold.
(1) $\overline{f_{1} A} \oplus \cdots \oplus \overline{s_{s} A}$ is embedded in $\bar{e} \overline{N^{r-1}}$ if and only if $L_{i}=A f_{i} \mid N^{r} f_{i}$ $(i=1, \cdots, s)$ satisfy $\left|L_{i}\right|=r$ and $S_{1}\left(L_{i}\right) \simeq \overline{A e}$. (Thus in this case there are $s S_{r}-$ classes whose socles are isomorphic to $\overline{A e}$.)
(2) $(\overline{f A})^{t}$ (i.e. a direct sum of t-copies of $\left.\overline{f A}\right)$ is embedded in $e \overline{N^{r-1}}$ if and only if $\left.\operatorname{dim} D_{1}(L)\right|_{D_{r}(L)} \geq t$ and $S_{1}(L)=\overline{N^{r-1}} f \simeq \overline{A e}$, where $L=A f / N^{r} f$.

Proof. (1) This is clear by the note above.
(2) Put $\overline{e N^{r-1} f}=e N^{r-1} f / e N^{r} f$ and $D=f A f / f N f$. Then $(\overline{f A})^{t}$ is embedded in $\overline{e N^{r-1}}$ if and only if $\operatorname{dim} \overline{e N^{r-1}} f_{D} \geq t$. By the above note, $S_{1}(L)=\overline{N^{r-1} f} \simeq$ $\overline{A e}$ if $\overline{f A}$ i sembedded in $\overline{e N^{r-1}}$. Therefore $D_{1}(L)=\operatorname{Hom}_{A}\left(\overline{N^{r-1} f}, \overline{N^{r-1} f}\right) \simeq$ $\operatorname{Hom}_{A}\left(\overline{A e}, \overline{N^{r-1} f}\right) \simeq \overline{e N^{r-1} f}$ as right D-modules. The restriction maps φ_{1} : $S_{1}(L) \rightarrow S_{1}(L)$ of maps $\varphi_{r}: L \rightarrow L$ coincide with the right multiplication maps by elements of D. Therefore we can identify $D_{r}(L)$ with D, so the assertion is immediate from the above D-isomorphisms.

Let S be a simple module and L a uniserial module with $|L| \geq 2$. Denote by $c(S)$ the number of S_{2}-classes whose socles are isomorphic to S and put $m(L)=\operatorname{dim} D_{1}(L)_{D_{2}(L)}$. The following lemma is easily seen by Lemma 3.2.

Lemma 3.3. Let A be a left serial ring and e a primitive idempotent. Then $|\bar{e} \bar{N}| \leq 2$ if and only if $c\left(S_{1}(L)\right)+m(L) \leq 3$ for any uniserial module L with the conditions $|L| \geq 2$ and $S_{1}(L) \simeq \overline{A e}$.

Let S be a simple module. We call S of first kind if $m(L)=1$ (i.e. $D_{1}(L)=$ $D_{2}(L)$) for any uniserial module L with $S \simeq S_{1}(L) \subsetneq L$, and S of second kind if S is not if first kind. By Lemma $3.2 \overline{A e}$ is of first kind if and only if $\overline{e N}$ is (zero or) square free (i.e. a direct sum of pair-wise non-isomorphic simple modules).

Lemma 3.4. Let A be a ring satisfying (c) and let L_{1} and L_{2} be uniserial modules with $\left|L_{1}\right| \leq\left|L_{2}\right|$ and $S=S_{1}\left(L_{1}\right) \simeq S_{1}\left(L_{2}\right)$.
(1) If $S_{2}\left(L_{1}\right) \simeq S_{2}\left(L_{2}\right)$, then L_{1} can be embedded in L_{2}.
(2) If S is of first kind and $S_{2}\left(L_{1}\right) \simeq S_{2}\left(L_{2}\right)$, then any isomorphism $\theta: S_{1}\left(L_{1}\right)$
$\rightarrow S_{1}\left(L_{2}\right)$ is $\left(L_{1}, L_{2}\right)$-extendible.
(3) If S is of second kind, then L_{1} can be embedded in L_{2}.

Proof. (1) is clear by (c_{2}), and (2) follows from Lemma 3.1 and (c_{2}). Moreover (3) is an immediate consequence of (1) since it holds $c(S)=1$ by Lemma 3.3.

Lemma 3.5. Let A be a ring satisfying (c) and let P_{1}, \cdots, P_{n} be uniserial modules with $\left|P_{i}\right| \geq 2$ and $\alpha_{i}: S \rightarrow P_{i}$ a homomorphism for each $i=1, \cdots, n$, where S is a simple module and $n \geq 3$. If $0 \rightarrow S \xrightarrow{\alpha} P_{1} \oplus \cdots \oplus P_{n} \xrightarrow{\beta} M \rightarrow 0$ is an exact sequence with $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$, then M is decomposable.

Proof. We may assume that $\left|P_{1}\right| \leq\left|P_{2}\right| \leq \cdots \leq\left|P_{n}\right|$ and each α_{i} is a nonzero map. Put $S_{i}=S_{1}\left(P_{i}\right)$ and $P_{i}^{\prime}=S_{2}\left(P_{i}\right)$ and consider an exact sequence $0 \rightarrow S \xrightarrow{\alpha^{\prime}} P_{1}^{\prime} \oplus \cdots \oplus P_{u}^{\prime} \xrightarrow{\beta^{\prime}} M^{\prime} \rightarrow 0$ induced from the above one. Then by $\left(\mathrm{c}_{3}\right)$, $n \geq 3$ and Corollary 1.5, there exists a map $\varphi^{\prime}=\left(\varphi_{1}^{\prime}, \cdots, \varphi_{n}^{\prime}\right)^{T}: \bigoplus_{i=1}^{n} P_{i}^{\prime} \rightarrow P_{j}^{\prime}$ for some j such that $\alpha^{\prime} \varphi^{\prime}=0$ and φ_{j}^{\prime} is an identity map. Put $I=\left\{i \mid \varphi_{i}^{\prime}\right.$ is an isomorphism (i.e. $\left.\left.\left(S_{i}\right) \varphi_{i}^{\prime} \neq 0\right)\right\}$. Then we may assume $j=\max _{i \in I} i$ by considering a map $\varphi_{i}^{\prime} \varphi_{k}^{\prime-1}$ instead of φ_{i}^{\prime} for each $i=1, \cdots, n$ if $k>j$ for some $k \in 1$. By (c_{2}) for each $i \in I$, there exists a map $\varphi_{i}: P_{i} \rightarrow P_{j}$ such that $\left(S_{i}\right)\left(\varphi_{i}-\varphi_{i}^{\prime}\right)$, where we take an identity map as φ_{j}. For each $k \notin I$, let $\varphi_{k}: P_{k} \rightarrow P_{j}$ be a zero map. Then for $\varphi=\left(\varphi_{1}, \cdots, \varphi_{n}\right)^{T}$ we have $\alpha \varphi=0$, and therefore by Corollary 2.2 M is decomposable.

We say that a module M is of I_{1}-type (resp. I_{2}-type) if M is indecomposable and $|\bar{M}|=1$ (resp. $|\bar{M}|=2$), and M is of 1 -type if M is of I_{1} - or I_{2}-type. Since A is left serial, the modules of I_{1}-type coincide with the uniserial modules.

Proposition 3.6. Let A be a left serial ring satisfying (c_{2}). Then a module M is of I_{2}-type if and only if there exist uniserial submodules L_{1} and L_{2} which satisfy the following conditions.
(1) $M=L_{1}+L_{2}$ and $\left|L_{1}\right|,\left|L_{2}\right| \geq 2$.
(2) $S=L_{1} \cap L_{2}$ is a simple module and S is $\left(L_{1}, L_{2}\right)$-maximal. Moreover in this case $S=S_{1}(M)$, so M is colocal.

Proof. 'If' part and $S=S_{1}(M)$ are immediate from Lemma 1.2.
'Only if' part: Let M be an indecomposable module with $|\bar{M}|=2$. Then we have clearly $M=L_{1}+L_{2}$ for some uniserial submodules L_{1} and L_{2} such that $L_{1} \cap L_{2} \neq 0$ and $2 \leq\left|L_{1}\right| \leq\left|L_{2}\right|$. Assume $L_{1} \cap L_{2}$ is not simple. If S^{\prime} is a simple submodule $L_{1} \cap L_{2}$, then S^{\prime} is not (L_{1}, L_{2})-maximal so S^{\prime} is (L_{1}, L_{2})-extendible from (c_{2}). Thus by Lemma 1.1, $M=L_{1}^{\prime}+L_{2}$ for some uniserial submodule L_{1}^{\prime} of M such that $\left|L_{1}^{\prime} \cap L_{2}\right|<\left|L_{1} \cap L_{2}\right|$. Iterating this argument, the assertion
holds.
Let M, L_{1} and L_{2} be as the above proposition. If $\left|L_{1}\right| \leq\left|L_{2}\right|$, then $\left|L_{2}\right|$ is equal to the Loewy length t of M (i.e. $N^{t-1} M \neq 0$ and $N^{t} M=0$) and we have $\left|L_{1}\right|=|M|-\left|L_{2}\right|+1$. Thus we define an integer $s(M)$ as $\min \left\{\left|L_{1}\right|,\left|L_{2}\right|\right\}$ determined by M. Moreover we define $s(L)$ as $|L|$ if L is a uniserial module.

Now we consider the following condition (D) which is always satisfied for finite dimensional algebras over a field.
(D) $\operatorname{dim}_{D_{2}(L)} D_{1}(L)=\operatorname{dim} D_{1}(L)_{D_{2}(L)}$ for any uniserial left A-module L with $|L| \geq 2$.

Note that the condition (D) is equivalent to the following: $\operatorname{dim}_{D} \mathrm{Hom}_{A}$ $(\overline{N f}, \overline{N f})=\operatorname{dim} \operatorname{Hom}_{A}(\overline{N f}, \overline{N f})_{D}$ for any $f \in p(A)$, where D denotes a division ring $f A f / f N f$ and $\operatorname{Hom}_{A}(\overline{N f}, \overline{N f})$ is canonically regarded as a (D, D)-bimodule.

Lemma 3.7. Let A be a ring satisfying the conditions (c) and (D). If M is a module of I_{2}-type and L is a uniserial module with $|L| \leq s(M)$, then any homomorphism $\theta: S_{1}(L) \rightarrow S_{1}(M)$ is (L, M)-extendible.

Proof. Put $S=S_{1}(L)$ and $S^{\prime}=S_{1}(M)$. From Proposition 3.6, there exist uniserial submodules L_{1} and L_{2} of M such that $M=L_{1}+L_{2},\left|L_{i}\right| \geq 2(i=1,2)$, $S^{\prime}=L_{1} \cap L_{2}$ is simple and $\left(L_{1}, L_{2}\right)$-maximal. Then we have $|L| \leq\left|L_{i}\right| ; i=1,2$, from the definition of $s(M)$. We may assume $\theta: S \rightarrow S^{\prime}$ is an isomorphism, since otherwise θ is a zero map.
(i) In case S is of first kind. Since $S^{\prime}(\simeq S)$ is of first kind and $\left(L_{1}, L_{2}\right)$ maximal, we have $S_{2}\left(L_{i}\right) \neq S_{2}\left(L_{2}\right)$ by Lemma 3.4. It follows from $c\left(S_{1}(L)\right) \leq 2$ that $S_{2}(L) \simeq S_{2}\left(L_{1}\right)$ or $S_{2}(L) \simeq S_{2}\left(L_{2}\right)$. Thus by Lemma 3.4θ is $\left(L, L_{i}\right)$-extendible for some $i=1,2$, and consequently (L, M)-extendible.
(ii) In case S is of second kind. Put $r=|L|$ and $M^{\prime}=S_{r}\left(L_{1}\right)+S_{r}\left(L_{2}\right) \subset M$. It suffices to show that $\theta: S \rightarrow S_{1}\left(M^{\prime}\right)$ is $\left(L, M^{\prime}\right)$-extendible. Thus we may assume $M=M^{\prime}$ and $r=|L|=\left|L_{1}\right|=\left|L_{2}\right|$. Since S is of second kind and $S=S_{1}(L) \simeq S_{1}\left(L_{1}\right) \simeq S_{1}\left(L_{2}\right)$, we have isomorphisms $\beta_{i}: L \rightarrow L_{i}$ for $i=1,2$ by Lemma 3.4. Let s be an elements of S. Since the restriction maps β_{i} : $S \rightarrow S_{1}\left(L_{i}\right)=S^{\prime}$ are isomorphisms, there is an isomorphism $\lambda: S \rightarrow S$ such that $s \lambda \beta_{1}=-s \beta_{2}$. Define $\alpha: S \rightarrow L \oplus L$ and $\beta: L \oplus L \rightarrow M$ as $s \alpha=(s \lambda, s)$ and $\beta=\left(\beta_{1}, \beta_{2}\right)^{T}$. Then we have an exact sequence $0 \rightarrow S \xrightarrow{\alpha} L \oplus L \xrightarrow{\beta} M \rightarrow 0$. Since S^{\prime} is (L_{1}, L_{2})-maximal, λ is also (L, L)-maximal (see Remark 1). The maps $\beta_{1}: S \rightarrow S^{\prime}$ and $\theta: S \rightarrow S^{\prime}$ are isomorphisms, so we have an isomorphism μ : $S \rightarrow S$ such that $s \theta=s \mu \beta_{1}$, i.e. $s \theta=s(\mu, 0) \beta$. By Lemma 3.1, Lemma 3.3 and the assumption, it holds that $D_{2}(L)=D_{r}(L)$ and $\operatorname{dim}_{D_{r}(L)} D_{1}(L)=\operatorname{dim} D_{1}(L)_{D_{r}(L)}=2$. On the other hand $\lambda: S \rightarrow S$ is (L, L)-maximal, so $\left.\lambda \notin D_{2} L\right)=D_{r}(L)$. Consequently $D_{1}(L)=D_{r}(L) 1_{s}+D_{r}(L) \lambda$ and there exist maps $\varphi_{i}: L \rightarrow L(i=1,2)$
such that $\mu=\varphi_{1} 1_{s}-\varphi_{2} \lambda_{i}$ in $D_{1}(L)$, i.e. $s \mu=s \varphi_{1}-s \varphi_{2} \lambda$. Put $\varphi=\left(\varphi_{1}, \varphi_{2}\right): L \rightarrow$ $L \oplus L$. Since $\quad\left(s \varphi_{2} \lambda, s \varphi_{2}\right) \beta=\left(s \varphi_{2}\right) \alpha \beta=0, \quad$ we have $s \varphi \beta=\left(s \varphi_{1}, s \varphi_{2}\right) \beta=$ $\left(s \varphi_{1}-s \varphi_{2} \lambda, 0\right) \beta=s(\mu, 0) \beta=s \theta$. This shows $\varphi \beta: L \rightarrow M$ is an extension of θ : $S \rightarrow S^{\prime}$.

For any artinian ring A, the condition (b) implies (c) by Proposition 2.4. But its converse does not necessarily hold (see Example 3). The following proposition shows the converse holds under the condition (D).

Proposition 3.8. Let A be a ring satisfying conditions (c) and (D). Then A is of left colocal type.

Proof. Let M be an A-module with $|\bar{M}|=n$. By induction on n, we show that M has a decomposition $M=M_{1} \oplus \cdots \oplus M_{r}$ such that each M_{i} is of I-type. If $n=1$ or 2 , then the assertion holds by Proposition 3.6. Assume $n \geq 3$. Then it suffices to show that M is decomposable, for any proper direct summands of M has a decomposition as above by the inductional assumption. From $|\bar{M}|=n$ we have $M=L_{1}+\cdots+L_{n}$ for some uniserial modules $L_{i}, i=1$, \cdots, n, since A is left serial. We may assume $\left|L_{1}\right| \leq\left|L_{i}\right|$ for each $i=1, \cdots, n$. By inductional assumption $L_{2}+\cdots+L_{n}=M_{2} \oplus \cdots \oplus M_{r}$ for some modules M_{i} of I-type; $i=2, \cdots, r$. If there is a module $M_{i}, 2 \leq i \leq r$, such that $s\left(M_{i}\right)<\left|L_{1}\right|$, then we have $M=L_{1}^{\prime}+\cdots+L_{n}^{\prime}$ for some uniserial submodules L_{i}^{\prime} with $\left|L_{1}^{\prime}\right|<\left|L_{1}\right|$. Iterating of this argument, we may assume that $M=L_{1}+\left(M_{2} \oplus\right.$ $\left.\cdots \oplus M_{r}\right)$ and $\left|L_{1}\right| \leq s\left(M_{i}\right)$ for each i. Put $M^{\prime}=M_{2} \oplus \cdots \oplus M_{r}$ and $T=L_{1} \cap M^{\prime}$. If T is a zero module, our assertion is clear. Assume $|T| \geq 2$. Let S be the simple submodule of T and denote by $\pi_{i}: T \rightarrow M_{i}$ the restriction map of a projection $M_{2} \oplus \cdots \oplus M_{r} \rightarrow M_{i}$ for each i. Then by (c_{2}) and Lemma 3.7, $\pi_{i}: S \rightarrow M_{i}$ is (L_{1}, M_{i})-extendible, for this is clear in case π_{i} is zero-map. Hence S is $\left(L_{1}, M^{\prime}\right)$-extendible, so there exists a uniserial submodule L_{1}^{\prime} such that $M=$ $L_{1}^{\prime}+M^{\prime},\left|L_{1}^{\prime}\right|<\left|L_{1}\right|$ and $\left|L_{1}^{\prime} \cap M^{\prime}\right|<|T|$ by Lemma 1.1. Iterating this argument, we may assume $M=L_{1}+\left(M_{2} \oplus \cdots \oplus M_{r}\right),\left|L_{1}\right| \leq s\left(M_{i}\right)$ for each $i=2$, \cdots, r, and $T=L_{1} \cap\left(M_{2} \oplus \cdots \oplus M_{r}\right)$ is simple. If M_{j} is of I_{2}-type for some $j(2 \leq j \leq r)$, then $\pi_{j}: T \rightarrow M_{j}$ is (L_{1}, M_{j})-extendible and therefore by Lemma $1.3 M$ is decomposable. If M_{i} is of I_{1}-type for any $i(2 \leq i \leq r)$, then M is decomposable by Lemma 3.5.

4. The equivalence of (c) and (d)

In this section we study the following condition (Er) (for any integer $r \geq 1$) which is a generalization of (c_{2}) (i.e. (E2) implies (c_{2})).
(Er) For any uniserial modules L_{1} and L_{2} with $r \leq\left|L_{1}\right| \leq\left|L_{2}\right|$, any isomorphism $\theta: S_{1}\left(L_{1}\right) \rightarrow S_{1}\left(L_{2}\right)$ is $\left(L_{1}, L_{2}\right)$-extendible whenever θ is $\left(S_{r}\left(L_{1}\right), S_{r}\left(L_{2}\right)\right)$ extendible, where r is an integer ≥ 1.

In particular the equivalence of (c) and (d) is shown as an immediate consequence of a necessary and sufficient condition for left serial rings to satisfy (Er) (c.f. Corollary 4.4).

For submodules L_{1}, \cdots, L_{n} of a module M, we say that L_{1}, \cdots, L_{n} are independent if the sum $\sum_{i=1}^{n} L_{i}$ is direct (i.e. $\sum_{i=1}^{n} L_{i}=\bigoplus_{i=1}^{n} L_{i}$).

Lemma 4.1. Let A be a left serial ring and $u_{i} \in t\left(e N^{r-1} f_{i}\right)$ for $i=1, \cdots, n$, where r is an integer, e is an idempotent and f_{i} is a primitive idempotent. Then the following conditions are equivalent.
(1) $\bar{u}_{1} A, \cdots, \bar{u}_{n} A$ are independent, where \bar{u}_{i} is a residue class $u_{i}+e N^{r}$ of u_{i} in $e N^{r-1} / e N^{r}$.
(2) $u_{1} A, \cdots, u_{n} A$ are independent and $u_{1} A \oplus \cdots \oplus u_{n} A$ is a direct summand of $e N^{r-1}$.

Proof. (1) $\Rightarrow(2)$. Assume $u_{1} A, \cdots, u_{n} A$ are dependent. Then there are elements $a_{i}=f_{i} a_{i} g$ of $A, i=1, \cdots, n$ such that $u_{1} a_{1}+\cdots+u_{n} a_{n}=0$ and $u_{k} a_{k} \neq 0$ for some $k, 1 \leq k \leq n$, where $g \in p(A)$. Since $A g$ is uniserial by the assumption, there is an integer $j, 1 \leq j \leq n$, say $j=n$, with $A u_{i} a_{i} \subset A u_{n} a_{n} \subset A g$ for each $i=1, \cdots, n$. Clearly we have $A u_{i}=N^{r-1} f_{i}$ and $A u_{n} a_{n}=N^{s-1} g$ for some integer s. Consider $a_{i}: A f_{i} \rightarrow A g$ a right multiplication map by a_{i}. Then we have $\left(N^{r-1} f_{n}\right) \tilde{a}_{n}=A u_{n} a_{n}=N^{s-1} g$, which shows $s \geq r$ and \tilde{a}_{n} induces an isomorphism $\psi_{n}: A f_{n} / N^{r} f_{n} \rightarrow N^{s-r} g / N^{s} g$. Moreover $\left(N^{r} f_{i}\right) a_{i}=N u_{i} a_{i} \subset N u_{n} \sigma_{n}=N^{s} g$ and so \tilde{a}_{i} induces a homomorphism $\psi_{i}: A f_{i} / N^{r} f_{i} \rightarrow N^{s-r} g / N^{s} g$. Put $\psi=\left(\psi_{1}, \cdots, \psi_{n}\right)^{T}$ and $\varphi=\left(\varphi_{1}, \cdots, \varphi_{n}\right)^{T}=\psi \psi_{n}^{-1}$. Then from $u_{1} a_{1}+\cdots+u_{n} a_{n}=0$, we have $\sum_{i=1}^{n}\left[u_{i}\right] \varphi_{i}=\left(\sum_{i=1}^{n}\left[u_{i}\right] \psi_{i}\right) \psi_{n}^{-1}=\left[\sum_{i=1}^{n} u_{i} a_{i}\right] \psi_{n}^{-1}=0$, where $\left[u_{i}\right]$ and $\left[\sum_{i=1}^{n} u_{i} a_{i}\right]$ denote residue classes $u_{i}+N^{r} f_{i}$ and $\sum_{i=1}^{n} u^{i} a_{i}+N^{s} g$, respectively. Clearly $\varphi_{n}=\psi_{n} \psi_{n}^{-1}$ is an identity map. Hence by Lemma $1.4, \bar{u}_{a} A, \cdots, \bar{u}_{n} A$ are dependent. Thus (1) implies that $u_{1} A, \cdots, u_{n} A$ are independent.

Next under the condition (1) we show $u_{1} A \oplus \cdots \oplus u_{n} A$ is a direct summand of $\overline{e N^{r-1}}$. Since $\bar{u}_{1} A, \cdots, \bar{u}_{n} A$ are independent, there are elements $v_{i} \in t\left(e N^{r-1} g_{i}\right)$; $g_{i} \in p(A), i=1, \cdots, n$, such that $\overline{e N^{r-1}}=\bar{u}_{1} A \oplus \cdots \oplus \bar{u}_{n} A \oplus \bar{v}_{1} A \oplus \cdots \oplus v_{m} A$. Therefore it holds $e N^{r-1}=u_{1} A \oplus \cdots \oplus u_{n} A \oplus v_{1} A \oplus \cdots \oplus v_{m} A$, for $\bar{u}_{1} A, \cdots, \bar{u}_{n} A, \nabla_{1} A, \cdots$, $v_{m} A$ are independent and $e N^{r}$ is small in $e N^{r-1}$.
$(2) \Rightarrow(1)$. This is clear.
Corollary 4.2. Let A be a left serial ring, e an idempotent of A and r an integer ≥ 1. Assume a right A-module M is a direct summand of $e N^{r-1}$ with $|\bar{M}|=n$. Then we have $M=u_{1} A \oplus \cdots \oplus u_{n} A$ for some $u_{i} \in t\left(e N^{r-1} f_{i}\right)$, where $f_{i} \in p(A)$ and $i=1, \cdots, n$. Therefore M is a direct sum of local right A-modules.

Proof. If $\sigma: e N^{r-1} \rightarrow \overline{e N^{r-1}}$ is a canonical map, $\bar{M} \simeq M \sigma$. By the assumption $e N^{r-1}=M \oplus M^{\prime}$ for some submodule M^{\prime} of $e N^{r-1}$. Hence $\overline{e N^{r-1}}=$ $M \sigma \oplus M^{\prime} \sigma=\bar{u}_{1} A \oplus \cdots \oplus \bar{u}_{n} A \oplus M^{\prime} \sigma$ for some $u_{i} \in t\left(e N^{r-1} f_{i}\right)$ with $u_{i} \in M$. Therefore by Lemma 4.1, $e N^{r-1}=u_{1} A \oplus \cdots \oplus u_{n} A \oplus M^{\prime}$. But $u_{1} A \oplus \cdots \oplus u_{n} A \subset M$, and so $M=u_{1} A \oplus \cdots \oplus u_{n} A$.

Lemma 4.3. Let A be a left serial ring and e a primitive idempotent of A and r an integer ≥ 1. Then the following conditions are equivalent.
(1) For any uniserial modules L_{1} and L_{2} such that $S_{1}\left(L_{1}\right) \simeq \overline{A e}$ and $r \leq\left|L_{1}\right| \leq\left|L_{2}\right|$, any isomorphism $\theta: S_{1}\left(L_{1}\right) \rightarrow S_{1}\left(L_{2}\right)$ is $\left(L_{1}, L_{2}\right)$-extendible whenever θ is $\left(S_{r}\left(L_{1}\right), S_{r}\left(L_{2}\right)\right)$-extendible.
(2) The right A-module $e N^{r-1}$ is a direct sum of uniserial submodules.

Proof. Note by Lemma 4.1 and the Krull-Schmidt Theorem the condition (2) is equivalent to the following: For any $v \in t\left(e N^{r-1} g\right) ; g \in p(A), v A$ is a uniserial right A-module.
(1) $\Rightarrow(2)$. Let $v \in t\left(e N^{r-1} g\right) ; g \in p(A) . \quad$ By Lemma 4.1, $e N^{r-1}=v A \oplus M$ for some submodule M. Assume $v A$ is not uniserial. Then $\overline{v N^{s}}$ is not simple for some $s \geq 1$. Since $e N^{s+r-1}=v N^{s} \oplus M N^{s}$, by Lemma $4.2 v N^{s}=u_{1} A \oplus \cdots \oplus u_{m} A$ for some $u_{i} \in t\left(e N^{s+r-1} f_{i}\right) ; f_{i} \in p(A)$, where $m \geq 2$ and $i=1, \cdots, m$. Hence we have $u_{i}=v a_{i}$ for an element a_{i} of A with $a_{i}=g a_{i} f_{i}, i=1,2$. By the assumption $A u_{i}=N^{s+r-1} f_{i}$ and $A v=N^{r-1} g$. Put $P=A g / N^{r} g$ and $L_{i}=A f_{i} / N^{s+r} f_{i}$. Since $A v a_{i}=A u_{i}$ and $N^{r} g a_{i}=N^{s+r} f_{i}$, a right multiplication map $\tilde{a}_{i}: A g \rightarrow A f_{i}$ induces an isomorphism $\psi_{i}: P \rightarrow S_{r}\left(L_{i}\right)$ with $[v] \psi_{i}=\left[u_{i}\right]$, where $[v] \in P$ and $\left[u_{i}\right] \in L_{i}$ are residue classes of v and u_{i}, respectively. Put $\varphi^{\prime}=\psi_{1}^{-1} \psi_{2}$. We have an isomorphism $\varphi^{\prime}: S_{r}\left(L_{1}\right) \rightarrow S_{r}\left(L_{2}\right)$ with $\left[u_{1}\right] \varphi^{\prime}=\left[u_{2}\right]$, and clearly $A\left[u_{i}\right]=S_{1}\left(L_{i}\right)$. Then by the condition (1), there is an isomorphism $\varphi: L_{1} \rightarrow L_{2}$ with $\left[u_{1}\right] \varphi=$ $\left[u_{2}\right]$. This is a contradiction by Lemma 1.4 and Lemma 4.1.
(2) $\Rightarrow(1)$. Assume (2). Let L_{1} and L_{2} be uniserial modules as in (1) and $\theta: S_{1}\left(L_{1}\right) \rightarrow S_{1}\left(L_{2}\right)$ be an isomorphism which has an extension $\varphi_{r}: S_{r}\left(L_{1}\right) \rightarrow S_{r}\left(L_{2}\right)$. It suffices to show (1) in the case $\left|L_{1}\right|=\left|L_{2}\right|=s+r$ and $L_{i}=A f_{i} / N^{s+r} f_{i}$ where $s \geq 1, f_{i} \in p(A)$ and $i=1,2$. Since L_{i} is uniserial, $\left.P \simeq S_{r}\left(L_{1}\right) \simeq S_{r} L_{2}\right)$ for some $P=A g / N^{r} g ; g \in p(A)$. Hence we have isomorphism $\psi_{i}: P \rightarrow S_{r}\left(L_{i}\right) ; i=1,2$, with $\psi_{1} \varphi_{r}=\psi_{2}$, which are induced from right multiplication maps $\tilde{a}_{i}: A g \rightarrow A f_{i}$ by $a_{i}=g a_{i} f_{i} \in A$. Thus for some $v \in t\left(e N^{r-1} g\right)$ and $u_{i} \in t\left(e N^{s+r-1} f_{i}\right) ; i=1,2$, it is satisfied $A[v]=S_{1}(P), A\left[u_{i}\right]=S_{1}\left(L_{i}\right),\left[v a_{i}\right]=\left[u_{i}\right]$ and $\left[u_{1}\right] \theta=\left[u_{2}\right] . \quad$ By the assumption $v A$ is uniserial and hence it holds $v a_{1} A \supset v a_{2} A$ or $v a_{1} A \subset v a_{2} A$. If $v a_{1} A \supset v a_{2} A$, then we have $v a_{2}=v a_{1} c$ for some $c=f_{1} c f_{2} \in A$. Hence θ is extended to the right multiplication map $\tilde{c}: L_{1} \rightarrow L_{2}$ since $\left[u_{1}\right] \tilde{c}=\left[v a_{1}\right] \tilde{c}=\left[v a_{1} c\right]=$ $\left[v a_{2}\right]=\left[u_{2}\right]$. The assertion is similarly shown in the case $v a_{1} A \subset v a_{2} A$.

By Lemma 4.3 we have the following corollary. In case $r=1$, the corollary
implies the last assertion in Corollary 1.6.
Corollary 4.4. A left serial ring A satisfies the condition (Er) if and only if the right A-module N^{r-1} is a direct sum of uniserial submodules.

If A is a finite dimensional algebra over a field, A is of right local type if and only if A is of left colocal type by the duality. Thus by Propositions 2.4 and 3.8 and Corollary 4.4 , we have the following theorem which is shown by Tachikawa [4,5] except for the equivalence (c) and (d) for artinian rings (see the introduction).

Theorem 4.5 (Tachikawa). Let A be an artinian ring and consider the following conditions.
(a) A is of right local type.
(b) A is of left colocal type.
(c) (c_{1}) A is left serial.
(c_{2}) For any uniserial left A-modules L_{1} and L_{2} with $\left|L_{1}\right| \leq\left|L_{2}\right|$, any isomorphism $\theta: S_{1}\left(L_{1}\right) \rightarrow S_{1}\left(L_{2}\right)$ is $\left(L_{1}, L_{2}\right)$-maximal or $\left(L_{1}, L_{2}\right)$-extendible.
($\left.\mathrm{c}_{3}\right)\left|e N / e N^{2}\right| \leq 2$ for any primitive idempotent e of A.
(d) $\left(\mathrm{d}_{1}\right) \quad A$ is left serial.
$\left(\mathrm{d}_{2}\right) \quad e N=M_{1} \oplus M_{2}$, for any primitive idempotent e of A, where M_{i} is either zero or a uniserial submodule of the right A-module eN for each $i=1,2$.

Then (b) implies (c), and (c) is equivalent to (d). If A satisfies the condition (D), then (c) implies (b). In particular if A is a finite dimensional algebra over a field, then the conditions (a)-(d) are equivalent.

5. Examples

Example 1. Let K be a field and A a subalgebra of a full matrix algebra $M_{3}(K)$ which is defined by the following:

$$
A=\left\{\left.\left(\begin{array}{lll}
a_{11} & 0 & 0 \\
a_{21} & a_{22} & 0 \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \right\rvert\, a_{22}=a_{33}, \quad a_{i j} \in K\right\}
$$

Then A satisfies (d) (and so (c)). Let $e_{i j}$ be the (i, j)-matrix unit of $M_{3}(K)$ $(1 \leq i, j \leq 3)$ and put $e=e_{11}$. We have $N e=K e_{21}+K e_{31}$, where $N=\operatorname{rad} A$. Define a map $\varphi: N e \rightarrow N e$ by $\left(b e_{21}+c e_{31}\right) \varphi=b e_{21}+(b+c) e_{31} ; b, c \in K$. It is easy to see that φ is an automorphism of $N e$. Since the restriction map $\varphi_{1}: S_{1}(N e) \rightarrow$ $S_{1}(N e)$ of φ is an identity map, φ_{1} is $(A e, A e)$-extendible. (More generally $S_{1}(N e)$ is of first kind, so any automorphism $S_{1}(N \epsilon) \rightarrow S_{1}(N e)$ is ($\left.A e, A e\right)$-extendible.) But $\varphi: N e \rightarrow N e$ is not ($A e, A e$)-extendible, since any automorphism $A e \rightarrow A e$ is a right multiplication map \tilde{a} by an element a of $e A e(\simeq K)$. Thus
the condition (c_{2}) does not necessarily imply the following: Any isomorphism $\theta^{\prime}: S_{2}\left(L_{1}\right) \rightarrow S_{2}\left(L_{2}\right)$ is (L_{1}, L_{2})-extendible for any uniserial module L_{1} and L_{2} with $2 \leq\left|L_{1}\right| \leq\left|L_{2}\right|$. (This example shows the condition II in Introduction of [4] is not equivalent to the condition II in [4, Theorem 5.3].)

Example 2. There exists an artinian ring of left colocal type which is not a finite dimensional algebra over a field and moreover is not serial: Let K be a field and F a field of quotients of the polynomial ring $K[x]$ in one indeterminate. Let $\tau: F \rightarrow F$ be a ring endomorphism extended from an endomorphism $K[x] \rightarrow K[x]$ which fixes K and maps x onto x^{2}. Put $M=F$ and consider an (F, F)-bimodule M defined as $a \cdot m \cdot b=a m(b) \tau ; a, b \in F$, where the multiplication in right side of the equality are those in the field $M(=F)$. Let $A=F \ltimes M$ be a trivial extension of F over M. Then A is an artinian ring with Jacobson radical $N=M$ which satisfies the condition (d). Moreover A satisfies the condition (D) since $\operatorname{Hom}_{A}(A / N, A / N) \simeq F$ is a field for a unique simple left A-module A / N (up to isomorphism). Hence A is of left colocal type by Theorem 4.5. On the other hand A is not a finite dimensional algebra over a field since the center of A is equal to ($K, 0$). Clearly A is not serial.

Next we give an example of an artinian ring which satisfies the condition (c) but is not of left colocal type. For modules S, L^{\prime} and a submodule S^{\prime} of L^{\prime} and a homomorphism $\theta: S \rightarrow S^{\prime}$, we denote also by $\theta: S \rightarrow L^{\prime}$ the composition map $S \rightarrow L^{\prime}$ of the map $\theta: S \rightarrow S^{\prime}$ and the inclusion map $S^{\prime} \rightarrow L^{\prime}$.

The following lemma is due to [1, Proposition 2.6].
 modules P_{i} and $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$. Assume each map $\alpha_{i}: T \rightarrow P_{i}$ is a monomorphism with $\operatorname{Im} \alpha_{i}=P_{i}$ and Coker α_{1} is a simple module. Then M is decomposable if and only if there exists a map $\psi: \underset{i \neq j}{\oplus} P_{i} \rightarrow P_{j}$ for some $j(1 \leq j \leq n)$ such that $\alpha_{j}^{\prime} \psi=\alpha_{j}$, where $\alpha_{j}^{\prime}: T \rightarrow \underset{i \neq j}{\oplus} P_{i}$ is the map induced from $\alpha: T \rightarrow \underset{i=1}{n} P_{i}$.

Proof. Put $L_{i}=P_{i} \beta$ and $T_{i}=T \alpha_{i} \beta$. Then it follows from the assumption that $M=L_{1}+\cdots+L_{n}, T_{j}=L_{j} \cap\left(\underset{i \neq j}{ } L_{i}\right)$ and L_{1} / T_{1} is simple. If suffices to prove that M is decomposable if and only if T_{j} is $\left(\underset{i \neq j}{\oplus} L_{i}, L_{j}\right)$-extendible for some j (see Remark 1). 'If' part is immediate from Lemma 1.2. Assume M has a non-trivial decomposition $M=M_{1} \oplus M_{2}$. Since $L_{2}+\cdots+L_{n}=L_{2} \oplus \cdots \oplus L_{n}$ and L_{i} is colocal for each $i=2, \cdots, n$, we have $S_{1}\left(L_{2}\right) \oplus \cdots \oplus S_{1}\left(L_{n}\right) \subset S_{1}\left(M_{1}\right) \oplus$ $S_{1}\left(M_{2}\right)=S_{1}(M)$ and $S_{1}\left(L_{i}\right)$ is simple. Then by [1, Lemma 1.1] there exist a partition $\{2, \cdots, n\}=I_{1} \cup I_{2}$ and submodules K_{1} and K_{2} of $S_{1}(M)$ such that $S_{1}(M)=\left(\oplus_{I_{1}} S_{1}\left(L_{i}\right)\right) \oplus S_{1}\left(M_{2}\right) \oplus K_{1}=S_{1}\left(M_{1}\right) \oplus\left(\oplus_{I_{2}} S_{1}\left(L_{i}\right)\right) \oplus K_{2}$, which shows
$M \supset\left(\oplus_{I_{1}} L_{i}\right) \oplus M_{2}$ and $M \supset M_{1} \oplus\left(\oplus_{I_{2}} L_{i}\right)$. But $2|M|=\sum_{i=2}^{n}\left|L_{i}\right|+\left|M_{1}\right|+\left|M_{2}\right|+1$ since L_{1} / T_{1} is simple and $T_{1}=L_{1} \cap\left(\oplus_{i=2}^{n} L_{i}\right)$. This shows that $M=\left(\oplus_{I} L_{i}\right) \oplus M_{2}$ (so $l_{1} \neq \phi$) or $M=M_{1} \oplus\left(\oplus_{I_{2}} L_{i}\right.$) (so $\left.I_{2} \neq \phi\right)$. Thus L_{j} is a direct summand of M for some j, so T_{j} is $\left(\underset{i \neq j}{\oplus} L_{i}, L_{j}\right)$-extendible by Lemma 1.2.

Lemma 5.2. Let A be a left serial ring satisfying $\left(\mathrm{c}_{2}\right)$ and L a uniserial module such that $|L| \geq 2$ and $D_{1}(L) \supseteqq D_{2}(L)$. Then the following statements hold.
(1) L is projective.
(2) Let M be a module such that $M=L_{1}+\cdots+L_{n}$ is a sum of uniserial submodules L_{i}. If $|L| \leq\left|L_{i}\right|$ for each $i=1, \cdots, n$, then any homomorphism θ : $S_{1}(L) \rightarrow S_{1}(M)$ is (L, M)-maximal or (L, M)-extendible.

Proof. (1) Assume $L \simeq A f / N^{r} f ; f \in p(A)$, and $N^{\gamma} f \neq 0$. Then for $L^{\prime}=$ $A f / N^{r+1} f$ we have $D_{1}\left(L^{\prime}\right) \supset D_{2}\left(L^{\prime}\right) \supseteqq D_{3}\left(L^{\prime}\right)$ since we may assume $D_{2}\left(L^{\prime}\right)=$ $D_{1}(L)$ and $D_{3}\left(L^{\prime}\right)=D_{2}(L)$. This contradicts $\left(\mathrm{c}_{2}\right)$ by Lemma 3.1. Therefore $N^{r} f=0$, so L is projective.
(2) We may clearly assume θ is a monomorphism. Put $P_{i}=L_{i}$ and let $P_{1} \oplus \cdots \oplus P_{n}$ be the outer direct sum of P_{1}, \cdots, P_{n}. We have an epimorphism $\beta: P_{1} \oplus \cdots \oplus P_{n} \rightarrow M$. Suppose θ is not (L, M)-maximal. Then θ is extended to a map $\theta^{\prime}: S_{2}(L) \rightarrow M$. Since $S_{2}(L)$ is projective by (1), there is a map $\varphi^{\prime}=\left(\varphi_{1}^{\prime}, \cdots, \varphi_{n}^{\prime}\right): S_{2}(L) \rightarrow P_{1} \oplus \cdots \oplus P_{n}$ with $\varphi^{\prime} \beta=\theta^{\prime}$. Hence the restriction map $\varphi_{i}^{\prime}: S_{1}(L) \rightarrow P_{i}$ of $\varphi_{i}^{\prime}: S_{2}(L) \rightarrow P_{i}$ is not $\left(L, P_{i}\right)$-maximal and so is extended to a $\operatorname{map} \varphi_{i}: L \rightarrow P_{i}$ for each $i=1, \cdots, n$ by $\left(\mathrm{c}_{2}\right)$. As easily seen $\varphi \beta: L \rightarrow M$ is an extension of θ for the map $\varphi=\left(\varphi_{1}, \cdots, \varphi_{n}\right): L \rightarrow P_{1} \oplus \cdots \oplus P_{n}$.

Let A be a ring satisfying the conditions (c). Let S be a simple module of second kind and L, L_{1} and L_{2} uniserial modules such that $S \subsetneq L \subset L_{1} \subset L_{2}$ (see Lemma 3.4 (3)). Consider an exact sequence $0 \rightarrow S \xrightarrow{\alpha} L_{1} \oplus L_{2} \xrightarrow{\beta} M \rightarrow 0$ with $\alpha=\left(\lambda, 1_{s}\right) ; \lambda, 1_{S} \in D_{1}(L)$, where for a map $\gamma: S \rightarrow S$ we denote also by $\gamma: S \rightarrow L_{i}$ the composition map $S \rightarrow L_{i}$ of $\gamma: S \rightarrow S$ and the inclusion map $S \rightarrow L_{i}$. Then by Lemma 2.1 and (c_{2}), M is indecomposable if and only if $\lambda: S \rightarrow S$ is (L, L) maximal, i.e. $\lambda \notin D_{2}(L)$. Assume M is indecomposable. In this case M is of I_{2}-type and so colocal. Let $\theta: S_{1}(L) \rightarrow S_{1}(M)$ be an isomorphism. Then we have $\theta=\mu \beta_{1}=(\mu, 0) \beta$ for some $\mu \in D_{1}(L)$, where $\beta=\left(\beta_{1}, \beta_{2}\right)^{T}$ (see the proof of Lemma 3.7). Since by Lemma $5.2 L$ is projective, $\theta: S_{1}(L) \rightarrow S_{1}(M)$ is (L, M)-extendible if and only if there exists a map $\varphi=\left(\varphi_{1}, \varphi_{2}\right): L \rightarrow L_{1} \oplus L_{2}$ such that $\varphi \beta: L \rightarrow M$ is an extension of θ. By the same argument in proof of Lemma 3.7 and the fact that $\beta_{1}: L_{1} \rightarrow M$ is a monomorphism, it is easily seen that $\varphi \beta: L \rightarrow M$ is an extension of θ if and only if an equality $\mu=\varphi_{1} 1_{S}-\varphi_{2} \lambda$ holds in $D_{1}(L)$, where we regard φ_{i} as a map $\varphi_{i}: L \rightarrow L\left(\subset L_{i}\right) ; i=1,2$. Thus by

Lemma 5.z we have
Lemma 5.3. Let A be a ring satisfying (c) and M be a module of I_{2}-type such that $S_{1}(M)$ is a simple module of second kind. Assume L is a uniserial module with $|L| \leq s(M)$ and $\theta: S_{1}(L) \rightarrow S_{1}(M)$ is an isomorphism. Then under the above notation, θ is (L, M)-maximal if and only if $D_{2}(L) 1_{s} \oplus D_{2}(L) \lambda \oplus D_{2}(L) \mu \subset D_{1}(L)$.

Example 3. There exists an artinian ring which satisfies the condition (c) (or equivalently (d)) but is not of left colocal type: Let F and G be division rings such that G is a subring of F and $\operatorname{dim} F_{G}=2, \operatorname{dim}_{G} F \geq 3$. There exist these rings by Cohn [2]. Let

$$
A=\left(\begin{array}{llll}
G & & & \\
G & G & & \\
G & G & G & \\
F & F & F & F
\end{array}\right)
$$

be a subring of a full matrix ring $M_{4}(F)$. Then as easily seen A satisfies the condition (d) and consequently (c). But A does not satisfy (b) (i.e. A is not of left colocal type). In order to show it, we construct an indecomposable module which is not colocal. Put $L=A e_{11}, L_{i}=N^{4-i} L(1 \leq i \leq 4)$ and $S=L_{1}$, where e_{11} is a $(1,1)$-matrix unit of $M_{4}(F)$, and $N=\operatorname{rad} A$. Then L_{i} is uniserial with $\left|L_{i}\right|=i$. We can identify $D_{1}(L)$ and $D_{2}(L)$ with F and G, respectively. Let λ and μ be elements of $D_{1}(L)$ such that $D_{2}(L) 1_{s} \oplus D_{2}(L) \lambda \oplus D_{2}(L) \mu$ $\subset D_{1}(L)$ and let $\alpha^{\prime}=\left(\lambda, 1_{S}\right): S \rightarrow L_{2} \oplus L_{4}$ and $\alpha^{\prime \prime}=\left(\lambda, 1_{S}\right): S \rightarrow L_{3} \oplus L_{3}$ be monomorphisms. Then by Lemma 1.2 we have the following exact sequences with colocal modules P_{2} and P_{3} :

$$
\begin{aligned}
& 0 \longrightarrow S \xrightarrow{\alpha^{\prime}} L_{2} \oplus L_{4} \xrightarrow{\beta^{\prime}} P_{2} \longrightarrow 0 \\
& 0 \longrightarrow S \xrightarrow{\alpha^{\prime \prime}} L_{3} \oplus L_{3} \xrightarrow{\beta^{\prime \prime}} P_{3} \longrightarrow 0 .
\end{aligned}
$$

Let $\alpha_{2}: S \rightarrow P_{2}$ be the composition map of $(\mu, 0): S \rightarrow L_{2} \oplus L_{4}$ and β^{\prime}, and let $\alpha_{3}: S \rightarrow P_{3}$ be the composition map of $(\mu, 0): S \rightarrow L_{3} \oplus L_{3}$ and $\beta^{\prime \prime}$. Define a monomorphism $\alpha: S \rightarrow P_{1} \oplus P_{2} \oplus P_{3}$ by $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$, where $P_{1}=L$ and $\alpha_{1}=1_{S}$, and consider an exact sequence $0 \rightarrow S \xrightarrow{\alpha} P_{1} \oplus P_{2} \oplus P_{3} \rightarrow M \rightarrow 0$. Suppose M is decomposable. Then by Lemma 5.1 there exists a map $\varphi_{k}=\left(\varphi_{i k}, \varphi_{j k}\right)^{T}$: $P_{i} \oplus P_{j} \rightarrow P_{k}$ with $\alpha_{i} \varphi_{i k}+\alpha_{j} \varphi_{j k}=\left(\alpha_{i}, \alpha_{j}\right) \varphi_{k}=\alpha_{k}$, where (i, j, k) is a permutation of $(1,2,3)$. Since the Loewy lengths of P_{2} and P_{3} are 4 and 3, respectively, P_{2} is not isomorphic to P_{3}. But it holds $\left|P_{1}\right|<\left|P_{2}\right|=\left|P_{3}\right|$. This shows that there are no monomorphisms $P_{i} \rightarrow P_{j}$ for any i and j with $i \neq j$ and $i \neq 1$. Therefore $\alpha_{i} \varphi_{i j}=0$ if $i \neq j$ and $i \neq 1$. Thus for some $k(k=2$ or 3$)$, we have $s \varphi_{1 k}=s \alpha_{1} \varphi_{1 k}=s \alpha_{k}(s \in S)$, which implies $\alpha_{k}: S \rightarrow P_{k}$ is $\left(P_{1}, P_{k}\right)$-extendible. This is a contradiction by Lemma 5.3. Hence M is indecomposable. But the
map $\left(\beta_{2}, \beta_{3}\right): P_{2} \oplus P_{3} \rightarrow M$ induced from β is a monomorphism. Therefore M is not colocal.

From Theorem 4.5 and Example 3, the following question arises.
Question: Whether does any ring of left colocal type satisfy the condition (D)?

Though we can not answer the question, we study it in relation to simultaneous equations over a division ring. Let A be a ring which satisfies (c) but not (D). Then there is a uniserial module L with $|L|=2$ and $\operatorname{dim}_{D_{2}(L)} D_{1}(L)$ ≥ 3. Put $S=S_{1}(L)$ and let λ_{i} and $\mu_{i}(i=1,2)$ be elements of $D_{1}(L)$ with $D_{2}(L) 1_{s} \oplus D_{2}(L) \lambda_{i} \oplus D_{2}(L) \mu_{i} \subset D_{1}(L)$. Then as in Example 3, consider the following exact sequences:

$$
\begin{aligned}
& 0 \longrightarrow S \xrightarrow{\left(\lambda_{i}, 1_{s}\right)} L \oplus L \xrightarrow{\beta_{i}} M_{i} \longrightarrow 0 \\
& 0 \longrightarrow S \xrightarrow{\left(1_{s}, \theta_{1}, \theta_{2}\right)} L \oplus M_{1} \oplus M_{2} \longrightarrow M \longrightarrow 0,
\end{aligned}
$$

where $\theta_{i}: S \rightarrow M_{i}$ is a map with $\theta_{i}=\left(\mu_{i}, 0\right) \beta_{i}$ for a map $\left(\mu_{i}, 0\right): S \rightarrow L \oplus L$ ($i=1,2$). Then M_{i} is a module of I_{2}-type and θ_{i} is $\left(L, M_{i}\right)$-maximal by Lemma 3.6 and 5.3. Moreover M is not a colocal module. On the other hand by Lemma $5.1 M$ is decomposable if and only if there exists a map $\psi: L \oplus M_{i} \rightarrow$ M_{j} with $\left(1_{s}, \theta_{i}\right) \psi=\theta_{j}$ for some permutation (i, j) of (1,2) (see the proof of Example 3). Next we give a necessary and sufficient condition in order that there exists a map $\psi: L \oplus M_{1} \rightarrow M_{2}$ with $\left(1_{s}, \theta_{1}\right) \psi=\theta_{2}$. Consider the following diagram with exact rows:

As easily seen there exists a map $\psi: L \oplus M_{1} \rightarrow M_{2}$ with $\left(1_{S}, \theta_{1}\right) \psi=\theta_{2}$ if and only if there exists a map $\varphi: L \oplus(L \oplus L) \rightarrow L \oplus L$ with $\left(\operatorname{Im}\left(0, \lambda_{1}, 1_{s}\right)\right) \varphi(=(\operatorname{Ker}$ $\left.\left.\left(1, \beta_{1}\right)^{T}\right) \varphi\right) \subset \operatorname{Ker} \beta_{2}$ and $\left(1, \mu_{1}, 0\right) \varphi \beta_{2}=\left(\mu_{2}, 0\right) \beta_{2}$, that is for any $s \in S$ it holds $\left(0, s \lambda_{1}, s\right) \varphi \beta_{2}=0$ and $\left(s, s \mu_{1}, 0\right) \varphi \beta_{2}=\left(s \mu_{2}, 0\right) \beta_{2}$. Put $\beta_{2}=\left(\beta_{12}, \beta_{22}\right)^{T}: L \oplus L \rightarrow M_{2}$ and $\varphi=\left(\varphi_{i j}\right): L \oplus L \oplus L \rightarrow L \oplus L$, where $\left(\varphi_{i j}\right)$ is a matrix of type $(3,2)$ with coefficients $\varphi_{i j}$. Since $s^{\prime} \lambda_{2} \beta_{12}+s^{\prime} \beta_{22}=s^{\prime}\left(\lambda_{2}, 1_{s}\right) \beta_{2}=0$, by using maps $\varphi_{i j}$, we can rewrite the above equalities as following:

$$
\begin{aligned}
& \left(\left(s \varphi_{31}+s \lambda_{1} \varphi_{21}\right)-\left(s \varphi_{32}+s \lambda_{1} \varphi_{22}\right) \lambda_{2}\right) \beta_{12}=0 \quad \text { and } \\
& \left(\left(s \varphi_{11}+s \mu_{1} \varphi_{21}\right)-\left(s \varphi_{12}+s \mu_{1} \varphi_{22}\right) \lambda_{2}\right) \beta_{12}=s \mu_{2} \beta_{12} .
\end{aligned}
$$

But $\beta_{12}: L \rightarrow M_{2}$ is a monomorphism and s is any element of S. Hence the equalities are equivalent to the system of equalities

$$
\begin{aligned}
& \left(\varphi_{31}+\lambda_{1} \varphi_{21}\right)-\left(\varphi_{32}+\lambda_{1} \varphi_{2}\right)_{2} \lambda_{2}=0 \quad \text { and } \\
& \left(\varphi_{11}+\mu_{1} \varphi_{21}\right)-\left(\varphi_{22}+\mu_{1} \varphi_{22}\right) \lambda_{2}=\mu_{21} \quad \text { in } \quad D_{1}(L) .
\end{aligned}
$$

Thus we have
Proposition 5.4. Under the above notation, there exists a map $\psi: L \oplus M_{1} \rightarrow$ M_{2} with $\left(1_{s}, \theta_{1}\right) \psi=\theta_{2}$ if and only if the following simultaneous equations with 6unknowns have a solution in $D_{2}(L)$:

$$
\left\{\begin{array}{l}
\left(x+\lambda_{1} y\right)+\left(z+\lambda_{1} u\right) \lambda_{2}=0 \tag{SE}\\
\left(v+\mu_{1} y\right)+\left(w+\mu_{1} u\right) \lambda_{2}=\mu_{2}
\end{array}\right.
$$

If $\lambda_{1}=\lambda_{2}$ and $\mu_{1}=\mu_{2}$, then the above simultaneous equations (SE) have a solution in $D_{2}(L)$ since $M_{1}=M_{2}$ and $\theta_{1}=\theta_{2}$. Moreover note that $D_{2}(L) \oplus$ $\lambda_{1} D_{2}(L)=D_{2}(L) \oplus \mu_{1} D_{2}(L)=D_{1}(L)$ because $\lambda_{1}, \mu_{1} \notin D_{2}(L)$ and $\operatorname{dim} D_{1}(L)_{D_{2}(L)}$ $(=m(L))=2$ by Lemma 3.3.

Let (SE)' denote the simultaneous equations obtained by exchanging 1 and 2 each other in the indices of (SE) above. Assume that for any division rings $F \supset G$ with $\operatorname{dim}_{G} F \geq 3$ and $\operatorname{dim} F_{G}=2$ there exist elements λ_{i}, μ_{i} of F with $G 1 \oplus G \lambda_{i} \oplus G \mu_{i} \subset F(i=1,2)$ such that both (SE) and (SE)' have no solution in G. Then the following conditions would be equivalent.
(1) A is of left colocal type.
(2) A is a ring satisfying (c) and (D).

Example 4. An artinian ring which satisfies (c) but is not of right local type: Let $F \supset G$ be division rings as in Example 3 and put

$$
A=\left(\begin{array}{cc}
G & 0 \\
F & F
\end{array}\right) \quad \text { and } \quad L=\binom{G}{F}
$$

Then A is a ring which satisfies (c) but does not (D) and L is a unique nonsimple projective module. Moreover we can regard division rings $D_{1}(L) \supset$ $D_{2}(L)$ as $F \supset G$. It is an open problem whether A is of left colocal type or not. If there exist elements λ_{i}, μ_{i} as above, then A would be not of left colocal type. On the other hand we can show A is of not right local type.

Let λ_{1} and λ_{2} be elements of F with $G 1 \oplus G \lambda_{1}^{-1} \oplus G \lambda_{2}^{-1} \subset F$ and put $S=(G, 0), S_{i}=\left(\lambda_{i} G, 0\right), P=(F, F)$ and $L_{i}=P / S_{i}$. Denote by $\theta_{i}: S \rightarrow L_{i}$ the
composition map of the inclusion $S \rightarrow P$ and the canonical epimorphism σ_{i} : $P \rightarrow L_{i}$. (We write homomorphisms between right modules on the left side.) Let $0 \rightarrow S \xrightarrow{\left(\theta_{1}, \theta_{2}\right)^{T}} L_{1} \oplus L_{2} \rightarrow M \rightarrow 0$ be an exact sequence of right modules. We show M is indecomposable. Suppose M is decomposable. Then there exists an isomorphism $\psi: L_{1} \rightarrow L_{2}$ with $\psi \theta_{1}=\theta_{2}$ by Corollary 2.2. Since P is a projective, the map ψ can be lifted to a map $\tilde{\mu}: P \rightarrow P$ which is a left multiplication map by $\mu \in F$, so $\psi \sigma_{1}=\sigma_{2} \tilde{\mu}$. This shows $\mu\left(\lambda_{1} G, 0\right)=\mu\left(\operatorname{Ker} \sigma_{1}\right) \subset \operatorname{Ker} \sigma_{2}=$ $\left(\lambda_{2} G, 0\right)$ and $\sigma_{2}(1,0)=\theta_{2}(1,0)=\psi \theta_{1}(1,0)=\psi \sigma_{1}(1,0)=\sigma_{2} \tilde{\mu}(1,0)=\sigma_{2}(\mu, 0)$. Hence $\mu \lambda_{1}=\lambda_{2} a$ and $\mu=1+\lambda_{2} b$ for some a and b in G, so $b-a \lambda_{1}^{-1}+\lambda_{2}^{-1}=0$, which contradicts $G 1 \oplus G \lambda_{1}^{-1} \oplus G \lambda_{2}^{-1} \subset F$. Thus M is indecomposable. But clearly M is not local.

References

[1] H. Asashiba and T. Sumioka: On Krull-Schmidt's theorem and the indecomposability of amalgamated sums, Osaka J. Math. 20 (1983), 321-329.
[2] P.M. Cohn: Quadratic extensions of skew fields, Proc. London Math. Soc. 11 (1961), 531-556.
[3] K.R. Fuller: Rings of left invariant module type, Comm. Algebra 6 (1978), 153167.
[4] H. Tachikawa: On rings for which every indecomposable right module has a unique maximal submodule, Math. Z. 71 (1959), 200-222.
[5] H. Tachikawa: On algebras of which every indecomposable representation has an irreducible one as the top or the bottom Loewy constituent, Math. Z. 75 (1961), 215227.

