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ON THE RATE OF CONVERGENCE FOR MAXIMUM
LIKELIHOOD ESTIMATES IN A TRUNCATED CASE

Tapavyuki MATSUDA

1. Introduction. Let X, :--, X, be independent random variables with
common density f(x—6), —oco<<x, 8<<oo, where @ is an unknown translation
parameter. We shall consider here the case that f(x) is a uniformly continuous
density which vanishes on the interval (—oo, 0] and is positive on the interval
(0, =) and particularly

(1.1)  flx)~aBx®" as x —> 40

with 1<a<<2 and B8>0.

Let é,,:é,,(Xl, e+, X,) denote the MLE (maximum likelihood estimate)
of 6 for the sample size n. Woodroofe [7] showed that (8n)Y%(d,—6) has a
limiting distribution which is not the normal distribution. Furthermore, he
studied asymptotic properties of this limiting distribution. In this paper,
we shall investigate the rate of convergence to the limiting distribution for
MLE. This result is applied to estimate the probability of moderate devia-
tions for the distribution of MLE.

The case that (1.1) is satisfied with @ =2 has already studied by the author
(2, [3]).- In [2], the author showed that if >3, VnB (é,,—@) converges
uniformly to the standard normal distribution with the convergence order
O(n~'?), and that if 2<a =<3, the order of convergence to normality is o(n="/%)
for every v<<(a¢—2)/2. Here B denotes Fisher’s information number. In
the case =2, it was shown in [3] that for every real number ¢ there exists C>0
such that for all @ and n>1

| Po{/ Bn(log n+-log log n) (én—e)ét}—tb(t)l =<C(log n)™*,

where @ denotes the standard normal distribution. It is noticed that the
rate of convergence, which is uniform in ¢, is a little slower than the order (log
n)~L,

In the regular case, it is well known that the same result as in the case of
(1.1) with a>>3 holds (see Pfanzagl [5]). It is interesting to note that T'akeuchi
[6] has studied Edgeworth type expansion of the distribution of the sum of
independent random variables in some non-regular cases.
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2. Conditions and results. We shall impose the following regularity

conditions on f(x). These conditions are stronger than those made by Wood-
roofe [7].

CoNDITIONS

(i) f(x) is a uniformly continuous density which vanishes on (—co, 0]
and is positive on (0, o).

(ii) f(x) is continuously differentiable on (0, co) with derivative f’(x)
and f’(x) is absolutely continuous on every compact subinterval of (0, o) with
derivative f”/(x).

Let g(x)=log f(x) for x>>0. Then g(x) will be continuously differentiable
on (0, o) with derivative g’=f’/f and g’(x) will be absolutely continuous on
every compact subinterval of (0, o) with derivative g”’=(ff"—f")/f%

(iif) For some 1<a<2, >0 and v>0

f#) = aBa®+0("""), g'(x) = (a—1)a7'+-O(x""") and
g'(x) = —(a—1x*+0@x"?)  as x— +0.

(iv) For every s=0

S: {g(x+9)} flx) dx<oo .
(v) For every a>0, there exists a >0 such that
() [ sup {g' oy sn) desoo,

(b) [ suple"(eropse) de<oo.

Condition (1) insures that MLE’s of 6 for the sample size 7 exist in the
interval (— oo, M,) where M,=min(X], .-+, X,). Let {(9,,; n=1} be a sequence
of MLE’s. In addition to condition (i), if g(x) is continuously differentiable,
then {4,} will form a sequence of roots of the likelihood equation (sece Wood-
roofe [7]).

Since @ is a translation parameter, we restrict our attention to the case
that §=0. The following Lemma 1 and Lemma 2 may be proved analogously
to Lemma 1 and Lemma 2 in [3], respectively.

Lemma 1 (cf. Lemma 2.1 in [7]). Let conditions (i)-(iii) and (v) (b) be
satisfied. Then for sufficiently small €>0, there are events A,, n=1, for which
P{A4,}=0(n"") and A, implies

sup 7! ég”(X,-—l)<——l .
~eSi<HM,  §o1

Proof. Let a>0 be so small that g”(x)<—(a—1)/2x* for 0<x=<2a.
There is a sufficiently small number £>0 such that
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(a—1){ (+)2x) dv>2 supl g"(x-+1)| f2) -+ 3+

because the left-hand integral diverges to oo as &»0. Then the event M,<¢
implies that

sup 7731 ¢"(X;— 1)< —(a—1)/(2m) 2(X;+-€)*+n~ 237 sup|g”(X;+1)]

—e<I<My j=1

where > denotes summation over j <# for which u =X;<v. Hence

M,<s, |23 (X,+8)‘2—Sa(x+e)“z flx) dz| <1
)
and
I sup 18(X,+4) |~ suplg(x-+1)| (s) vl <1

imply
sup n‘lig”(X,-—-t)<—1 .

—eSt<M,  j=1
Since P{M,>&}=o0(n""), Lemma 1 follows easily from condition (v) (b) and
Chebyshev’s inequality.

Lemma 2. Let conditions (1)-(iv) be satisfied. Then for every €>0
P{|8,|=¢c} = O@n™).

Let b,=(Bn)* and for t>0 define distribution functions F,, F,, and
F ,:F; by

F,o(x) = P{b;' 312/(X;)<x},
F, (x) = Pib;'t j}j g (X, 4+ <a},
Fix(x) = P{b; 't ;} g/(X,—b;'t)<x|M,>b;'t},

where F,*; denotes conditioned probability given M,>b;'t.
Next, for t>0 let G,, G, and G,* be the distribution functions with the
following characteristic functions &, &, and &,*, respectively:

Ey(u) = exp {—d|u|®[1—i sign(u) tan(za/2)]}"
with

d= —a(a—1)" cos(n-(:(/Z)Sm(e""—l—l—oc)x"""l dx>0,
0

1) The plus sign of the imaginary part of (2.4) in [7] should be corrected to minus. Con-
sequently, H(0) in [7] (p. 478) must be equal to 1 —a~1, not a~1,
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Ei(u) = exp{—iumt*—a(a—1)t"h(u)}

with

m, = al(a)[(2—a) and A(u) = f:-l(l—i—iux—e"“") [((a—1)x'—1]"""x"2dx,

E:*(u) = exp {tum*t*—a(a—1)t"h*(u)}

with
ma¥ = aS:o{sin[(a—l) J(r—1)]—(@—1)x~}a*'dx— et

and F*(u) = S:(l—l—iu sin(x)—e*) [(a—1)x—'4-1]"x2dx .

Then F,, F,, and F,% converge weakly to G, G, and G,*, respectively
(see [7], Theorem 2.1-Theorem 2.3). We shall investigate rates of convergence
in these cases. Define the distance between two distribution functions F and G by

A(F, G) = sup {| F(x)—G(x)| ; —occ<ax<oo}.

Theorem 1. Let conditions (i)-(iii) and (v) (a) be satisfied for some 1<or
<2 and v>0, then there exists C>0 such that for all n=1

C n_(z_d)M , CC+'Y>2 ,
AFuo G)S{Cnlogn,  aty=2,
Cn—'yla’ C{+'y<2.

Theorem 2. Let conditions (i)-(iii) and (v) be satisfied for some 1<a<<2
and v>0.
If a+v>2, then there exists C>0 such that for all n=1 and 0<t<(log n)"*

A(Fn,h Gt)éC[l—i—t(‘i—‘)ﬂ]n‘(z"“)/" .

If a+v=2, then for every N\, 0<N<Y, there exists C>0 such that for all
n=1 and 0<t=(log n)"*

A(Fn,t, Gg)éC[l+t("+2)\)/2] n-N%

Theorem 3. Let conditions (i)—(iii) and (v) be satisfied for some 1<a<<2
and v>0.
If a-+y>2, then there exists C=>0 such that for all =1 and 0<<t =< (log n)"*

A(F¥, GX)<C(1+£-%)n-e-a0

If a+v=<2, then for every n, 0<A<, there exists C>0 such that for all
n=1 and 0<t<(log n)"*

A(FF, GHZC(A+)nN*.
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Theorems 1-3 will be proved in Section 4. As a corollary to them, we
shall estimate the distance between the distribution of 5,4, and the limiting
distribution function (see H(#) below). We shall use ideas related to Wood-
roofe [7]. It follows easily from Lemma 1 and Lemma 2 that as n— oo

P{bb,<—1} = P{j};: &'(X,4b714)=0}+0(nY),
where O(n™') is uniform in z€[0, b,€) with £>0 as in Lemma 1 and
P{b,0,>1} = P{g g(X,—b7't)<0, M,> b;7'1}+0(n™"),
where O(n™') is uniform in tJ>O. Thus
2.1)  P{p0,<—t} = 1-F, (0)+0@™),
22)  P{0,<t} = 1—F}(0) P{M,>b;'}+0(n"),

uniformly in 0=<¢<<b,€ and ¢>0 as n— oo, respectively.
Let H be the distribution function defined by

H(—t) = 1—G(0), =0,
H(t) = 1—G*0) exp(—t*),  t>0.
According to Woodroofe [7],
H(—t)+[1—H(t)] = o(exp(—?°))  as t— oo,
which implies
(23)  H(—(log n)*)+[1—H((log #)/*)] = o(n™") .
From (2.1) and Theorem 2 it follows that for 0<¢=<(log n)"*
(24a)  |P{8,0,<—t}—H(—1)| = O((1414-D2)p-C-0% g to>2,
(2.4b)  |P{b,d,<—1}—H(—1)| = O@n™N"), at+v=2,0<A<y .
Noting that
(2.5)  P{M,>b;'t} = exp(—£*) [14+O(t*(b; t)™~@M)]

uniformly in 0<¢=<(log #)"® as n— co, (2.2) together with Theorem 3 implies
that

(2.6a) |P{bd,<t}—H(f)| = O(n@*),  a+v>2,

(2.6b)  |P{bd,<t}—H(t)| = O(nV?), a+v=2,0<a<y.
Furthermore, from (2.3), (2.4) and (2.6) we see that for ¢>(log n)"*

(27a) | P{b,0,<—t}—H(—1t)| = O(n~®*"%(log n)4-20) | gq4y>2,
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2.7b)  |P{b,4,<—t}—H(—1)| = O(n—", a+v=2, 0<rA<y,
(2.8a) |P{b4,<t}—H(@t)| = O(n-@*),  at+y>2,
(2.8b) | P{b4,<t}—H(t)| = O(n~"), at+v=<2,0<A<7,

because

|P{6,0,<—1}—H(—t)| < | P{b,0,< —(log n)**} —H(—(log n)""*)|
(2.9) +2H(—(log n)*),
| P{b,0,<t} —H(t)| < | P{b,0,<(log n)"*} — H((log n)"*|
+2[1—H((log n)"*)] .
The estimates (2.4), (2.6)~(2.8) and Theorem 1 yield the following theorem.

Theorem 4. Suppose that conditions (1)—(v) hold for some 1<a<2 and
v>0.
If a+v>2, then there exists C>0 such that for all 6, t=0 and n=1

| Po{b,,(é,,—ﬁ) < -—-t} —H(__[) l <C n—(z-—w)/a(log n)“—o})/gm ,
| Po{b,(0,—0)<t} —H(t)| <C n-@-*¥

If at+v=2, then for every N, 0<N<, there exists C>0 such that for all
0,tand n=1

| Po{b,(6,—0)<t} —H() | <CnN*.

The following corollary is an immediate consequence of Theorem 4 and

2.3).

Corollary 1. Suppose that conditions (1)—(v) hold for some 1<a<2 and
v>0.
If a+7>2, then there exists C>0 such that for all @ and n=1

Py{b,| é”__gl =(log n)/*} < C n~@-*/%(log n)“-*/>*

If a+v=2, then for every N, 0<N<Y, there exists C>0 such that for all
0 and n=1

Po{b,10,—0| =(log n)*} <CnN*.

In the case a+7=<2, the above bound n~~* can be improved in Corollary
3 of Section 5.

ExampLEs ([7]). (1) Let
f(x) = aBx”'exp(—"), x>0,

where 1<a<2, >0 and v>0, then the conditions are all satisfied.
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(2) Let
f(x) = T(a+7) [[(a)T(")] 7 2* ' (14x)*", x>0,

where 1<a<2 and >0, then the conditions are all satisfied with y=1.

3. Auxiliary results. Let ¢(u), ¢p(x, s) and ¢*(», s) be the characteristic
functions as follows
$(u) = E{expliu g'(X))]}
d(u, $) = E{explius g'(X,+9)]}
$*(u, 5) = E*{explius g'(X,— )]},
where s>0 and E* denotes conditional expectation given M,>s. It is re-

marked that the conditional distribution of X, ---, X,, given M,>s, is that
of independent random variables with common density

f*(x) = l(s)f(x) ’ x>s,
=0, otherwise,
where
Gl Is) = (S“ f(x) dx)t = 14-Bs®+o(s®) as s—0.

For real v let

2, at+vy>2,
0, v) ={e*lloglol |,  at+v=2,
||+, a+v<2.

To simplify our notations we shall use ¢ as a generic constant to denote factors
occurring in the bounds, which do not depend on #, s or u.

Lemma 3. If the conditions of Theorem 1 are satisfied, then as u—>0,
P(u) = 1—dB|u|*[1—i sign(u) tan(za/2)]4+-0(Q(, 7)) -
Proof. Suppose #>0. Since E{g’'(X,)}=0, we may write
$(u) = 1+ E{expliu g'(X)]—1—iu /(X))
= 14([+ ) explin g/ (0] —1—iu (31} f(2) v

= 141,41, say,
with a>0.
To evaluate the integral ;, we express it in the form I}, I;,+ 1,5, where

Iu = S:aB{CXP[iu(a—l)/x]—-l-iu[(a_l)/x]}xﬁ_ldx ’
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I,= So {expliu(a—1)/x]—1—iu(c—1)/x]} (f(x)—aBx*")dx,

Iy = So{eXP[i“g'(x)]—~eXP[iu(a— 1)/x]—iu(g' (x)—[(a—1)/])} f(x) dx -
We shall make use of the following inequality:
(3.2) le*—1—ix| <|x|°/[p(p—1)] for —co<x<co and 1<p=2.

For the estimate of I, use (3.2) with p=2, then

oo

L= afa—f) | (1o
u(®-1)7a
= —dBu®[1—i tan(za/2)]+O() .
From (3.2) and condition (iii) it follows that
12| =c {Suu"x"”"’“‘dx+Sauzx“+"‘3dx}
0 u

for 0O<u<a with sufficiently small a. Choosing p=2 if a+7v>2 and 1<p
<a+v if a+v=2, it is easily seen that I;,,=O(Q(u, 7)). Taking account of
the inequality

(3 le—er—its—y)| = [ iter—1)az <1 121~ 1)d|
= [#—="1/[p(p—1)]
for x>0, y>0 and 1<p=2, condition (iii) implies that
| xpling’(x)]— expli(cr— 1)/ ] —iu(g'(x)— [(a—1)/a]) | Scu’s

for 0<x<a with sufficiently small a. Then the estimate of I,; is the same
as I;,, 'Thus we have

I, = —dBu”[1—i tan(zat[2)]+O(Q(u, 7)) .
Because of (3.2) and condition (v) (a), it is easy to see that
2 (oo
LI <% (g (0} fx) de = O().
To complete the proof there remains only to note that for #<<0, ¢(u)=d(—u).

It is convenient to use o=0o(7, A) defined by

B {z, if aty>2,
lagn, i atbv=2,
for 0<A=".

Lemma 4. If the conditions of Theorem 2 are satisfied, then for every



ON THE RATE OF CONVERGENCE FOR MLE 591
o<a<y
B, §) = 1—dumyBs®— a(—1)Bsh(u)+O0(|u] Q(s, ¥)+ us|°)
uniformly in u, —co<u< oo, as s—0.
Proof. We write
(B4 P(u,8) = 14-ius E{g'(X,+9)}+E {exp[iusg'(X,+s)]—1—dusg'(X,+9)} .
For a>0 let
sElg Xt} = ([ + [ Dstg o @@ ar
= ]1‘*“]2: say.
To evaluate the integral J,, we express it in the form J;,+ J;,+ /13, where
Jo= [saBla—1) [+ —aam1ds,
Jo= {1 [r-+9) =571 (fw)— ") d,

Ji= [ sl t9—g ) —(@—1) [-+9) =T} fix) s
If a is chosen small enough, then easy computations show that
Ju= —afST(@T2—a)+0(),
Jiz=0(Q(s, 7)) -

Since
x+S
&' (x+5)—g'(x)—(a—1) [(x+5) " —+7T]| = IS‘ (") +(a—1)y~]dy]
z+S

é S cy‘Y—zdy

because of condition (iii), from Fubini’s theorem we see that
Jis = 0(Q(s, 7)) -

It follows from condition (v) (b) that J,=O(s?), and consequently
(3.5) ius E{g'(X,+9)} = —ium,Bs"+0(|u| Q(s, 7)) .

Next, we go on to evaluate the third term on the right side of (3.4), ex-
pressing it in the form J;+-/,, where J; and J, are the integrals over the intervals
(0, @) and [a, o), respectively. Let divide J; into J;—/s as follows:

Jau= S:aﬁ {exp[ius(aa—1)/(x+s)] — 1 —dus{(c—1)/(x-+5)]}+*"1dx ,
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Joa = { Aexplius(a—1)](s-+5)]— 1 —iusf(@— Dl (e-+ )]} (f(x) — ") d.

Jo = {explinsg'(x-+5)]—explius(@—1)/(x-+5)]
—is(g'(x-+5)— [(@— D/ (w-+ D} )

Simple calculations give

T = a(a—l),Gs"Sa_l (6% —1—iux) [(@—1)x~'— 1]*"x~2dx,
s(@—-1)/(a+s)
so that (3.2) with p=¢ implies that
Ju = —a(a—1)B85h(u)-0(|us|7).
Similarly,
| Jul < elus] “(a-+) a1 d
0

afs

= c|u|"s"”S (1+4x)""x"*"1dx
(1]

= O(|us|”).

The estimate of J; is the same as J;, except that the inequality (3.3) is used
instead of (3.2). 'Thus we have

(3.6) J:s= —a(a—1)Bs"h(u)+O(|us|") .

It is easily seen that J,=O(|us|”) because of (3.2) and condition (v) (a). This
together with (3.4)—(3.6) implies the desired assertion.

Lemma 5. If the conditions of Theorem 3 are satisfied, then for every
0<a<y

o*(u, s) = 14+-ium,*Bs*—a(a—1)Bs*h*(u)
+O( || 2smin @SN 0| O(s, )+ |us|)

uniformly in u, — oo <<u< oo, as s—0.
Proof. We may write

(3.7 ¢*(u, s) = 14u E*{sin[sg’'(X;—s)]}
+ E*{exp[iusg’(X,—s)]—1—iu sin[sg’(X,—s)]} .

To estimate the second term on the right side of (3.7), we express it in
the form wul(s) (K,+ K,+Kj3), where

K, = { {sinlsg'(s—)]—sg ()} @) ds,
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K, — [ tsinlsg'(s—s)]—sg' ()} flx) i,
K, = [ g (e)ftw) o

with sufficiently small >0. Moreover, let divide K, into Ky—K, as follows:

Ky = | apisinls(a—1)/(x—s)]—[(a—1)/x]}s*ds,

K, = S:{Sin[s(a—1)/(x—s)]—[s(a—1)/x]}(f(x)—aﬁx"")dx ,

Ky = | {sinlsg/(v—9)]—sinls(a— 1)/(s—s)]—sg'(x)—(@— 1)1} fix) d .
Using the inequality

[sin[(e—1)/(x—1)]—[(e—1)/x] | = (e—1)*/[2(x—1)]+-(a—1)/[x(x—1)],
we obtain
Koy = afs”| {sinl(a—1)/(s— D] [~ 1)/aT}a*"ds+0(s),
K,, = O(Q(s, 7)) -
We write Kyy = Kg-+ K where
K= {sinsg'(x—s)]—sinfs(@—1)/(x—5)]—s[g'(x—5)—(a— 1) (x—5) "1} (w)d,
Kiy={ s18/(s—5)—g(2)+ @ — )5~ —(x—5)""]} f(x)
Suppose a+v>2 and put f=(a+v—1)"'<1. Since
(3.8)  [sin(x)—sin(y)—x+y| <min|x—y|, |#—y?|/2), for x>0, y>0,
it follows that
1Ky | < s:gcs(x——s)""x““ dx+- S:gcsz(x—s)"‘zx"‘ldx — 0.
If a+v=2, then
(Kl = esta—syrtaet et [ et = 00006, 7)) -

Furthermore, the estimate of K3, is similar to J;, so that

Kis=0(Q(s, 7)) -

It is easy to see that K,=O(s*) because of condition (v), and condition (iii)
implies
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K, = —sS:g'(x)f(x)dx — —aBPO(*.
Thus, taking account of (3.1) we find that
(3.9 iu E*{sin[sg'(X,—s)]} = tum,*Bs*+O(|u| O(s, 7)) -

We express the third term on the right side of (3.7) in the form [(s) (K,
+ K5), where

K, = || {explinsg!(v—9)]—1—iu sinfsg'(x—5)]} fix) d

Ky = | {expliusg(v—5)]— 1—iu sinfsg'(x—9)]} f(x)d.

with sufficiently small a>0. To evaluate K, divide it into K,—K,; as fol-
lows:

Ka= S:a,B {exp[ius(a—1)/(x—s)]—1—iu sin[s(a—1)/(x—s)]}x**dx,
K,= S:{exp[ius(a—l)/(x—s)]—l—z'u sin[s(a—1)/(x— )]} f(x)—aBx*") dx

Koo = | texpliusg'(v—s)—explius(ee—1)/(x—s)]
—iu(sinsg’(x—s)] —sinfs(a—1)/(x—s))} f(x) dx .
Since for real x, » and 1<p=2
e —1—iu sin(x) | < |ux|*[[p(p— )]+ |u] 22,
if we choose p=a, then
Ko = —a(a—1)Bh*w)+0(|ul ¢+ |us|®)  (see Ju).

Also, the above inequality and the inequality |e™*—1|=<2|ux|"? imply that

oo

| Kl <o | —1—du sin(x)| [(@—1)x~+1]*"""x~2dx
sta-1)/(a~s)
1

&y 1-®—-y o o—0-y-1 ® 1/2 -2
<cs {L(a_l)/(a_s)(lulx + |u|°x )dx—}—Sl(luxl + |u|)x"2dx}
(|l |u| Q(s, V) |us|).

By (3.3) and (3.8), the integrand of K,; does not exceed
c{|u|s*(x—s)"?+ |us|"(x—s)""}

in absolute value. On the other hand, it does not exceed c|us|(x—s)?"! in
absolute value, since |e*—e”|<|x—y| and [sin(x)—sin(y)|=|x—y|. As
in the estimate of K3 choose {=(a+v—1)7! for a+7v>2, then
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Kol el (os) 1374 el o) —syrren
= O((lul +4%).
If at+v=<2, then
Kol 5 elust (o752 4 [ el s s (=7}

= O(|u|Q(s, 7)+ |us|°),
so that
K, = —a(a—1)Bs"h*(u)+O(|u| 2+ |u| O(s, )+ |us|®).

From condition (v) (a) and (3.2) with p=g¢ it follows easily that
Ks = O(|u| s+ |us|°) .
Thus these estimates together with (3.1) yield

(3.10)  E*{exp[iusg'(X;—s)]—1—iu sin[sg’(X,—s)]}
= —a(a—1)Bs"h*(u)+O(|u| ™ %D |u| O(s, )+ |us| ),

because |A*(u)| <c(|u|*+ |u|°) for every u (cf. K,;). Now Lemma 5 follows
from (3.7), (3.9) and (3.10).

Let k(z) and k*(u) be the real parts of h(u) and h*(u), respectively, and
for p>—1 and >0 define

Aty = | lultexp{— -;— ala—1)k(u)} du
AK@i) = Sl |u|?exp{ ——% ala—1)t"k*(u)} du .

A, (%) and A,*(¢) are continuous in £>0. Moreover, we have the following

Lemma 6.

(1) Tim o7A (1) = lim A, () = g: o[ Pexp{— % ala—1)k|v|*}do

where k= (a—1)"—15'”[1—cos(x)]x-"—ldx>o .
0
2) Ayf) = O(t™*#D2)  as 1> oo,

tyoe

and  lim z"“’“)A,,*(t)zr Ivl"exp{—% ra(a—1)|v|}dv.

Proof. (1) Since
(A1) lim Ju]~w) = (a—1)“—1j:[1—cos(x)]x—a_ldx =k
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(see [7], 478) and t*k(¢~'v) = k(v) for all v and 0<<¢<1, it follows from the domi-
nated convergence theorem that as t—0

PHIAL(1) = S“ o Ipexp{—% a(a—1)k(t"0)}do
— Soj [vl"exp{—% ala—1)k|v|*}do .

The same result is valid for A,* because llim |u| ~*k*(u)=F and t*k*(t"'v) =k |v|®
[LES)

for all v and ¢>0.
(2) For 0<y<1, there exists §>0 such that

W% (1—2)/2 =<1 —cos(ux) Su?x?[2
for 0O<x<<a—1 and |u| <38. Then we have

L;—”S:_l[(a—l)x_l_l]a_ldxéunzk(u)é%g:_l[(a_1)x—1_1]~-1dx |

Since >0 was arbitrary, it follows easily that

lim u~%h(u) = %S:_l[(a—l)x‘l—l]"‘ldx = 2 (@—DT(@TC—a).

This together with (3.11) implies that A,(£)=0(¢"*®*1/?) as t — co.
Finally, we have that

lim || () = S:[l —cos(x)]x~2dx — z/2

and t"k*(t"®v)=n|v|/2 for all v and #>0. The remaining part of the proof
is identical with that of the assertion (1).

Lemma 7. There exists (>0 such that for every t>>0
(1) sup |dG(x)/dx| =C(1+t7"),
—ea<x<on
(2) sup |dGH(x)[dx| =C(1+17").
—RLILN

Proof. Applying the well-known theorem (Kawata [1], Theorem 11.6.2)
we see that

_sup 4G )jdx| <) 18w du
=(27z)"so_°mexp{—a(a— 1)*k(u)} du .

This implies the assertion (1) because of Lemma 6 (with an obvious modifica-
tion). In the same way we can show the assertion (2).



ON THE RATE OF CONVERGENCE FOR MLE 597

4. Proofs of Theorems 1-3. For 0<A = let define T, 4, as follows
Tyign = 0
with ¢=a(7, A) as in the statement of Lemma 4.

Proof of Theorem 1. Let 4, , denote the characteristic function of F,
then

(#.1)  log 4, ((u) = n log ¢(by 'u)
= n[p(b7'w)—1]4-n7,(u) [p(bs 'u)—1]*,

where

) = — 2 )~ 1= L (9w~ 1.

It is easily checked that if |¢(b;‘u)—1|§%, then |T”(u)|§%. Suppose

|u| <T, 4 Since by'u—0 uniformly in |#| =T, yy as n— oo, it follows from
Lemma 3 that as #—>co, uniformly in |u|=<T, .,

(4.2) n[(b; 'u)—1] = —d|u|*[1—isign(u)tan(za/2)]+ OO u, 7)),

where
B U (Ton )™ a+v>2,
Qb7 ', V) = | BT,y ) |loglb7'ul |, aty=2,
B—(mw)/dlu‘aw(T”’y’y)—l , at+y<2.

Also, we have, uniformly in || =T, 4.4,

[p(bs'u)—1| <c{|u|®n""+Q(b7'u, 7)} = o(1)
and

n| p(by'u)—1|% = o(nQ(b5'u, 7)) .
Taking account of (4.1) and (4.2) it follows that for |u|<T, y
log V¥, o(%) = —d |u|*[1—i sign (4)tan (zt/2)]+S,(u, 7),

where S,(u, ¥V)=0(rQ(bz'u, 7)) uniformly in |u| < T, 4, as n—oco.
Using the inequality |1—e*| < |x|e!*! for complex number x, it follows
that for |u| =T, 44

|, o() —Eo(u) | = | S, ¥) | exp{—d|u|®+ | S,(u, 7)|}
= |Su(w, v)|exp{—d|u|®[2} .

Here we used the fact that |S,(u, ¥)|=d|u|®2 for |u|<T, 44 with all suffi-
ciently large n. Since |Ey(u)| is integrable, G, has a bounded continuous
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derivative. Thus, from Esseen’s inequality (see Petrov [4], p. 109, Theorem
2) we obtain

du+O((Tpy )7

A(F, Go=| ‘!f».o(u)u—fo(u)

IIST, 5y
which implies the desired assertion.

Proof of Theorem 2. Let +,, denote the characteristic function of F, ,,
then

log r, () = n log ¢(u, b7'2).

Noting that b;'t—0 uniformly in 0<<¢=(log #)¥® as n—>oo, it follows from
Lemma 4 that as #— co, uniformly in # and 0<<¢=(log n)"*,

nlp(u, bz'1)—1] = —tumat®—a(a—1)e"h(u)+ O[]+ |u|] (T, y,) ") -
As in the proof of Theorem 1 it remains to estimate [¢p(x, b;'¢#)—1] and n[¢p(x,
b;'t)—1]%. Since k(u)=0(|u|”) as |u|—co and

lim |u] -"SM |ux—sin(ux) | (@ —1)x—'—1)*1x~2dx
0

[¥]->00

= (a— 1)"“5:[x—sin(x)] x™* ldx,

there exists L>1 such that |A(u)| <c|u|® for every |u|>L. Suppose L<|u|
<(14t™")T, 4, for 0<t=(log »)/*. Then Lemma 4 implies that

| p(u, b5 t)—1| Zcl|tu|*n™ '+ |tu| " (0T, 4 ) "] -
From the inequalities

[tu|*n ' S (1+0)" 2 (T )
[t (8T, 4,) 'S (14-2)n (T, 4,)" 7",

it follows that |$(u, b;'t)—1|=o0(1). Similarly, for L<|u| <(14+t )T,y we
have

n|p(u, b7't)—112=c[|tu|** "+ | tu|*n" (T, )%,
which implies #| ¢(u, b;'t)—1|*=o0(|tu|°(T, y,)"") because

[tu|**n™ = || *(Toy,) " [120 ]2 07 Ty 0] = o1 *(Thy,0) ") 5
[t (T 2) 2 = [tu](To ) '[12]°(n T, 4,) "] = o(1tu] (Ts3,2)7") -

Next, suppose |#|=<L. Since |h(u)| =cu® for all %, a similar argument will
show that |¢(u,b;'t)—1|=o0(1) and n| P(u,b;'t)—1|2=o0(|tu|"(T,y,)""). There-
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fore, we have for 0<¢=(log n)/* and |u| <(14+¢t )T, 4.
log v, () = —tumyt®—a(a—1)t"h(u)+S.(u, t, 7, \),

where S,(u, t, ¥, A\)=O0@"[ |u| 4 |4|] (T,,y,)"") uniformly in ¢ and % as n— oco.
Let L>1. Since for 0<t=(log n)/* and L<|u| =(1+t )T, 4,

|Sn(u) t’ Yy 7\’)I ét" tulm[l tul G_N(TM,V.A)H:I
é(! I tu | d[(l ’l"t)d—a( Tn,'l,)\)a—“—l] ’

it follows that |S,(u, ¢, ¥, )| Sa(a—1)t"k(u)/2 for sufficiently large L and all
sufficiently large #. 'This implies that

ZISn(u’ t 9, )\,)lexp{—a(a—l)t“k(u)}, Iul éL ’
[Yrn, () —E(u) | = 1
| Sa(u, 2, 7, N)| exp{—Ea(a——l)t“k(u)} ,
L<|u| =1+t H)T,ya,
so that

|Vs0)— )| <21 Sy(w, 1, 7, W) | exp{—— al@—DER@}, [ul S+ .

(To show the first inequality, use the obvious inequality |1—e*|<2|x| for
|x|<1/2.) Applying the Esseen’s inequality we have for 0<¢<(log n)/*

A(Fy 0 G)Set'(Ty0) (111" exp{— el — 1))}

lulSQ+:7DT, 5
tel_sup_|dG,()fdt|] [(1-+£7)T, 5,1
S c(14-27702) (T 90) 7" -
Here Lemma 6 and Lemma 7 were used to lead the last inequality.

Proof of Theorem 3. Let % (u) be the characteristic function of F.¥,.
Since k*(u)=0(|u|”) as |u|—>oco and for |u|>1

s: | % sin(x) —sin(ux) | [(a—1)x™'4-1]""'x"2dx
= |u |°’S:| |w|sin(x/|#|)—sin(x) | [(¢—1)x~'+ |u]| )" x~2dx
< lul “{j:(a/x)“-ldersi"'(a/x)"-l(l+x)x-2dx+szl(a/ ] YY1+ | )u~2dx}
=clul®,

it follows that A*(u)=O(|u|®) as |u|—co. Moreover, it has already shown
that |A*(u)| Zc(|u|"?+|u|?). Thus, using the same method employed for the
derivation of log v, (#), we see that for 0<t=<(log n)“* and |u| <(1+¢ )T, 4.
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log V¥ (w) = tum *t*— a(a—1)*h*(w)+S,*(u, ¢, ¥, \),
where
S,,*(u, t, v, 7») — O(tmin(zw.mw)n—min(l,'v/ﬁ)Iul llz_l_tc[lul + lultr] (T,,,-y,,\)_l)

uniformly in £ and u as #—co. And consequently, we have
[ Yot (w)—EFw)| =2|S,*%(u, t, v, X)Iexp{—%— a(a—1)t"k*(u)}

for 0<t=(log m)/* and |u|=(1+t")T,y,. Now, Theorem 3 follows easily
from the Esseen’s inequality, Lemma 6 and Lemma 7.

5. Remarks. For real f let
D(t) = | Pyb,(0,—0) <t} —H(2)| .

(It is obvious that D(t) does not depend on 6.) Theorem 4 gives an upper
bound for sup{D(t); —co<t<<oo}. In this section we investigate an upper
bound for D(¢) which depends on ¢. At first, it follows from Theorem 1 and
(2.1) that

Oy,  aty>2,
D)= {Om " logn), a+v=2,
O(n="*), atv<2.

For 0= |t| <(log n)/*, (2.4) and (2.6) give tbe bounds for D(¢). However,
in the case a+7=2, we can improve (2.4b) and (2.6b). For this purpose we
need the following lemmas instead of Lemma 4 and Lemma 5. We shall omit
the proofs because the lemmas may be proved analogously to Lemma 4 and
Lemma 5, respectively. Hereafter, suppose that 1<a<2, ¥>0 and a+v=<2.

Lemma 4'. If the conditions (i)—(iii) and (v) be satisfied, then
$(u, 5) = 1—ium,Bs® — a(ca—1)Bs"L(u)+O(|u| O, 7)+ lus|**|log s|)
uniformly in u as s— 0.
Lemma 5. If the conditions (i )-(iii) and ( v ) be satisfied, then
¥ (u, s) = 14+dumy,*Bs” —a(a—1)Bs"h*(u)
+O(|u| V2s™nCHE - u| O(s, )+ |us| | log s|)
uniformly in u as s— 0.

Analogously to the proofs of Theorem 2 and Theorem 3, the following
Theorems 2’ and Theorem 3’ are derived from Lemma 4’ and Lemma 5’,
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respectively, if (14¢7")7, 4, is replaced by (1+27!)|log [min(, e™*)]| ~/'n"*.

Theorem 2'. Let conditions (i)—(iii) and (v) be satisfied, then there exists
C>0 such that for all n=1 and 0<t < (log n)*

A(F, ,, G)=C n"*[(14+#*+2)log n+ |log ¢| ] .

Theorem 3'. Let conditions (i)—(iii) and (v) be satisfied, then there exists
C>0 such that for all n=1 and 0<<¢<(log n)"*

A(F¥, G*)=C n?[(14-1")log n+ |log ¢|'"] .

The following corollary is an immediate consequence of (2.1), (2.2), (2.5),
Theorem 2’ and Theorem 3’.

Corollary 2. Suppose that conditions (i)~(v) hold. Then there exists
C>0 such that for all n=1 and 0<t=(log n)"*

D(—t)=C n™"°[(1 41+ ) og n+|log ¢|V"],
D(#)=C n~"*(log n+ |log ¢|*").

Corollary 2 together with (2.3) and (2.9) yields the following result which
is a refinement of Corollary 1 in the case a+v=<2.

Corollary 3. Suppose that conditions (i)—(v) hold. Then there exists C>0
such that for all 0 and n=1

Py{b,10,—0| = (log n)"*} < Cn~"*(log n)@* 2%
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