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ON THE RATE OF CONVERGENCE FOR MAXIMUM
LIKELIHOOD ESTIMATES IN A TRUNCATED CASE

TADAYUKI MATSUDA

1. Introduction. Let X}J •••, Xn be independent random variables with
common density f(x—0), —oo<#, 0<oo, where Θ is an unknown translation
parameter. We shall consider here the case that/(#) is a uniformly continuous
density which vanishes on the interval (—00, 0] and is positive on the interval
(0, oo) and particularly

(1.1) f(x)~aβx*-1 as *-> +0

with \<a<2 and /3>0.

Let &n=$n(Xly ••-, Xn) denote the MLE (maximum likelihood estimate)
of θ for the sample size n. Woodroofe [7] showed that (βn)l/*φn—θ) has a
limiting distribution which is not the normal distribution. Furthermore, he
studied asymptotic properties of this limiting distribution. In this paper,
we shall investigate the rate of convergence to the limiting distribution for
MLE. This result is applied to estimate the probability of moderate devia-
tions for the distribution of MLE.

The case that (1.1) is satisfied with a^2 has already studied by the author
([2], [3]). In [2], the author showed that if α>3, VnB (&n—θ) converges
uniformly to the standard normal distribution with the convergence order

O(w~1/2), and that if 2<α<Ξ3, the order of convergence to normality is o(/ιτv/2)
for every v<(a—2)/2. Here B denotes Fisher's information number. In
the case a=2, it was shown in [3] that for every real number t there exists C>0
such that for all θ and n^ 1

\Pθ{Vβn(logn+loglogn) (6u-θ)£t}-Φ(t)\£C(]ag n)~l,

where Φ denotes the standard normal distribution. It is noticed that the
rate of convergence, which is uniform in ί, is a little slower than the order (log

n)-1.

In the regular case, it is well known that the same result as in the case of
(1.1) with α>3 holds (see Pfanzagl [5]). It is interesting to note that Takeuchi
[6] has studied Edgeworth type expansion of the distribution of the sum of
independent random variables in some non-regular cases.
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2. Conditions and results. We shall impose the following regularity

conditions on f(x). These conditions are stronger than those made by Wood-
roof e [7].

CONDITIONS
( i ) f(x) is a uniformly continuous density which vanishes on (— °°, 0]

and is positive on (0, oo).

(ii) f(x) is continuously differentiate on (0, oo) with derivative f'(x)
and/'(#) is absolutely continuous on every compact subinterval of (0, oo) with
derivative /"(#).

L,et g(x)=log f(x) for x>0. Then g(x) will be continuously differentiable
on (0, oo ) with derivative g'=f'lf and g'(x) will be absolutely continuous on
every compact subinterval of (0, oo) with derivative g"=(ff"— //2)//2

(iii) For some 1<#<2, /3>0 and γ>0

f(x) = aβx«-l+O(x«^-l\g'(x) = (a-l)χ-l+0(x*-1) and

g"(x) = -(a-\)χ-2+O(xί-2) as x -> +0 .

(iv) For every s^O

\"{S(x+s)Yf(x)dx<oo.
Jo

( v ) For every <z>0, there exists a δ>0 such that

( a ) Γsup {g'(x+s)}2f(x) dx<°°,
Ja m^δ

( b ) sup{/'(#+*)}2/(*) dx< oo .

Condition ( i ) insures that MLE's of θ for the sample size n exist in the
interval (—00, Mn) where Mn=min(^Γ1, •••, Xn). Let {θn\ n^l} be a sequence
of MLE's. In addition to condition ( i ), if g(x) is continuously differentiable,
then {θn} will form a sequence of roots of the likelihood equation (see Wood-
roofe [7]).

Since θ is a translation parameter, we restrict our attention to the case
that 0—0. The following Lemma 1 and Lemma 2 may be proved analogously
to Lemma 1 and Lemma 2 in [3], respectively.

Lemma 1 (cf. Lemma 2.1 in [7]). Let conditions ( i )-(iϋ) and ( v ) (b) be
satisfied. Then for sufficiently small £>0, there are events An, Λ^l, for which
P{An

c}=O(n~l) and An implies

sup n-'Σ *"(*,-/)< -I-'

Proof. Let a>0 be so small that g'(x)^—(a—V)l2s? for
There is a sufficiently small number 6 >0 such that
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(a- 1) ['(*+€ Y2f(x) dx>2 ("sup | g"(x+t) \ f(x) dx+3+a
JO Ja]t\£S

because the left-hand integral diverges to co as £->0. Then the event Mn^
implies that

sup n-
ε^/<if« y=ι

where 2ί denotes summation overj^n for which u^Xj<v. Hence

and

I n-'Er sup I g"(Xj+t) I - J ~sup I g"(x+t) I f(x) dx\<\

imply

Since P{Mn>£}= o(n~l), Lemma 1 follows easily from condition ( v ) (b) and
Chebyshev's inequality.

Lemma 2. Let conditions ( i )-(iv) be satisfied. Then for every £>0

P{|ί.|^C} = 0(n"1).

Let bn~(βn)1/Λ and for t>0 define distribution functions Fn0y Fnt and

F,,t(χ) = PR

F*,(s) = PR1* ±g'(Xj-b7lt)<x\Ma>bnlt} ,

where F£t denotes conditioned probability given Mn>bήlt.
Next, for ί>0 let G0, G, and Gt* be the distribution functions with the

following characteristic functions ξϋ, ξ, and ξt*, respectively:

ξ0(u) = exp {-d\u\ [l-i Sign(«)

with

d = -a(a-l)*cos(πal2)Γ(e-*-l+x)χ-*~l

Jo

1) The plus sign of the imaginary part of (2.4) in [7] should be corrected to minus. Con-
sequently, H(0) in [7] (p. 478) must be equal to 1 — or1, not or1.
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ξt(u) = exρ{— iumj?— a(a— l)t*h(u)}

with

mΛ = aT(ά)T(2-ά) and Λ(ι*) = (*~\l+iux-eiux) [(a-^x^-l^x^dx ,
Jo

ξ,*(u) = exp {^/r -α(α-

with

and A*(ιι) =

Then FM>0, FM and F*t converge weakly to G09 Gt and G,*, respectively
(see [7], Theorem 2.1-Theorem 2.3). We shall investigate rates of convergence
in these cases. Define the distance between two distribution functions F and G by

, G) - sup{\F(x)-G(x)\ 9 -

Theorem 1. Let conditions (i)-(iii) and (v) (a) be satisfied for some \<a
<2 and γ>0, then there exists C>0 such that for all n^l

Theorem 2. Let conditions (i)-(iii) and (v ) be satisfied for some l<α<2
ίy>0.

Jf/" α+7>2, then there exists OO ji/cA that for all n^ί and 0<ί^(log n)1'*

Δ(Fn>ί, Gt)

If tf+7^2, then for every λ, 0<λ<7, there exists OO such that for all

Theorem 3. Let conditions (i)-(iii) and (v) be satisfied for some
and γ>0.

// α+γ>2, then there exists OO ίwcA that for all n^l and 0<ί^(log w

/or w^ry λ, 0<λ<γ, there exists C>0 ^wcA that for all
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Theorems 1-3 will be proved in Section 4. As a corollary to them, we
shall estimate the distance between the distribution of bnvn and the limiting
distribution function (see H(t) below). We shall use ideas related to Wood-
roof e [7]. It follows easily from Lemma 1 and Lemma 2 that as n-> oo

where O(n~l) is uniform in f e [0, bnε) with £>0 as in Lemma 1 and

where O(«"1) is uniform in ί>0. Thus

(2.1)

(2.2)

uniformly in 0^t<bnS and ί>0 as «-» oo, respectively.
Let H be the distribution function defined by

H(-t) = 1-G,(0),

H(t) = l-Gt*(Q) exp(-ί*) , ί>0 .

According to Woodroofe [7],

H(-t)+[l-H(t)} = o(exp(-O) as t - oo ,

which implies

(2.3) #(-(log «)V«)+[i_^((ιog w)ι/-)] = o(κ-i) .

From (2.1) and Theorem 2 it follows that for 0<ί^(log w)1/Λ

(2.4a) I P{bA^ -t] -H(-t) \ = O((l+ί(4-")/2)«-(2-Λ)/Λ) , a+Ύ>2 ,

(2.4b) \P{bJn^-t}-H(-t)\ = O(n-"a) , «+7^2, 0<λ<γ .

Noting that

(2.5) P{Mn>bnlt} = exp(-

uniformly in 0</^(log «)1/Λ as «-> CXD, (2.2) together with Theorem 3 implies
that

(2.6a)

(2.6b)

Furthermore, from (2.3), (2.4) and (2.6) we see that for ί>(log n)1/β

(2.7a) I P{bA^-t}-H(-t) I = O(n-(2-Λ>/β(log n)«-*v**) , a+Ύ>2 ,
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(2.7b) \p{ba^-t}-H(-t)\ = 0(n-««) , a+Ύ^2, 0<λ<7 ,

(2.8a) |P{M^O-#WI=0(«-<2-<")/<*)> «+7>2,

(2.8b) \P{bA^t}-H(t) I = OCw-v*) , a+7^2, 0<λ<7 ,

because

(2.9) +2#(-(log »)
\P{bA^t}-H(t)\ ^ |P{M«^(log r,)1/α}-tf((log

+2[l-ff((log «)'/-)]•

The estimates (2.4), (2.6)-(2.8) and Theorem 1 yield the following theorem.

Theorem 4. Suppose that conditions ( i)-(v) hold for some l<a<2 and
0.
lfa+7>2, then there exists C>0 such that for all θ, t^O and n^l

If a+7^2y then for every λ, 0<λ<γ, there exists OO such that for all

The following corollary is an immediate consequence of Theorem 4 and
(2.3).

Corollary 1. Suppose that conditions (i)-(v) hold for some \<a<2 and
7>0.

If a+7>2y then there exists C>0 such that for all θ and n^l

If a+7^2, then for every λ, 0<λ<7, there exists C>0 such that for all
θ and n^l

Pθ{bn\0n-θ\ ^(log fiVl^Cn-"* .

In the case a-\-y^2, the above bound n~^* can be improved in Corollary
3 of Section 5.

EXAMPLES ([7]). (1) Let

f(x) = aβx*~l exp(-#γ) , #>0 ,

where l<α<2, /3>0 and T>0, then the conditions are all satisfied.
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(2) Let

/(*) = Γ(a+r)

where l<α<2 and τ>0, then the conditions are all satisfied with 7=1.

3. Auxiliary results. Let φ(u)y φ(uy s) and φ*(w, s) be the characteristic
functions as follows

φ(υ, s) =

φ*(«, ί) =

where s>Q and E* denotes conditional expectation given Mn>s. It is re-
marked that the conditional distribution of X19 •••, Xn, given Mn>s, is that
of independent random variables with common density

/*(*) = /(*)/(*), *>*.
= 0 , otherwise,

where

(3.1) l(s) = ( ("/(*) d*Yl = l+βs*+o(f) as s -> 0 .
Js

For real v let

Q(v9 7) = v2\log\v\\,

a+7<2.

To simplify our notations we shall use c as a generic constant to denote factors
occurring in the bounds, which do not depend on w, s or u.

Lemma 3. If the conditions of Theorem 1 are satisfied, then as w->0,

φ(u) = \-dβ\u\«[l-i sign(W) tan(*a/2)]+0(0(w, 7)) .

Proof. Suppose u>0. Since E{g'(X1)}=0, we may write

o

= 1 +Λ+/2, say,

with α>0.
To evaluate the integral Il9 we express it in the form /n+/12+/13, where
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= (
Jo

JO

We shall make use of the following inequality:

(3.2) \eix—l-ix\^\x\p/[p(p-l)] for -oo<#<oo and

For the estimate of In use (3.2) with p=2, then

In = α/0(α-l)v

= -dβu\\-i

From (3.2) and condition (iii) it follows that

1 712 1 ^c{ (Uupx
o

for 0<u<a with sufficiently small α. Choosing p— 2 if α+7>2 and l<p
<α+γ if α+7^2, it is easily seen that Iι2=O(Q(u, 7)). Taking account of
the inequality

(3.3) \e"-^-i(x-y)\ =

^for Λ>0, j>0 and l<p^2, condition (iii) implies that

for O<Λ;<Λ with sufficiently small a. Then the estimate of 713 is the same
as /12. Thus we have

(κ, 7)) .

Because of (3.2) and condition ( v) (a), it is easy to see that

To complete the proof there remains only to note that for w<0, φ(u)=φ(—u).

It is convenient to use σ=σ(fY9 λ) defined by

^ r 2, if a+Ύ>2,
σ~~ lα+λ, if tf+7^2,

for 0<λ^T.

Lemma 4. //" ίA^ conditions of Theorem 2 are satisfied, then for every
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o<λ<r

φ(fc, s) = l-iumΛβs*-a(a-\)βs*h(u)+0(\u\Q(s, <y)+ \us\*)

uniformly in u, — °° <#< oo , α$ s -> 0.

Proof. We write

(3.4) φ(u, s) = l+i

For a>0 let

Jo Ja

= 7ι+Λ say-

To evaluate the integral J1} we express it in the form/11+yi2+/ι3, where

Jn = ( W(«-
Jo

Jn = a-l) [(x+s)-1-^1] (f(x)-aβx*-l)dx ,
JO

If α is chosen small enough, then easy computations show that

Jn = -

Since

!*'(*+*)-*'(*)-(«-!) [(s+ί)-1-*-1] I =

$
Λ+*

^ cy'

because of condition (iii), from Fubini's theorem we see that

It follows from condition (v) (b) that J2=O(s2), and consequently

(3.5) «» £fe'(*ι+*)} = -wmJ3f+0( I « | Q(i, 7)) .

Next, we go on to evaluate the third term on the right side of (3.4), ex-
pressing it in the form /3+/4, where J3 and/4 are the integrals over the intervals
(0, α) and [α, oo), respectively. Let divide J3 into J&-J& as follows:

/si = (
Jo
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/α = {\^p[ius(a-l)l(x+s)]- l-ius[(a-ί)l(x+s)]}(f(x)-aβx't-ϊ)dx ,
Jo

5
a

^ -ius(g\X+s)-[(a-l)/(X+s)])}f(X)dX .

Simple calculations give

so that (3.2) with ρ=σ implies that

Λ = -a(a-l)βs*h(u)+0(\usn .

Similarly,

Jo

= 0(|βί| ).

The estimate of /33 is the same as J32 except that the inequality (3.3) is used
instead of (3.2). Thus we have

(3.6) J3 = -a(a-l)βs«h(u)+0(\us\°) .

It is easily seen that J4=O( \us\σ) because of (3.2) and condition ( v ) (a). This
together with (3.4)-(3.6) implies the desired assertion.

Lemma 5. If the conditions of Theorem 3 are satisfied, then for every

0<λ<7

φ*(ιι, s) = l+i

+ 0(\U\ VV*i

uniformly in uy — oo < u< oo , as s -> 0.

Proof. We may write

(3.7) φ*(tf> s) = l+iu

To estimate the second term on the right side of (3.7), we express it in

the form iul(s) (Ki+Kz+K^ where

,= (\sm[sS'(x-s)]-sg'(X)}f(X)dxy
J s



ON THE RATE OF CONVERGENCE FOR MLE 593

Kt = Γ{sm[sg'(x-ή]-sg'(X)}f(x)dx,
Ja

K3 = \~sg'(X)f(X)dx
Js

with sufficiently small a>0. Moreover, let divide Kλ into Kn-K13 as follows:

Kn = (aaβ{sm[s(a-l)/(x-s)]-[s(a-l)lx]}x*-ldx,
Js

Ku = (a{sm[s(a-l)l(X-s)]-[s(a- ί)lx]}(f(x)-aβxa-l)dX ,
Js

K13 = Jlίsinfe'^-ίM-βinWα

Using the inequality

we obtain

K12=0(Q(s,γ)).

We write K13 = K^+K^, where

^32= *fe'(*-ί)- '̂(*)H-(α- 1) t*-1-^-*)-1]}̂ *)̂
Js

Suppose a+7>2 and put ζ=(a+7—ΐ)'l<l. Since

(3.8) I sin^-sin^-Λ +j | ^min(2 1 x—y \ , | x2—y2 \ /2), for

it follows that

I Km I ̂ (5 cs(x-sγ-l*r-ldx+(β cs2(x-Sγ-V-ldx - O(ί2) .
Js Js^

If «+T^2, then

I Km I ̂  \2Scs(x-sγ-1xa-1 dx+ [' c^x-sγ- af'^dx = O(Q(s, 7))
Js J2s

Furthermore, the estimate of K132 is similar to /13, so that

It is easy to see that K2=O(s2) because of condition (v), and condition (iii)
implies
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3̂ = -s g'(x)f(x)dx = -
Jθ

Thus, taking account of (3.1) we find that

(3.9) fc^ίsmfe'CYj-ί)]} = iumΛ*βs*+0(\u\Q(s,

We express the third term on the right side of (3.7) in the form l(s) (K4

+K5), where

J a
{exp[iwg'(x—s)]—l—iu sin[sg'(x—s)]}f(x)dx ,

s

ί
oo

{exp[iusg'(x—s)]—l—iu sin[sg'(x—s)]}f(x)dx ,
a

with sufficiently small a>0. To evaluate K4 divide it into K41—K43 as fol-

lows:

K4l = ( aβ{exp[ius(a—l)l(x—s)]—ί—iusm[s(a—l)l(x—s)]}x€t-1dx,

J
a
{exp[ύιsg\x—s)—exp[ius(a--l)l(x—s)]

s
—iu(sin[sg\x—s)]—sm[s(a—l)l(x—s)])}f(x)dx .

Since for real x, u and

if we choose p=σ, then

K4l = -a(a- \)βs«h*(u)+0( \ 14 \ s*+ \us\') (see /*).

Also, the above inequality and the inequality \eiux— 1 1 <^2\ux\1/2 imply that

\K42\ ^cs*+λ°° \eiux-\-ίu sin(x)\[(a-Ί)χ-1

Js(rt-l)/(β-s)

Γ ( I u I xl-*-">+ I u I "x°-"-ι-1)
JS(Λ-I)/(Λ-S)

we
l

By (3.3) and (3.8), the integrand of -fζ^ does not exceed

in absolute value. On the other hand, it does not exceed c\us\(x— s)^1 in
absolute value, since | eix—eiy \ ̂  \ x—y \ and | sin(Λ )— sin(j) | ̂  | x— y \ . As
in the estimate of K13 choose ζ=(a+7— I)'1 for α+γ>2, then
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'I Ka 1 ̂  [' c I us I (x-s)*'-lxa-1dx+ (" c(\u\ +u2)έ(x-sγ-2x*-ldx
Js J s*

=

If α+T^2, then

J2s

= 0(\u\Q(s,7)+\us\°),

so that

K4 = -a(a- l)βfh*(u)+0( \ u \ 1/2s*^+ I « I Q(*> 7)+ I us \ σ) .

From condition (v) (a) and (3.2) with ρ=σ it follows easily that

Ks=0(\u\f+\1U\').

Thus these estimates together with (3.1) yield

(3.10) E*{eχp\iusg'(X1-s)]-l-iu βinfe'̂ -*)]}

= -a(a- l)βs"h*(u)+O( \ u \ ws™

because \h*(u)\ ^c(\u\l/2+\u\σ) for every u (cf. K42). Now Lemma 5 follows
from (3.7), (3.9) and (3.10).

Let k(u) and k*(u) be the real parts of h(u) and h*(ιi), respectively, and
forp> — 1 and ί>0 define

Λ,(ί)= Γ |«|'αp{-^-α(α
J-oo ^

Λ/(0 = Γ I « I >exp{ -1- α(«- !)«*(«)} du .
J-oo 2

Λ^(ί) and Λ/>*(ί) are continuous in />0. Moreover, we have the following

Lemma 6.

(1) limί'+1Λχί) = lίm^+1Λ*(ί) = Γ |ι;|*exp{--^ a(a-l)~k\v\"}dv ,
- - -

(2) Λ#(ί) = O(r"^+1'/2) as / -* oo ,

lim

Proof. (1) Since

(3.11) lim \u\-«k(u) = (a-iγ-iμ-ca^xflx- -'Ldx = k
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(see [7], 478) and t*k(Γlv)^k(v) for all v and 0<*^1, it follows from the domi-
nated convergence theorem that as ί->0

= Γ \v\*v^{-±- a(a-\)t«k(rlv)}dv
J-oo 2

o 2

The same result is valid for A** because lim \u\~"k*(u)=k and
|«|->oo

for all v and J>0.
(2) For 0<^<1, there exists δ>0 such that

for 0<x<a— 1 and | w | ίgδ. Then we have

l̂ Γ^Kα-l)*-1-!]*-1!̂
2 Jo 2 Jo

Since -η >0 was arbitrary, it follows easily that

lim u~2k(u) = ±-\*~\(a-l)χ-l-l]°-1dx= — (α-l)Γ(α)Γ(2-α) .

This together with (3.11) implies that Ap(ΐ)=O(Γ^p+l)/2) as t-+ oo.
Finally, we have that

lim |if I -^(n) = [l-cos(Λ;)]^-2^ - πβ
«-ί-0 Jo

and tΛk^(t~Λv)^π\v\l2 for all v and ί>0. The remaining part of the proof
is identical with that of the assertion (1).

Lemma 7. There exists C>0 such that for every t>0

(1) *upjdGt(χ)idχ\ ^
(2) sup \dG*(x)ldx\^C(\+t-1}.-<»<*<«»

Proof. Applying the well-known theorem (Kawata [1], Theorem 11.6.2)
we see that

sup \dGt(X)/dx\^(2πΓl \ξt(u)\du
-°°<jr<oa

exp{-a(a-l)l*k(u)}du.
0

This implies the assertion (1) because of Lemma 6 (with an obvious modifica-
tion). In the same way we can show the assertion (2).
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4. Proofs of Theorems 1-3. For 0<λ^7 let define ΓM>γ>λ as follows

Γ..w = *(σ~Λ)/Λ

with σ=σ(y, λ) as in the statement of Lemma 4.

Proof of Theorem 1. Let ψw 0 denote the characteristic function of Fn>0,
then

(4.1) log ψM» = n log φ(b~lu)

n(u) [φ(bήlu)-ΐ\2 ,

where

1 2~1It is easily checked that if \φ(b~1u)— 1| ^— , then \τn(u)\^ — . Suppose

\u\ SΞT^γ.γ. Since ό^'w^ O uniformly in \u\ ^=Tn^iV as κ->oo, it follows from
Lemma 3 that as «-»oo, uniformly in \u\

(4.2) n[φ(b-lu)-l] = -ίί|«iΛ[l-ιsign(«)tan(^«/2)]+0(«ρ(i-1ί/) 7)),

where

-X7) = u^T,^)-1 i log I fcΓ1" M .

Also, we have, uniformly in | M | ίί 7Vγ_γ,

Iφ^'Bj-ll ^{Iβl n-'+ρίiϊ'u, 7)} = o(l)

and

n I φίfcΓ1!*)- 1 1 2 = o(Λρ(fc ̂  7)) .

Taking account of (4.1) and (4.2) it follows that for \u\ ^Tn>ΊtΊ

log ψ,i0(tt) = -d\u\«[l-i sign(W)tan(^α/2)]+SΛ(w, 7) ,

where Sn(u, 7)=O(nQ(b~1uy 7)) uniformly in \u\ ̂ TKtΊ>Ί as w-^oo.
Using the inequality 1 1— e*\ ̂  | Λ ? | β | Λ | for complex number x, it follows

that for \u\^

Here we used the fact that \Sn(u, 7)\^d\u\*l2 for \u\ ̂ Tn^y with all suffi-

ciently large n. Since |£0(
w)l is integrable, G0 has a bounded continuous
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derivative. Thus, from Esseen's inequality (see Petrov [4], p. 109, Theorem
2) we obtain

which implies the desired assertion.

Proof of Theorem 2. Let ψ Λ , denote the characteristic function of Fn tt>

then

log -ΨX/M = n log φ(u, b~lt) .

Noting that b^t-^Q uniformly in 0<ί^(log riγ/Λ as w— >oo, it follows from
Lemma 4 that as fl->°o, uniformly in u and 0<ί^(log w)1/Λ,

n[φ(u, bnlt)-l] = -iumat*-a(a-l)tah(u )+0(f[\u\ + |«Π CΓB>γ,λ)->) .

As in the proof of Theorem 1 it remains to estimate \φ(uy b^lt)— 1] and n[φ(u,
bήlt)—ΐ\2. Since k(u)=O(\u\*) as |M|->OO and

lim I fi I -•Γ"1 1 ̂ -sin(wΛ ) | ((a- l)χ-1- \γ~lχ-*dx
l«l-* » Jo

there exists L>ί such that | A(M) | ̂ c \ u \ Λ for every | u \ >L. Suppose L< | u \
l)Tntιtλ for 0</^(log n)1'*. Then Lemma 4 implies that

*n-l+ I tu I

From the inequalities

it follows that \φ(u, b^t)—l\ =o(l). Similarly, for L< \u\ ^(1+r1)?1,,,̂  we
have

n I φ(«, ό» !ί)- 1 1 2^c[ I ft* 1 2<V'+ I tu I ̂ -'(Γ,,̂ )-2] ,

which implies n \ φ(u, b-lt)—\ \ 2=o( \ tu \ "(T1,.̂ )'1) because

I tu I "n-\ =\tu\ '(T.^Yl[ I te I ϊ -*n-1T1,.w] = o( | to | ''(Γ^γ,,

I tu I ̂ -'(Γ..̂ )-' = I tu \ '(T.^Y\ I te I '(nΓ..,̂ )-1] = o( | ft» |

Next, suppose |ίί|^L. Since \h(u)\^cu2 for all u, a similar argument will
show that \φ(u,bήlt)-l \ =o(l) znάn\φ(u,b-λt)-\\*=o(\tuΓ(TntΊt>)-1). There-
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fore, we have for 0<ί^(log «)v* and \u\ ^(l+Γ^T^

log ih.,(«) = —iumΛf-a(a-\)fh(u)-\-Sn(u, t, 7, λ) ,

where Sn(u, t, 7, λ)=O(ί°Ί>| + |«|°] (Γ^.x)"1) uniformly in ί and w as w^oo.
Let L>1. Since for 0</^(log »)1/Λ and L< \u\ ^(

,(«, f, 7, λ) I =£<: I to Γ[ I to I

it follows that |5M(w, ί, γ, λ)| ^α(α— \)t*k(u)β for sufRciently large L and all
sufficiently large n. This implies that

(«, ί, 7,

..,(«)-W«)I^ i
( |S.(«, t, 7, λ)|exp{— (α-l) !̂!)},

so that

ί t, 7, λ)|exp{-α(tf-iχχz/)}, \u\ ̂

(To show the first inequality, use the obvious inequality |1— £*|^2|#| for
.) Applying the Esseen's inequality we have for

Here Lemma 6 and Lemma 7 were used to lead the last inequality.

Proof of Theorem 3. Let ψ*t(u) be the characteristic function of
Since**(M)=O(|ttΓ)as |M|-*OO and for \u\>\

Γ I u sinω-sin(^) | [(a— l^x^
Jo

(al\u\)m-\l+\u\)χ-'dx}
l w l

it follows that h*(u)=O(\u\*) as |M|-^OO. Moreover, it has already shown
that I h*(u) \<Zc(\u\ 1/2+ | u \ σ). Thus, using the same method employed for the
derivation of log ψM(z/), we see that for 0<ί^(log n)1'* and \u\
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log ψ*((β) = mW/ίrt-α(«-l)ία/z*(M)+S,,*(M> t, γt λ) ,

where

SΛ*(U, t, 7, x) = θ(rin<2<" α>+%-min(1-w|«|1/2+ί<r[|M| + |«Π (T..™

uniformly in t and « as «->oo. And consequently, we have

,*(β, i, Ύ, λ)|exp{-lα(α- !)<"**(«)}

for 0</^(log»)1/Λ and |ι<| ̂ (l+r1)?1^. Now, Theorem 3 follows easily
from the Esseen's inequality, Lemma 6 and Lemma 7.

5. Remarks. For real / let

D(t)= \P,{bu(6u-θ)£t}-H(t)\ .

(It is obvious that D(t) does not depend on θ.) Theorem 4 gives an upper
bound for sup{Z)(ί); — oo<z<oo}. In this section we investigate an upper
bound for D(t) which depends on t. At first, it follows from Theorem 1 and
(2.1) that

>(fi Y/Λ log u),

>(/rγ/*), α+γ<2.

For OΦ|ί|^(logn)1 / Λ, (2.4) and (2.6) give the bounds for D(t). However,
in the case α+7^2, we can improve (2.4b) and (2.6b). For this purpose we
need the following lemmas instead of Lemma 4 and Lemma 5. We shall omit
the proofs because the lemmas may be proved analogously to Lemma 4 and
Lemma 5, respectively. Hereafter, suppose that l<α<2, γ>0 and <

Lemma 4'. If the conditions ( i )-(iϋ) and ( v ) be satisfied, then

φ(u, s) = \-ium^s*-a(a- l)/3Λ(ι*)+O( | u \ Q(s, 7)+ \ m \ "^ \ log s \ )

uniformly in u as s-> 0.

Lemma 5'. If the conditions ( i )-(iϋ) and ( v ) be satisfied, then

φ*(«, s) = 1 +iumΛ*βs*-a(a- l)βs*h*(u)

uniformly in u as s-> 0.

Analogously to the proofs of Theorem 2 and Theorem 3, the following
Theorems 2' and Theorem 3' are derived from Lemma 4' and Lemma 5',
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respectively, if (l+r1)!1^ is replaced by (1+Γ1) |log [min(f, έΓ1)] | ~l/W*.

Theorem 2'. Let conditions (i)-(iίi) and (v) be satisfied, then there exists

C>0 such that for all n^ 1 and 0<ί^(log n)1'*

Δ(FM, Gt)£C rc-H(l+*(*+2Y)/2)log »+ \ log t \ 1/y] .

Theorem 3'. Let conditions (i)-(iii) and (v) be satisfied, then there exists

C>0 such that for alln^l and 0<α^(log n)l/*

Δ(F*,, G,*)^C iτΠ(l+*>g n+ |log *|1/r| .

The following corollary is an immediate consequence of (2.1), (2.2), (2.5),

Theorem 2' and Theorem 3'.

Corollary 2. Suppose that conditions ( i )-( v ) hold. Then there exists

C>0 such that for alln^l and 0<α^(log n)1'*

I log *|1/γ] ,

n+ I log * 1 1/v) .

Corollary 2 together with (2.3) and (2.9) yields the following result which

is a refinement of Corollary 1 in the case

Corollary 3. Suppose that conditions ( i )-( v ) hold. Then there exists OO

such that for all θ and n^l
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