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0. Introduction

In the present paper we consider the Cauchy problem for the following
equation

(0.1) Lu = (*9,+τΔ+ Σ bj(x)dx.+c(x))u(x, t) = 0

with initial data UQ(X) at ί=0, where T is a constant such that O^rfjl, and
bj(x}, c(x) belong to $°°(R?). $°°(R?) denotes the set of C°°-functions whose
derivatives of any order are all bounded. If T is positive, the above equation
(0.1) is the typical equation of non-kowalewskian type which is not parabolic.
The study of the equation (0.1) is important for the study of equations of general
non-kowalewskian type.

For real $ let Hs be the Sobolev space with the usual norm || ||s and let
Hoo= Γ\HS be the Frόchet space with semi-norms || |L s— 0, ±1, ±2, •••. We

SGΞK

say that the Cauchy problem for (0.1) is well posed for the future (resp. for
the past) in the space H^ if there exists a constant T>0 (resp. Γ<0) such that
for any initial data u^x)^!!^ a unique solution u(x, ί)e<??([0, T\\ H^) of (0.1),
which takes UQ(X) at t=Q, exists. Here, f(x, f)e<?J([0, Γj; #«,) means that the
mapping: [0, T]^t-*f(x, fy^Hoo is continuous in the topology of Hoo.

Our purpose is to prove the following theorem corresponding to the so-
called Lax-Mizohata theorem for equations of kowalewskian type (Lax [5],
Mizohata [6]).

Theorem. In order that equation (0.1) is well posed for the future or for
the past in the space //«,, it is necessary that there exist constants M and N such
that the inequality

(0.2) sup I Σ (PRe bj(x+2τθω)ωjdθ \ ̂  M log(l +p)+N
*eRM

fωesw-1 y=ι Jo

holds for any p^O. Sm~l denotes the unit sphere in Rm.
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REMARK 1. J. Takeuchi in [8] first studied the Cauchy problem for equa-

tions of non-kowalewskian type in the frame of L2 space.

REMARK 2. S. Mizohata in [7] proves the following. It is necessary for

(0.1) to be well posed in the space L2 that the inequality (0.2) with M=Q holds

for any p^O. He proves it by constructing the asymptotic solution based on

Birkhoff [1]. In the present paper we use the energy method.

REMARK 3. The author in [3] has given a sufficient condition for (0.1)

to be well posed in the space H^. In particular, from [3] and the above theorem

we can see that in the case m=l the condition (0.2) is necessary and sufficient

for (0.1) to be well posed for the future and for the past in the space H^.

When constant τ equals zero, equation (0.1) is kowalewskian. Then, we

remark that our theorem gives the H^ version of the Lax-Mizohata theorem.

Now, a solution u(x, ΐ) of the equation

(0.3) (i

with initial data uQ(x) at t=Q is written by

(0.4) u(x, t) =

where Cί1=Uί|* |2έfe and U0(ξ) is the Fourier transform for UQ(X). (0.4) shows

that equation (0.3) is not well posed in the space Gy but well posed in the space

ί/co. 6 is the space of infinitely differentiable functions with the customary

topology. In fact, if (0.3) is well posed in the space (?, for any compact set K
in R™ and any T">0 there exist a non-negative integer / and a compact set K'

in R% such that

sup

for a constant CK>K'>T. So, if the intersection of the support of UQ(X) and K'

is empty, u(x, T) equals zero for a point x belonging to K. Hence, it follows

from the first equality of (0.4) that for a point x0

dz = Q

is valid for any uϋ(x) whose support does not intersect K'. This is not true.
On the other hand we have from the second equality of (0.4) \\u( , t)\\s= \\u0( )\\s

(ί—0, ±1, •••) for any t, which follows that (0.3) is well posed in the space f/Όo.
Therefore, it is natural to consider the Cauchy problem for (0.1) in the frame

of the space H^ corresponding to the frame of the space G for the kowalewskian
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type.
As is stated in Remark 2, we use the energy method. The technique

used in the present paper is based on [6]. But, in particular, localizations

in the present paper and [6] are quite different. Roughly speaking, in the

present paper we localize the solution of (0.1) in phase space along the classical
trajectory for the Hamiltonian — rΔ. The symbol w(x, t\ ξ) of this localizing

(pseudo-differential) operator is defined by the solution of * Equation of motion
for Hamilton function — r | ξ \ 2"

(0.5) 9tw(x, t; ξ) = {w(x, ί; f), -r\ξ |2} ,

where for (^-functions /(#, ξ ) and g(xy ξ) {fyg} (x, ξ) implies the Poisson bracket

1. Notations and preliminaries

Let X=(XH •••, xm) denote a point of Rm and let a=(aly •••, am) be a multi-
index whose components α, are non-negative integers. We use the usual
notation.

|α| = «H \-am, x" = ac?1—*ί", α! = «ι! αm!

9? = sίj-s::, £>? = Dl\-n& Q*} = ̂ -,

Let <S on Rm denote the Schwartz space of rapidly decreasing functions.
For u(x)^iS the Fourier transform ύ(ξ) is defined by

= e-" *u(x)dx, x ξ = x&+.

For real ί we define the Sobolev space as the completion of <S in the norm

We first state the definitions and theorems with respect to pseudo-differ-

ential operators without proofs. Let S0% be the set of C°°-functions such
that for any α, /? we have

where p($)(x, ξ)=d"D%p(x, ξ) and CΛ>β>0 are constants independent of (x, ξ)

50°o is a Frechet space provided with semi-norms \p\(ι°]'= max sup
' *,ξ

\p[β](x, ξ ) \ ( l , /'=0, 1, -••). The pseudo-differential operator P=p(x, Dx) with
symbol σ(P) (x, ξ)=p(x, ξ) is defined by
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Pφ(X) =

for φ<=S. For p,(x, £)eSβ?o (j=l, 2) we define qβ(x, ξ) (0^6>^1) by

(1.1) q*(x, ξ)

= lim
e ^O

where %(>>, 17) belongs to <S(R2m) such that %(0, 0)=1. Then, it is known that
q^x, DJC)=/)I(Λ;, Dx)op2(χy Dx)9 where "o" denotes the product of operators (see
chap. 2 in [4]). We often write &(*, ξ)=σ(PloP2) (x, ξ).

Theorem A (Theorem 3.1 of chap. 2 in [4]). Let define qfa ξ) by (1.1).
Theriy for any positive integer v we get

ι(*. f) = Σ -̂ ί̂ *, «A(t)(*, «+»' Σ Γ (1~?v" ί,.̂ *,o^|y|^v-ιγl I Y I = v J o γ!

where

w = O.- J Jr^?>(Λ,

Theorem B (Lemma 2.2 of chap. 7 in [4]). For qθ(x, ξ) defined by (1.1)

we get

//=/+2[m/2+l] (/=0, 1, 2, •••) and constants Cl are independent of θ
^l), but depend on I. For real r [r] denotes the largest integer not greater

than r.

Theorem C (Calderόn-Vaillancourt theorem, [2] or Theorem 1.6 of chap.
7 in [4]). Let ρ(x9 ξ) belong to 50%. Then, we get

for φe*S, where || || = || ||0, /0=2[w/2+l] and C>0 is a constant independent

°fP(x> ζ) and φ.

Now, we shall prepare two lemmas. At first, we note that when τ is posi-

tive,

(1.2) Σ ('Re bj(x+τθω) a>jdθ=— Σ ( Re bjdxj
3 Jo T J JLXιX + τpω

holds. Here, integral \ (" )dxj means curvilinear integral along the straight
JLx,x+τpω
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line Ί-jXtX+τpω from a point x^Rm to a point x

Lemma 1.1. The following (i) and (ii) are equivalent.
(i) The inequality (0.2) with constants M and N holds for any p^rO.

(ii) The inequality

(0.2)' sup -Σ (PRe bj(x+2τθω)ωjdθ^M log(l+p)+ΛΓ
*eRm

t»esm~1 j=ι Jo

holds for any p^O.

Proof. We have only to show that (ii) yields (i). When r equals zero,
the proof is easy. We shall prove in the case τ>0. By (1.2) and (ii) we have

Σ ΓRe bj(x+2τθω)ωjdθ

= — Σ ΓRe &Λ*+2τpω+2τ<9(-ω)) (-ω^dθ
i Jo

which completes the proof. Q.E.D.

We set

(1.3) ό(*;f)=-Σ Re &/*)?y.

Then, we get

Lemma 1.2. Assume that for any large constants M and N the inequality

(0.2) does not hold. Then, for any large constant M there exist sequences

ω(*)CΞ5"»-1, pΛ^0, k=l, 2, — such that

(1.4) pk — » oo as A — » oo 9

(1.5) (%(^>+2
Jo

and for any ί^[0, pj

(1.6) (
Jo

Proof. Noting Lemma 1.1 and the assumption in this lemma, for any
large constant M we can find sequences y(k)^Rm, σ(k^Sm~1

y δ^^O, Λ=l, 2, •••

such that

(1.7)

Set Fk(t)= ('i(y<*)+2τβσ(*); σw)dθ and let tk be the point at which Fk(t)
Jo
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has the minimal value on [0, SJ. Then, we shall prove that (1.4), (1.5) and
(1.6) hold, if we determine x(k\ ω(k) and pk(k=l, 2, •••) by

(18) x^ v^-\-2τt σ^ ω^ — σ^ o =S t

We can see that for /e[0, pj

(1.9)

J ί

^̂
= Fk

k(t+tk)-Fk(tk) .

So, the choice of tk shows that (1.6) holds for *e[0, pj. By (1.7)-(1.9) and
FA(fft)

(1.10)

^ Mlog(ί+Sk)+k

which implies that (1.4) and (1.5) hold. Q.E.D.

2. Localization in phase space and proof of Theorem

We prove our theorem by contradiction. That is, we assume the following:

(A.I) Equation (0.1) is well posed for the future or for the past in the space
Hoo

(A.2) Inequality (0.2) does not hold for any large constants M and N.

Here, we may assume without loss of generality in place of (A.I)

(A.I)' Equation (0.1) is well posed for the future in the space H^.

Then, by the assumption (A.I)' there exists a Γ>0 such that for any initial
data i/0(tf)ejHOo a unique solution u(x, t)^G°t([Gy Γ]; HJ) of (0.1) exists. Since
the space £?([0, Γ]; //"«,) is a Frέchet space with semi-norms max ||/( , ί)||β,

O^t^T
s=Q, ±1, ±2, •••, we see by the closed graph theorem that the mapping: ί/Όo
^u0(x)-*u(x, ί)e£?([0, T\\ Jfϊoo) is continuous. Consequently, there exist a
non-negative integer q and a constant C(Γ)>0 such that

(2.1) IK , ί ) l l

holds for t e [0, T].
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For the above q we take a constant M such that

(2.2)

and fix it through sections 2 and 3. Then, since Lemma 1.2 holds from the

assumption (A.2), for this M we can take the sequences x(k^Rm, ω(k)^Sm~1

y

PA^O (Λ=l, 2, •••) satisfying (1.4), (1.5) and (1.6). Moreover, we take a posi-

tive constant δ such that

(2.3)

We can assume from (1.4) that

(2.4)

for any k. We also fix these sequences and δ hereafter.

Let h(x) be the C°°-function such that

h(x)= 1 on {*; |*|

where supp &(•) implies the support of the function h(x). Let wn,k(x> t\ ?)
be the solution of (0.5) with initial data pΓ/2 h(pk(x-x^))h(pl(ξ-nω(k))/n) at

ΐ=0. Then, we can easily get

(2.5) wn>k(xy f I)

For the solution M(#, ί) of (0.1) we call Wn>ku(x, ί)=wntk(x, t\ Dx)u(xy t) the

localized solution (in phase space along the solution (x^ -\-2nrtω^ , nω^)^Rl"ξ
of the canonical equation with initial value (x(k\ #ω(A°) at ί— 0 for the Hamilton

function T \ ξ \ 2) (see Lemma 2.3). We note

(2.6) σ([/9,+τΔ, Wn,k]) (x, ί; ξ)

= idtwnth(x, t] ξ)-i{wntk, —τ\ξ\2}+τΔwn>k

= τ(Δwntk) (xy t; ξ) ,

where [ , •] indicates the commutator of operators and Δwntk(x, ί; ?)— Σ (ΰljwn,k)
j

(x, t\ ξ). Equality (2.6) is essential for the proof of Theorem. For any multi-

indices a and β we set

(2.7) <•£(*, ί; ξ) = p?'2(d*xh) (*) (8fA) (ξ) x = pk(x-xw-2τtξ).

ξ = pί(£-»ω<*>)/»
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We note that <•?(*, ί; f)=wM(*, ί; f).
Now, we define a series of solutions of (0.1) as in [6] by using x(k\ ω(k}

and ρk determined above. Namely, we define their initial values. We set
hereafter throughout sections 2 and 3

(2.8) if = n(K) = Pl
+8 .

Let \|r(#)e<5 be a function such that ψ(0)=2 and

(2.9) βupp^(.)c{f;A(f)=l},

and then, we define

(2.10) faξ) = e-i^ tfaξ-^m) (n = tf+s) ,

that is,

(2.10)'

Let fiA(#, f)e£°([0, T\\ #00) be the solution of (0.1) with initial data ψ Λ(*) at
ί=0. Then, we can easily get by (2.1) and the definition of ψk(

x)

(2.11)

with a constant CΊ(Γ)>0 for t e [0, Γ]. We set

(2.12) t Γ ̂ , ί) = PF *%(*, ί) ,

where JΓJ;g=a>;;ί(*, ί; D,). We often write vk(x, t)=v$ °(x, t). Since supp φt( )

<={?; A(/>ί(f-itow)/*)=l} is valid from (2.9), (2.10) and pt^l, we get

which follows from ψ(0)— 2 and (1.4) that for large k

(2.13) IM.,0)||^||A(.)II>0.

Now, take a positive integer ί such that

(2.14)

and set by the localized solution vk(x, t)

for ίe[0, Γ], where for real r [r] denotes the largest integer not greater thanr.
We remark that since ρk/n=pϊϊ(2+8) is not greater than T for any k, σk(t) has been
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defined on the interval [0, pkln]. Then, we obtain

Lemma 2.1. We have

(2.16) σk(t)^C0pΐ'2+2ίm'2+1i+v+8»

for any ίe[0, pk/n] (n=pl+8)> where C0 is a constant independent of k.

Proposition 2.2. For large k we get

(2.17) ^(A/iO^Ctfl+p,)* (« = pΓs)

with a positive constant Cl independent of k.

Lemma 2.1 will be proved after the proof of Theorem and Proposition
2.2 will be proved in section 3.

Proof of Theorem. Since we have determined constant δ>0 so that

(2.3) holds, (2.16) and (2.17) is not compatible for large k. Thus, we can prove
Theorem. Q.E.D.

Proof of Lemma 2.1. By Theorem C we get

I \vk( - , 01 1 ̂  W2 1 h(pk(X-^-2τtξ))h(pl(ξ-nω^)/n) \ }°o> /o| \uk( , ί)l I

where lQ=2[m/2+l]. Here, we used 0^pkt^pl/n=pk(1+8) for fe[0, pk/n].
Consequently, we obtain from (2.11) for ί^[0, ρk/n]

with another constant C independent of k. In the same way we obtain for
f€=[0> f t k/n]

(2.18) \\rt+(*

with constant CΛtβ independent of k. Hence, we get (2.16) by n=pl+8 Q.E.D.

Lemma 2.3. Ift^[Q, pk/n] (n=ρl+8)y then we have

(2.19) supp<f( ,ί; •)

Proof. If (x, ^)esuρp ^»,'jf( , t\ •), we have from the definition (2.7) of

I „-(,*» +2τiζ) I ̂  1/(2Λ), I f /»-ω<4) I ̂  l/(2pϊ) .

So, noting that O^r^l, it follows that
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^ \x-(**>+2τίξ)\+2aτt\ξln-aP>\

for any ίe[0, p*/w]. This completes the proof. Q.E.D.

Now, if we use the equality (2.6), we can easily get for the localized solu-
tion vk(x, t)=Wn,kUk(x, t)

(2.20) Lvk(x, t)

= Λ(*,0

= {C2 */*)9,,-N*). W.A+τ(Δw..t) (*, ί; Dt)}ut .

Then, we obtain

Lemma 2.4. Let ίe [0, pt/»] («=pΓ8). TVzew, /or α«j />=!, 2,

(2.21)

£ pi Σ lltf'i-, Oll+c> Σ
^

λ=m/2+4[w/2+l] αnJ C^ is a positive constant independent of k.

Proof. We can easily see from (2.20)

(2.22) !(/,(., f) l l

^ Σ Wjd^w^u^., oil+IIM*), .̂>*( , O I I + p i W Λ , Oil

We first consider the term [6,9*,, W ,̂*]^ ,̂ ί). If we use the notation
(2.7), we can write

(2.23) [6,8V FT.. Ju^*, ί)

= P* *yWW.ViV*. 0+[*^ W.ώQtjiifa t) ,

where ^ is the multi-index whose j-th component is one and other components
are all zero. Then, for the first term of the right hand side of (2.23) its L2

norm is estimated by the second term of the right hand side of (2.21).

We consider the second term in (2.23). By Theorem A in section 1 we

obtain

(2.24) σ(\bfr)tWnd9J

= -{ Σ -Dl bj(x) a?»M(*. ί; ξftξj+r^x, t; ξ) ,
i^iviίS^ *y
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where rptk(x, t\ ξ) consists of the sum of

0.-JJe-""(DJft/) (x+y)

over Ύ such that | γ | =p+ 1 . Using

08- jje->"(Z>? έ,) (*-bO (82 »...) (*, <;

= 0.-J Je-""(^ *y) (Λ+J') (8? »...) (*,

-5 0.-J Jβ-"" Z),.(Z)Ϊ 6,) (a+ y) (8| «M) (*, ί;

and then applying Theorem B, we get the estimates from (2.5) and Lemma
2.3

(2.25) |rίf,(.,ί;.)lί
β

β!,β

for /e[0, pt/«], where /0=2[w/2+l] and CPΛ, Cί>2 are positive constants de-
pending only on p. Here, we used ρkt^plln for ίe[0, />*/»]. Consequently,
applying Theorem C, we get

(2.26) \\rpιk(x, t; £>>,(-, ί)ll ̂ C>f, »
 +1pi(pί/«)'+1

by (2.11).
Next, we consider the first term in (2.24). We remark

(2.27) (9| «M) (x, ί; f)f,

== Σ -^i(-2rtpt)'-'(pi/»)""«C:«*,i;f)fy.
«»-«-β=γα!/β!

We can easily see

(2.28) \\Wte Dβfιk( ,t)\\

^ pMWft j fiuά; t)\\ + \\DΛJoWϊ.t uk( , Oi l ,

in which the second term is estimated by

Kn\\Wϊ.t «*(-, t)\\+Ct,.,β n^p\(pllnγ^ ,

where K== 3 max |A(^)| and CptΛtβ are constants independent of ky but depend
*ezzw

on a and /3.
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In fact, if we set

(2.29) %M(£) = A(A(f-»ω

we have

\\DtJ°W*H;ϊuk(;t)\\

Dt,

Since supp %M( )c {I \ξ\ ^3«} is valid, the term \\TdaD, )Dtl°WW «»(•, Oil
is estimated by -fC«||iF".f wt( , t)\\. Apply Theorems A and B to the symbol

σ((I— %i,*(.D»))°W*f Z>,,.) (*, ί; I). Then, if we note from Lemma 2.3 that

supp (1— XM( ))Γlsupp «£;£(• , ί; )=Φ for ίe[°> P*/«]> we can easily have

as in the proof of (2.25) for <e[0, pk/n] with a constant C^Λ)β. So, we get

(2.30) ||(7-χ1.4(Z),))oίF fD,ί«4(.,ί)||

with another constant Cpaβ. In the same way we can also estimate

κi.^WoWr.V' ̂ ί , O i l - ' '
Hence, noting that p^<ίp!/» for ίe[0, ρt/«], we obtain from (2.27)

(2.31) ||(al »..») (*, ί; Z),)Z)̂  «,(-,

for constants Cγ and Cί>y, which shows from (2.24) together with (2.26) that

(2.32) HP/*), W..J8,, «,(.,*)!!

c; " (pί/") 1 *" 1 1 ! !^- . Oll+c; «
for constants C^ independent of ίj. Since we can also estimate || [<:(#), Wn>k]uk

( , t)\\ in the same way, we can complete the proof. Q.E.D.

3. Proof of Proposition 2.2

We first prove for vk(x, t)=v°k'°(xy t) defined by (2.12)

Lemma 3.1. Let *e[0, pk/n] (n=pj+β). Then, for any v=!9 2, •••

(3.1) l
2 α
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}\\v,,( , t)\\*
P*

-IIΛί , Oil x IK . OII-Cv Hί+W(p*»ΊK( , OH
is valid, where λ is the same constant in Lemma 2.4, A is a constant independent
of v and k, and Cv are constants independent of k but depend on v. As set in sec-

m

tion 1, b(x\ ξ) denotes —2 Re bj(x)ξj.

Proof. From (2.20) we can see that

(3.2) f IK .OII 2

= 2Re (9Λ( , 0, »*(-, 0)

= 2Re z((τΔ+Σ *Λ,-+Φ*( . 0. v*('> 0)-2Re ι(Λ( , <), *„(; 0)

^ -2Re φ (Re Ay)(*)D,χ., ί), »*(-, 0)

-ΛIM , OH2-2H/*( , O l l x I M , Oil

for a constant ^4X independent of k. We shall estimate

-φ (Re iy)(*)/v*( > *), **(-, 0) = (̂  β
We write

(3.3) -(ReiyX*^

= -(Re bj)(i(P>+2ίiτtω<»)nωp

+(Re δ;.)

+ {(Re 6,)

We first estimate 72̂ , ί). Since supp %M( •)<={£; ||-^ωw| ^3w/(2pΛ)} holds
for XM(£) defined by (2.29), we see that

(3.4) \\^ADxHnωr-DXj)vk(^t)\\

^Λ-IW , O I I
Pk

for a constant A2 independent of k. Hereafter, in this proof, if there is no
confusion, we do not indicate that constants are independent of k. Next,
we write by vk(x, t)=Wn>kuk(x, t)

(3.5) /= (/-XU0,))°M4)-A>,
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Apply Theorems A and B in section 1 to the term p(xy t\ ξ)=σ((l—Xιtk(Dx))o
wn,k(χy t\ Dx) (nω^—Dxj)) (x, t\ ξ). Then, we can show in the similar way to
the proof of (2.30) that for any v

is valid for *e[0, ρkln] and so we get

\\(l-Xltk(Dx))oWntk(Xy t Dx) (nωp-DXj)uk( , t)\\

for £^[0, PJ/JI], where constants CV f l and Cv,2 depend only on v. In the same

way we can also estimate ρk\\(I— ^I,A(^))°^»/A°(^> t; Dx)uk( , t)\\. Namely, we
obtain

(3.6) 11/11

which shows together with (3.4) that

(3.7)

^ A^- |K( , ί)||+Cv.4 «'
Pk

forίe[0, p»/»].
Next, we shall estimate I3vk(x, t). If we set

supp (1— X2,*(*)) Π supp zo* jf( j t; )=φ holds for ί̂ [0, pt/w] from Lemma
2.3. So,

ofa t)

= 0.

That is,

(3.8) I3vk(x, t)

= %2. (*) ί(Re bj) (χW+2nrtωW)-(Re b,) (x)}DXivk ,

which follows that

(3.9)
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for *e[0, pkln]. Now, as in the proof of the estimate for the second term of
the right hand side of (2.28) we get

II*V>*( , Oil
^ A, fi||t» t(., OII+Cv.5 «'

which follows

(3.10) ||/3^( , OH

Pk

Using (3.2), (3.3), (3.7) and (3.10), we can complete the proof. Q.E.D.

Proof of Proposition 2.2. We can take a positive integer p such that

(3.11) sup ef

noting n=ρl+s and fix it. Then, it is easily seen from Lemma 2.4 and Lemma
3.1 that

(3.12) ^ |K( , Oll^*(f 5 *)IK( , Oil - const. *- {(plln) Σ lbΓβ( , Oil
dt pk ι»+βi=2

+ Σ Pk(pklny*+βl\\v*'β( , ί)ll}"" const >

where

/ς ις\ /?/>• ̂  A/V
^J.lO^ -«-'\^> ^/ — U\X

with the same constant A in (3.1). Since the inequality p*(pf/n)m ^(ρf/fl
( 1 7 1 ̂  1) is valid, we obtain from (3.12)

(3.14) I IM . O H

^ β(ί; ΛJIM , OH-const. A Σ (p,»c(|Λ+β|+1)/2]ll^( , OH
pki£\*+β\£P + ι

— const..

If we make the same process for v^'β(xt t)=W%$u(x9 f) ((\CLJrβ\ ^1) as
for vk(x, i)=Wntku(x, t), corresponding to (3.14) we have

-f \\v*k \ ,ί)\\^B(t k)\\v*k>\.,i)\\
at

-Ca,β^ Σ
Pk ιgl

for constants CΛ>β independent of k. So, we obtain
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(3.15) ^(pf
at
^ B(t k) (p*3/«

- C ΛιfΛ Σ (pf/eya-^+ft+i)/*]!!̂ .̂, ί)||-C-ιβ

Pk l^|Λ+β|

Here, we used

for \&+β |^1.
Now, we already determined s so that (2.14) holds. Hence, if |α+/3|

ί̂+1, we have by (2.18)

for any k and for any £^[0, pA/w]. Therefore, for σft(ί) defined by (2.15) we
obtain from (3.14) and (3.15)

(3.16) ^ σ,(f)^(B(f A)-C-^)σ,(f)-0(l)
Λ PA

for any k and /^[O, pΛ/w], where C is a constant independent of k.
The integration of (3.16) gives

(3.17) σk(Pkln)

^ (exp ΓA/ΛJ3(0; k)-C^-dθ)
Jo Pft

X
o Jo pk

Here, we note from (3.13) that

B(θ\ k)
Pk

Also, from the choice of x(k\ ω(k\ pk we know that

(Pk/nb(χ
Jo

dθ



CAUCHY PROBLEM FOR SCHRO'DINGER TYPE EQUATIONS 581

and for ίe[0, pk/n]

Moreover, <τ4(0)^||β»( , 0)||^||Λ( )II holds for large k by (2.13). Hence, if

k is large enough, we obtain from (3.17)

for a positive constant C19 which shows Proposition 2.2. Q.E.D.

REMARK 4. In more detail we can see from the proof of Theorem the

following is necessary in order that there exists a constant Γ>0 such that

for any initial data u^^H^ a unique solution u(xy f)e£J([0, 71]; H^) of

(0.1) exists and the inequality (2.1) holds for some q. For any M greater than

m/2+2[τw/2+l]+3gr there exists a constant N such that the inequality (0.2)

holds.
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