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Introduction. The parallel complex submanifolds, i.e., complex sub-
folds with parallel second fundamental form, of Fubini-Study spaces were
classified by Nakagawa-Takagi [12] and Takeuchi [20]. The first classification
[12] was done as an application of the general study of Kihler immersions of
locally symmetric Kahler manifolds into Fubini-Study spaces. The second
one [20] was done by the determination (Takagi-Takeuchi [18]) of degrees of
Kahler immersions of symmetric Kahler manifolds into Fubini-Study spaces.

In this paper we give another way of classification of such submanifolds.
Let D be an irreducible symmetric bounded domain and ¥ the holomorphic
tangent space of D at a point p&D. Then the isotropy group K at p acts in
a natural way on the complex projective space P(V) associated to V. We endow
P(V) with a K-invariant K#hler metric with positive constant holomorphic
sectional curvature. Take a highest weight vector v of the irreducible K-
module V. Then

M = K-[o]cP(V),

where [v] denotes the line Cv, is a complete full complex submanifold
with parallel second fundamental form. This is proved by writing the second
fundamental form of M in terms of the Lie algebra of infinitesimal automor-
phisms of D.

Conversely, any complete full complex submanifold M of a Fubini-Study
space Py(C) with parallel second fundamental form is obtained in this way.
This is proved by defining a structure of Jordan triple system on CV*' making
use of second fundamental form and curvature tensor of M, and then using
Koecher’s classification theorem for symmetric bounded domains by Jordan
triple systems.

As an application, we study the group Aut(S) of automorphisms of a non-
singular hyperplane section S of M. We show that Aut(S) is reductive if
and only if the symmetric bounded domain D corresponding to M is a unit
ball or of tube type. This provides a unified construction of compact complex
manifolds admitting no Einstein Kihler metric found by Hano [2], Sakane
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[14].

1. Projective manifolds

Let U be a finite dimensional real vector space, J a complex structure on
U, i.e., a linear endomorphism of U with J?=—1Iy, I, being the identity map
on U, and {, > an inner product on U such that

Ju, Joy = <u, v> for u,veU.

The triple (U, J, <, ) is called a hermitian vector space. 'Then U is regarded
in a natural way as the underlying real vector space of a complex vector space,

which will be denoted by (U, J), and
{u, v} = <, >+ — 1<y, Jo>
is a hermitian inner product on (U, J) such that
(1.1) Re{u, v} = lu, v> for u,veU.

Denoting the C-linear extensions of J and <, to the complexification U®
of U also by J and <, >, we define

= {uelU% Ju= +v—1u}.
Then U°=U*+U~ (direct sum), U*=U¥, <U*, U*>={0} and
{u, v) = <u, vy for u,veU*

is a hermitian inner product on U*. Let w*: U—U?* denote the projections,
ie.,

w*(u) = %(u:F\/——lju) for ucU.

They are then R-linear isomorphisms such that

w*(Ju) = +v/—1w*(u) for ucU,
(1.2) 2{w*(u), w*(v)) = {u, v} for u,veU.

In particular, if V is a finite dimensional complex vector space equipped with
a hermitian inner product {,}, then the scalar restriction U=Vp, the natural
complex structure J and <u, v>=~Re{u,v} define a hermitian vector space
(U, J;<,>) in such a way that (U, J)=V and that the hermitian inner product
{,} on (U,]) coincides with the original one {,}. In this case, (Vg)* will
be often abbreviated to V*.

Now let ¥ be a complex vector space with dimension N+1 equipped with
a hermitian inner product {,}, and P(V) the complex projective space associ-
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ated to V with dimension N. The complex structure tensor on the tangent
bundle T(P(V)) is denoted by /. We denote by z: V—{0}—P(V) the pro-
jection vi—[v], where [v] denotes the line Cv. The unitary group on V
with respect to {, } is denoted by U(V), which acts on P(V) in a natural way.
Let w(V)=Lie U(V), the Lie algebra of U(V). We fix ¢c>>0 and let g(X, Y)=
<X, Y> denote the U(V)-invariant Kihler metric on P(V) with constant
holomorphic sectional curvature ¢. It is described as follows.

We define a U(V)-invariant symmetric bilinear form <, > on gl(V)= Lie
GL(V) by

X, V> = -——%Tr(XY) for X,Yegi(V).

Let (Vg, J, <, D) be the hermitian vector space constructed from V in the above
way. Choosing an element E€V with <E, E>=4/c, we put o=[E]€P(V).
We define Q={E, JE}y and

{V) = {XenV); X-E€0},
m(V) = {XewV); <X, {V)> = {0}}.

Then w(V)=¥V)+m(V) (direct sum) is a Cartan decomposition of u(V),
and the linear map 7: m(V)—T,(P(V)) defined by

Jj(X) = X¥ for Xem(V),

where X* denotes the vector field on P(V) generated by X, is an R-linear iso-
morphism. Then, together with the complex structure J on m(V) corre-
sponding to the complex structure tensor J, on T,(P(V)) by the above j, the
triple (m(V), J, <, >) becomes a hermitian vector space. Obviously, (T,(P(V)),
Jor <5 D), <, > being the Kahler metric of P(V) at o, becomes a hermitian vector
space. We put furthermore

T= {vEVg;<v, 0> = {0}}.
Then T is a J-invariant subspace of Vp (with dimension 2N), and hence
(T, ], <,>) becomes a hermitian vector space. We may define a linear map
{: m(V)—T by
i(X)=X-E for Xem(V).

The differential of # is denoted by 7. We have then a commutative diagram

)
7N\
r'— newy,

T
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and each of 7, j and 7z, is an isomorphism of hermitian vector space, i.e., a
linear isomorphism preserving <,> and commuting with J. The Kihler
manifold (P(V), g) and the Kihler metric g are called the Fubini-Study space
and the Fubini-Study metric, respectively.

Next we recall some basic identities for projective manifolds, i.e., those
for complex submanifolds of complex projective spaces. Let (M, g) be a Kihler
manifold and f: (M, g)—(P(V),g) a holomorphic isometric immersion. Let
TM and NM denote the tangent bundle of M and the normal bundle for f,
respectively. 'The curvature tensor of (1, g), the second fundamental form,
the shape operator and the normal curvature tensor of f (and also their exten-
sions to complexified bundles (TM)¢ etc.) are denote by R, a, A and R*,
respectively. The complex structure tensors J on TM and NM give rise Whitney
sum decompositions

(TM)® = (TM)*(TM)",
(NM)¢ = (NM)*®(NM)™,
and thus we get direct sum decompositions
C=(TM)°) = C~((TM)")+-C~(TM)")
C(NM)) = C=(NM)")+C~((NM)")

for the spaces of smooth sections. Then (cf. Kobayashi-Nomizu [8])

(13) a(X,Y)=0 for X, YeC~(TM)%),
(14) a(X, Y)eC~(NM)*) for X, YeC-(TM)*),
(1.5) A:X=0 for E€C-(NM)*), XeC=(TM)*),

(1.6) A XeC~(TM)*) for EeC-(NM)*), XeC~(TM)*),
(1.7) (Bianchi) R(X, Y)Z = R(Z, V)X for X, Y, ZeC~(TM)*),
(1.8) (Gauss) A,<X,Y>Z=f2_{<x, Z>Y+<Y, Z>X}—R(X, Z)Y
~for X, Y, ZeC~(TM)*),
(1.9) (Ricci)  a(X, 4:7) = R~(X, V)t— %<X, 1923
for X, YeC~(TM)*), EeC~(NM)*).

Here the C-linear extension of the Fubini-Study metric is also denoted by {, >.
The equations (1.8) and (1.9) follow from Gauss-Ricci equations for a general
isometric immersion and (1.3)~(1.6).

2. Projective manifolds associated to hermitian symmetric Lie
algebras

Let (g8, o, J) be an effective hermitian symmetric Lie algebra of compact
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type, i.e., (8, o) is an effective orthogonal symmetric Lie algebra of compact
type and J is a f-invariant complex structure on b, where

I = {Xeg; ¢ X=X},
p={Xeg; s X=—X}.

Let g°, € and p¢ denote the complexifications of g, t and P, respectively, and
p¢=p*+p~ the decomposition by J as in §1. Let t be an arbitrary maximal
abelian subalgebra of ¥, so that the complexification § of t is a Cartan subalgebra
of g°. The root system 3 of g€ relative to § will be identified with a subset
of the real part Ho=+/—1t by means of the Killing form (,) of g°. The
root space for ¢ €3 is denoted by gS. Let =,C3 denote the set of roots
of ¢ and put 3, =35, For an arbitrary (lexicographic) order on Dg, the
set of positive roots and the fundamental root system are denoted by =* and
I, respectively, and put Zf=3"NZ%,and 2 =3"NZ,.

Lemma 2.1. Let Et€p*—{0}. Let H=—[E*,E*]e/—1%, o the
A-esgenspace of ad(H,) on g€ and p§=g§ N pC. Suppose

(i) g°=66+06f+a°1+085+0C,, with gf = CE*;

(i) pfc[af, g<il.

Then (8, o, ]) is irreducible, and therefore p* is an irreducible t-module.

Proof. Put E-=E* and 8={H, E*,E"};. Then we have [H, E*]=
+2E*, [E*,E"]=—H,, and so 8 is a 3-dimensional simple subalgebra of g€.
Suppose that (g, o, J) is not irreducible, i.e., (8, o, J) has a non-trivial direct
sum decomposition

8, o, J) = (8w o, J)P(B 020, J») -

Let z;: g°—g{) be projections and 8;=,(8) for i=1, 2.
Suppose first that both 8, and 8, are not {0}. Then z;: 8—8; is an iso-
morphism and hence E} =z;,(E*)=0 for each z. Denoting by

6=31@h (=12
the same decomposition of g%, with respect to E}, we get

af = (65):D(8%). with E}fe(af))..

This is a contradiction to (i): dim gf=1.

Suppose next that say 8, = {0} and 8,= {0}. Then 8Cg§,, and hence
8%:1=(85))1, P§=(p5))ePP&, under the obvious notation, and thus [gf, g%,]Cg§).
This is a contradiction to (ii). q.e.d.

Lemma 2.2. Let (g,0,]) be irreducible and E* € p*—{0}. Then the
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following three conditions for E* are mutually equivalent.

1) E* defines the decomposition of g€ with properties (i) and (ii) in Lemma
2.1;

2) E* is a highest weight vector (£0) of the irreducible t-module p* with
respect to an order on Yp=+/—1t for a maximal abelian subalgebra t of ¥, nor-
malized as —[[E*, E*], E*]=2E"*;

3) E* is a highest root vector (0) of g€ with respect to an order on
br=+/—1t with the following properties (a) and (b) for a maximal abelian sub-
algebra t of ¥, normalized as —[[E*, E*], E*]=2E":

(@) »"= 3 g7,

acl

(b) = =Z=N{l};, where II,=T1INZ,.

These vectors E* are conjugate to each other under the action of the comnected

subgroup K of GL(b*) generated by ad,+(¥).
Proof. 1)=2): We define
fg:fcngf, f:pcngf’
1 = {Xet§; (X, Hy) = 0}.
Then t§=1§ B CH, (direct sum of ideals), and by (i) we have decompositions
1) 0 = IEHHEHEC,
(2.2) P = pE+pf4-pC,+9§+pC,, with p§ = CE*.
Now by applying the representation theory of 3-dimensional complex simple
Lie algebras (cf. Serre [17]) to the 8-module g€, we know that the kernel
Ker (ad(E™)) of ad(E™) is given by
Ker (ad(E*)) = 1§ +p§+af+af .
We take a maximal abelian subalgebra t of  containing \/—1H,, and put
B={a€Zy; (o, H) =0},

under the notation in the beginning of this section. Then [gS, E*]={0} for
each a€ B, since g t§+t¢cKer (ad(E*)). Moreover [H’', E*]=0 for each
H' €Yy, with (H',H)=0, since H'€t§ CKer (ad(E*)). Thus the element
7, Ebg determined by

(v, aHy+H')=2a for acR,H'€b, with (H', H)=0,

is a weight of the f-module p* with a weight vector E*. On the other hand, by
a characterization of positive roots by Borel-Hirzebruch [1] we may find an order
on B such that =y B. Thus E* is a highest weight vector with respect to
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this order. The normalization condition follows by E*&p§. _
2)=>3): Let E* be a normalized weight vector in p* belonging to the
highest weight 7, with respect to an order >" on hr=+/—1t. Let II;” denote
the fundamental root system of 3, By a theorem of Borel-Hirzebruch [1]
there is an order >’ on by such. that
@@ p"= 2 qf,

acz/t
)

(b) =, =Z2=N{IL},, where IIj=II'NZ,.
We choose an element s of the Weyl group of ¥ such that sTIf=TII;". Let
> be an order on by such that its fundamental root system IT of = coincides
with sTI".  We put I1,=IINZX, Then we have s2;+=E; . On the other hand,
we have 52;’:2;: in virtue of (a)’. 'Thus we have

(@ p*= 2 a2.

ae )3;

Moreover we have IIy/=s(II'NZ)=IINZ,=1II, and hence =N {[l},=.
SNA{M{}z=sZ, by (b)’. Thus we get

(b) Z,=3=N{};, where II,=TIINZ,.

Now ITy’=II, implies = +=E;‘ . Therefore v, is highest in %7, and thus it
is highest in =*.

3)=>1): Let E* be a normalized root vector of g¢ belonging to the highest
root 7, with respect to an order on h)p=+/—1t with (a), (b). Let A={v,,---,7,}
be the maximal system of strongly orthogonal roots in % in the sense of
Takeuchi [19], and w: §z— {A}r the orthogonal projection with respect to
(,). Then (Takeuchi [19])

w3 = (L (ntr) (sisjsn)
(2.3) )
osi = {Lo—) asisjsn)
or

R . . 1, 1es
w3y = {—2 (vi+7v) (=sisj=r), 5 v.(1§z~_<_r)}’
(2.4) 1 )
o) - — . <.£ .S ey, ___'_g
w3y {2(’)’. v;) (1=i<j=r), 27,(151_;-)}’

and a root €% such that w(a)=7; is the only a=7; (1=i=7). Moreover
the normalization condition implies that H)=—[E™*, E*] is given by

2
(71, 70)

(2.5) Hy = v .
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Since (7;, Hy) =28, (1 =i <r), the eigenspace decomposition of ad(H,) is as
(2.1) and (2.2). Thus we get the condition (i).

In order to prove the condition (ii) we consider the involutive automor-
phism 0=exp ad(z\/—1H,) of §. We put

8. = {Xeg; 6X = £X}.
Their complexifications g¢ are given by

¢ = 1§+ pf+pf+pes,
g¢ = gf+g%.
If g_={0}, then p§={0} in virtue of (2.3), (2.4). So we may assume g_=={0}.
Now the theory of symmetric Lie algebras implies [g_,g-]=g., because g
is simple and thus (g, 6) is effective. Since [g¢, g¢]=][af, g%i], we obtain the
condition (ii).
The second statement of the lemma follows from the fact that the vectors

with 2) are conjugate to each other under the action of K*. Note here that K*
contains the circle group {€ly+; E€C, |&|=1}. q.e.d.

In the following in this section we assume that (g, o, J) is irreducible. Take an
element E*€p* asin Lemma 2.2 and fix it. Let E-=E*€p, E=E+*+E-€p,
H,=—[E*,E"le\/—1t and (2.1), (2.2) the decompositions by ad(H,). By
(2.3), (2.4) and (2.5) we have p$,Cp* for A=2,1. So we write

pR=rL (=21.
We put furthermore
5= pfnp*,
m* = {<, .

Thus (2.1) and (2.2) are written as

1 =t+m*+m-,

p* = pr+pr+ps, with pr = CE*.
We define

L, =ENtS,

m=£fn(m*+m7),

p,=pﬂ(p,‘t—l—p;) (7"22’1’0)-

We have then direct sum decompositions

(2.6) E=t4m,
(2.7) p= P2+P1—|—Po .
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The complexifications m€ and (p,)¢ of m and p,, respectively, have direct sum
decompositions

(2.8) mé =m*4+m-,

(29) P)°=pi+px  (r=210).
Considering that [£C, £€] C 1€, [, p*] C p*, [p*, p*]= {0}, [p*,p ] C € and
[aF, 851 C8f.u, We get the following relations.

[m*, m*] = {0}, [m*, m~]citf, [, m*]cm*,
[pX, pX1= {0}, [P, 9X]CEf (v =21,0),
[ps, prlcm™, [pg, prlcm*,

[v5, pz] = [p7, Pz] = [b1, pz] = {0},

[pr, pilcm®, [, pflcpy (v =2,1,0),

[m*, p3]= {0} , [m* p3lCpT,

[m*, pt]Chs, [m* pflCps,

[m*, pz]Cpr, [m*, pi]= {0}.

From these we have the following relations.

[m, m]ct,, [&, m]Cm,

[py PAlCT *=1210),

[P PdCm, [Py b = {0}, [P, PJCm,
[fo» pA]CpA (7\' = 2’ 1’ O) ’

[m, p]Chy, [m, pJCh+p,, [m, p]Ch;.

These relations will be constantly used in the sequel.
We define linear maps z: m—p, and z: p,—m by

(X)=[X,E] for Xem,
hX)=[E, X] for Xep,.

Note here that EXp3, E€), and so 7 and k are well defined.

Lemma 2.3. Both i and h are isomorphisms. More precisely, we have
hoi=1I, and ioch=1I, .

Proof. Let 3 be the 3-dimensional simple subalgebra of g¢ defined in
the proof of Lemma 2.1. Then by applying to 3 the representation theory
of 3-dimensional complex simple Lie algebras, we know that ad(E*) induces
an isomorphism g¢¢ —g¢. In particular, ad(E*) induces isomorphisms
pS,—1¢, and ,—pg,. Moreover ad(E7)ad(E*) induces —(identity) on ¢%,. In
fact, since ad(E™)ad(E*)=ad(E*)ad(E¥)+-ad(H,) we have
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ad(E¥)ad(E*)X = +ad(H)X = —X for Xegf,.

In particular, ad(E¥)ad(E*) induces —(identity) on <, and on pg,.
Now the C-linear extensions of 7 and 4, denoted also by 7 and A, are given
by

(2.10) i(X) = [X, E*]ept for Xem*=1{<,

(2.11) h(X) = [E*, X]em* for Xepr.
Thus hoi=—ad(E¥)ad(E*) on m* and ioh=—ad(E*)ad(E¥) on p7. Therefore
by the facts proved above we get hoi=Im and ioh=1Iy . q.e.d.

Now we shall construct a complex submanifold M of the projective space
P(p, J) associated to (p, J) with parallel second fundamental form.

Fix ¢>0 and take a (unique) P-invariant inner product <, on p such
that <E, E>=4/c and

JX,JY>=<X,¥> for X, Yep.

Then {, > is uniquely extended to a g-invariant inner product on g, which
will be also denoted by <, >, and (2.6) and (2.7) are orthogonal sums with
respect to <,>. The C-linear extension of <, to g is also denoted by
{,> Let GCGL(g) (resp. G°CGL(g®)) be the adjoint group of g (resp.
of g°) and K (resp. K€) the connected subgroup of G (resp. of G€) generated
by t (resp. by £€). We may regard as GC G and KC K€ Then K is a maxi-
mal compact subgroup of K€ Let p: K—GL(p,]) and p*: K—GL(p*) be
the natural (faithful unitary) representations. (Note that p*(K)=K".) They are
equivalent by the C-linear isomorphism w™*: (p, J)=p*. Their complexifica-
tions are also denoted by p: K¢—>GL(p, J) and p*: K°->GL(p*). Through
these representations the groups K and K€ act on complex projective spaces

P(p, J) and P(p*). Putting o=[E]€P(p, J) we define
M=K-oCP(,]).

We know the following properties of M (Takeuchi [20]): We have M=KZ¢-.o,
and thus it is holomorphically isomorphic to K¢-[E*]CP(p*) by the holomor-
phic isomorphism P(p, J)—P(p*) induced by w*. Since p* is irreducible and
E* is a highest weight vector in p*, M is a kidhlerian C-space and it is a full
compact connected complex submanifold of P(p, ). The center of K€ acts
on M trivially. The derived group K'¢=[K¢, K€] acts almost effectively on M
and it is locally isomorphic to the identity component Aut’(M) of the group of
holomorphic automorphisms of M. The coset space structure of M is de-
scribed as follows. Let

[=9+ P al,

ae 2[) (rh’a) =0
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under the notation in Lemma 2.2, L the connected complex subgroup of K¢
generated by [ and K;=K NL. Then Lie K,=f, and

M =KL = K|K,.

Thus T,(M) is identified with m in virtue of (2.6). The complex submanifold
McCP(p, ]) is said to be associated to (8, o, J). It is independent of the choice
of E* by the last statement of Lemma 2.2.

Now we introduce a K-invariant Kéihler metric g on P(p, J) with con-
stant holomorphic sectional curvature ¢ as in §1 by our inner product {, >
on p. The induced Kihler metric on M is also denoted by g. We use the
same notation as in §1 for (M, g)C(P(p,]),g) (f=the inclusion). Note that
each p, (A=2, 1, 0) is stable under J, thus becomes a hermitian vector space,
and (2.9) is the decomposition by J. Moreover, if we denote by J the com-
plex structure on m corresponding to the complex structure tensor J, on
T,(M), then (2.8) is also the decomposition by J. This follows from (2.10).
The inner product <, restricted to mXm and J define a hermitian vector
space structure on m. The subspace 7Cp in §1 is identified as

T = p+9,,

since we have Q=p, in our case. We define a linear map j: m—T,(M) by
JX)y=X¥ for Xem.

Lemma 2.4. The diagram

—> T (M)
vi\ m /;

is commutative, and each of i, j and =y (on p,) is an isomorphism of hermitian
vector space. Therefore, g coincides with {,) restricted to mXm at o, and
h:p —m is also an isomorphism of hermitian vector space.

. m(p, J) 7
T >T,(P(p, ]))
Vo
P, o

Proof. The commutativity z4oi=j follows from the definitions, and
hence the whole diagram is commutative. Since z4: T— T,(P(p,])) is an
isomorphism of hermitian vector space and 7 is a linear isomorphism by Lemma
2.3, it remains to show that 7 preserves the inner products. For each X, Yem
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we have
(XD, {Y)> = <[X, E], [Y, ED> = <X, [E, [Y, E]]>
= <X, l(Y)) =<X, Y>
by Lemma 2.3. This proves the assertion. q.e.d.

Now we identify T with T,(P(p, J)) through the isomorphism z,. Then by
the above lemma we have the following identifications.

p= Ta(M) ) ‘pit = To(]ll)i ’
po= N,(M), ps= N,(M)*.
Recall also that

=0, pr=0*.

Lemma 2.5. 1) For Xe&p, let X, denote the p,-component of X with
respect to the decomposition (2.7). Then

a(X, Y) = [MX), Y], = [i(Y), X], for X, Yep,.
2) aX, Y)=[KX), Y]=[KY), X] for X,Yepi.

Proof. 1) Let X&p, and X'em(p, J) with /(X" )=X. For Zeu(y,)),
Zy, denotes the (b, J)-component of Z with respect to the Cartan decomposi-
tion u(p, /)=, J)+m(p, J). Then (cf. Helgason [3]) the covariant derivative
in (P(p,]),g) of Z* by x=n4(X)eT,(M) is given by

VZ* = j([Zypy X']).

Py
Let yeT (M), YEp, with 7 (Y)=y, px=ad,: f—u(p, /) be the differential
of p, and put Y=p,(h(Y))Eu(b, J). We shall compute V,Z* for Z=Y. We
define a linear map ¢: p,—p, by

(W)= [(Y), W], for Wep,.

Then ¥-p,Cp,, Y-p,Ch,+p,, ¥-p,Ch, and the p,-component of ¥-W equals
¢(W) for each Wep,. Thus Y’kp)-pz: {0}, Yy, - W=¢(W) for each Wep,.
Therefore

i([Yr(p)» X)) = (Y}(p)X’_X’ thv)

= Yy (XE)= ¥,

)-E
X = (X)),
and hence

V.Y* = 7([Pypy X'1) = alf ([ Ty X'D)

= mx($(X)) EN(M) .
On the other hand, by Lemma 2.3 we have
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(¥*), = z4(Y-E) = z4([W(Y), E]) = m4ih(Y)
=m(Y)=y.
Thus we get
a(®, y) = m($(X)) = z4([A(Y), X],),

which proves the assertion 1).
2) This follows from 1), [m*, py ]CPpg and A(p7) = m™. q.e.d.

Lemma 2.6. A X=—[h(X), £]=[§, M X)] for Ecp, XEb,.
Proof. For each Y ep,, by Lemma 2.4 we have

AeX, Y5 =<a(X, Y), & = {[h(X), Y], &
= —<[K(X), &, Y>.
q.e.d.

Theorem 2.7. Let M CP(p,]) be the complex submanifold associated to
an irreducible hermitian symmetric Lie algebra (8, o, J) of compact type. Then the
second fundamental form o of M is parallel.

Proof. Since [m, m]c¥, [f, m]Cm, our (M, g) is a locally symmetric
Kihler manifold. Thus by Takeuchi [20] the parallelness of « is equivalent
to a(pf @pf)=ps;. With the notation in the proof of Lemma 2.2, we may
assume that g_={0} and hence [g€, g°]=g¢. Then by the condition (ii) in
Lemma 2.1 we have [t%;, p{]=pi. Now a(pi ®p7)=pi follows from Lemmas
2.3 and 2.5. q.e.d.

3. Jordan triple products and second fundamental forms

Let (8, o, J) be an irreducible hermitian symmetric Lie algebra of com-
pact type, and retain the notation in §2. We define a triple product on p* by

{x,9, 2} = —[[x, 7], 2] for x, vy, 2ept,
and then an endomorphism x[y of p* for x, y&p* by
(xOy)z = {x, 3, 2} for zep*.

Then (Koecher [9], cf. also Satake [16]) the triple system (p*, (]) becomes a
positive definite hermitian Jordan triple system, i.e., p* is a finite dimensional
complex vector space and

(i) {x, 9, 2} is C-linear in x, # and conjugate linear in y;

(i) (xCy)e=(z0y)x;

(iii)  [ICm, x(Jy] = ((Cm)x) Oy—x0((mO)y);

(iv) 7(x,y)=Tr(x[Jy) is a hermitian inner product on p*.
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Lemma 3.1. For an endomorphism ¢ of 9™ we denote by $* the adjoint
endomorphism of ¢ with respect to the hermitian inner product {x,y)=<x, y).

Then

Proof.

(xOy)* = yOlx

For each 2, wep* we have

(xOy)z, w) = (x[y)z, ) = —<[[x, 7], 2], W)

for x,yept.

= <2’ [[x’ 5’]’ w]> = <z; [[X', y]’ w]> = _<z’ [[y’ x]) w]>

= (= (yOx)w) .

In the following in this section, let X, Y, Z, U, ---, €, 3, &, ---and 4, B, C, -
denote general elements of pi =T,(M)*, pf=N,(M)" and p; =0, respectively.
The purpose of this section is to prove the following table of (x(Jy)z for
our Jordan triple system (p*, [J).

g.e.d.

~ 2
S z ¢ c
xlly
xOy R(X,Y)Z a(X, A.Y) %<X, Y>c
_ Za(AgA,; U, U)
A:A 0
£ = for ¢=a(U, U)
c _

40P P 0 4, ByC
X[E -%(AgX, Z>E* A A:X 0
EOX a(A:X, Z) 0 %<E+, CrAX
X04 | S<AEDa(X, 2) 0 —;—<AT, COX
AOX %<X, AY| %(A, E+>A.X 0
E04 0 0 0
A(E 0 0 0

Lemma 3.2.

(3.1 [[X, Y], E= —%(X, Y E*+.

(3.2) [[k(X), k(Y)], E*] = %<X, Y>SE*.
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(3.3) [X, Y]=[A(X), h(f’)]—%<X, Y>H, .

Proof. Since [X, Y], [/(X), h(Y)]€t§ we have
[[X, Y], E*] = aE*, [[k(X), K(Y)], E*] = bE*,
where

a= <[[X’ }_,]’ E+]» E+>/<E+’ E+> ’
b= <[IW(X), h(T)], E*], E*[KE*, E*.

Here we have <E*, E*)= % by (1.1) and (1.2). On the other hand

<[IX, Y], E*], B> = {[X, V], [E¥, E*]> = —<[X, Y], Hp
= <X, [Hy, Y] = —<X, ¥>.

Thus we get a=— —62—<X, Y>. This proves (3.1). In the same way we have

<[IMX), W(¥)], E*], E*> = <W(X), [Hy, WT)]> = <K(X), (Y )> =<X, V)

by Lemma 2.4. Thus we get b=%<X, Y>. This proves (3.2). By (3.1) we
have

[[[X’ Y]» E+]s E—] = ';_<X7 17>I{o .
The left hand side is

[[[X, E*], Y], E7]+[[X, [Y, E*]), E7]
= [[X, E°}, [V, EX]I+[X, [[Y, E*], E7]] by [X, ET]=0

= [W(X), (¥)]—[X, ih(Y)] by (2.10), (2.11)
= [W(X), (V)]—[X, Y], by Lemma 2.3.
Thus the equality (3.3) holds. q.e.d.

I XxXOvy
Since (M, g) is symmetric, we have (cf. Helgason [3])

R(X, V)Z = —i([X, V'], Z']) for X,Y,Zep,,

where X', Y’',Z'em with {(X")=X, {(Y")=Y, {(Z')=Z. Now let X, Y, Zep{.
Then, by Lemma 2.4 h(X)=X, ih(Y)=Y, ih(Z)=Z, and hence

—R(X, 1)Z = i([[h(X), (D)), k(Z))) = [[[HX), k(D)], h(Z)], E*]
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= [[[((X), (V)] E*], HZ)+[[M(X), H(Y)], [W(Z), E*]]

= %<X, YO[E*, WZ)]+[[MX), W(Y)], ik(Z)] by (3.2)
= — %(X, Y>Z+[[MX), k(Y)], Z] by Lemma 2.4
= [[X, Y], Z], by (3.3).
Thus we get (X(OY)=R(X, Y)Z. We have

<AX, 71,8, B =<[rX), KD} e, & by (3.3)
= <[[h(X§ 8], MY)], E4<A(X), [W(Y), £1], &
= —[WY), ], [W(X), &> by [A(X),f] =0
= —{4.Y, 4:X> by Lemma 2.6

= —<a(X, 4;Y), 5.

Thus we get [[X, ¥], {]= —a(X, 4;7), and hence (X(1Y)t = a(X, 4;Y). By
(3.1) we have [[X, Y], C]=— %(X, Y>C, and hence (X[(]Y)C= —;—<X, v>e.

(I1) &0z

<&, 71, Z], X> = <[§, n), [Z, X]>
=/[[Z, X], €], n> = —<a(Z, 4:X), 7> by (I)
= —<AX, A;Z> = —<A:4;Z, X> .
Thus we get [[£, 7], Z]=—A¢A;Z, and hence (§[(1n)Z=A:4;Z. For {=a(U, U)
we have
(&, 7], £] = [[&, 7], (U, U]
= [[&, 7], [A(U), U]] by Lemma 2.5
= [[[&, 7], W(U)], Ul+[A(U), [[&, 7], U]]
= [[[& 7], [E~, U]}, U]—[A(U), 4:4;U]
= [[[E", [[§, 7], U], Ul—a(U, 4:45U)
by [Ps P.] = {0} and Lemma 2.5

= [A([[¢, 7], U]), Ul—a(U, 4:A45U)
= —2a(A4:45U, U), by Lemma 2.5.

Thus we have (§(J5)¢=2a(A4:45U, U) Since [, p,]={0} we have [[£,7],C]=0,
and hence (£[J7)C=0.

(II1y 40OB
We show first
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c —
[4, Bl = — 7<4, BH,.

In fact, let A=aE*, B=bE* (a,bC). Then {4, B>=ab<{E", E+>=—;—a5,
and so a5=%<,4, B)>. Thus [4, B]=ab[E*, E']:—%(A, B>H,. 'Therefore
[[4, B], Z]=——§—<A, B>Z, [[4, B], £]=0 and [[4, B], C]=—c4, B)C. Hence
(ADB)Z:%(A, B>Z, (A[1B)t=0 and (A[JB)C=c{4, B)C .

(Iv) X[E

Since [[X, &], Z]€p}, we may write [[X, ], Z]=aE*(acC). Then

<X, &, 2], B*> = aCB*, By = 2a.
The left hand side is ‘
X, &, [ZE]D = <X, [E W2 = —<X, 42>
by Lemma 2.6. Thus a= —%(X, A7 = —-%(AEX, Z>.  Therefore
[[X, E‘J,Z]:—%(AEX, Z>E*, and hence (XDE)Z:%(AEX, Z>E*. By (ii)
and (II) we have
(XOE) = (E0E)X = A 4:X .

Since [m~, p§]= {0} we have [[X, £], C]=0, and hence (X[£)C=0.

(V) &0OXx
By Lemma 3.1 we have £[]X = (X[J&)*. IRecalling that (E(JX)pi CP7,
(EOX)pi={0} and (ECIX)pi i, we have by (IV) (E(0X)Z=a(4:X, Z),

(E0X)t=0 and (¢ X)C= %<E+, CrA:X .
(VI) X014
[[X, E*], Z] = —[[E", X], Z] = —[W(X), Z] = —a(X, Z)
by Lemma 2.5. Thus [[X, 4], z]=_%<ﬂ, E*>a(X, Z), and hence (X([14)Z
=%<Zl, E+*>a(X, Z). Since [m*, ps]={0} we have [[X, 4], £]=0, and hence
(X[JA4)t=0. By (ii) and (III) we have

(X[A)C = (COAX = £<4, CX .

£
2
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(VII) 400X
In the same way as in (V), we get (ADX)Z=%<X, Zy4, (AOX)=
—;—<A, E*>A.X and (AJX)C=0.

(VIID): E]JA=0 and (IX): A[JE=0 follow from [p,, b;]={0}.

4. Projective manifolds with parallel second fundamental form

Let V=C"*' equipped with the standard hermitian inner product {,},
and Py(C)=P(V) the associated complex projective space with the Kihler
metric g with constant holomorphic sectional curvature ¢>0 as in §1. The
Fubini-Study space (Py(C),g) will be abbreviated to Py(c). Suppose that
a full complex submanifold M of Py(c) with parallel second fundamental form
is given. Let g be the induced Kihler metric on M. We use the same nota-
tion as in §1 for (M, g)CPy(c). Then (1.8) and (1.9) imply that both R and
R+ are parallel. Fix a point o&M and choose E <V —{0} such that [E]=o0
and <E, E>=4/c. Put E*=w"(E)eQ". Let T (resp. N) be the subspace of
T such that z4(T)=T,(M) (resp. nyu(N)=N,(M)). Then T=T-+N (direct
sum) and

Vg= 0O+T+N (orthogonal sum with respect to {, >),

V*=Q*4+T*4+N* (orthogonal sum with respect to {, )).
Through the map =, we identify T (resp. N) with T,(M) (resp. with N,(M)),
and thus T'* (resp. N*) with T,(M)* (resp. with N,(M)*). Note that then «a:
T*QT*—N™ is surjective, as mentioned in the proof of Theorem 2.7. In the
following in this and next section, x,y,2, -, X, Y, Z, W, U, V,L, M, -+, &, »,
&N, p, - and 4,B,C,D, R, S, --+ denote general elements of V*, T, N* and
O™, respectively.

Lemma 4.1.

4.1) a(4:X, A,(Y'Y)X:) = a(4i4.z. Y, Y).
(4.2) 2{a(A:A;R(X, V)Z, Z)+(A:4:Z, R(X, V)Z)}
= <X, Yoa(Aed;Z, Z)+a(A: 45X, Az, 0Y)
+a(AEAiAa(Z,Z)Y’ X) o
(4.3) [Aeds, R(X, V)] = R(4e4;X, V)—R(X, 4;4,Y).
(4-4) AEAﬁAa(x,x)+Aa(x,x)Av‘,A£ = 2Au(AEA,—,X,X) .

(45) Auw.aprZ+AeAur, X = R(X, V)4 Z+ %<X, ZyA4:Y .
(4.6) a(R(X, Y)Z, W)+ %<17, Wia(X, Z)
= a(X, Aa(z,w)?)‘l‘a(Z, Aa(X,W)?) .
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Proof. By (1.8) we have

a(Asduz,0Y, Y)—a(4:X, AuynX)
= KX, Y>a(AeX, YV)—a(4:RX, V)X, V)
—C<Y, X>d(A§X, Y)—}—a(A;X, R(Y, X)Y)
= a(4:R(Y, D)X, V)+a(4:X, R(Y, X)Y)

= R*(Y, R(Y, X)X)s — 2<Y, R(Y, R)X)¢
+RA(R(Y, X)Y, X)e— Z<R(Y, X)Y, X)¢ by (1.9)

= R-(Y, X)R-(Y, X)§—R~(Y, X)R-(Y, X)¢ since R* is parallel
=0.

This proves (4.1).
Because of the surjectivity of a: T"QT+*—N"*, any {&N™* is written as

t=2a(U, V), U, V,eT*.
We define
By the polarized form of (4.1) the right hand side is equal to
a(ASXs Aza(u;,v,-)X) for n= a(X, X) ’
and hence (§[J»)¢ is well defined. Incidentally we know
(4.8) (E0n)t = a(4:X, A:X) for »=a(X, X).

Now we proceed to the proof of (4.2). If we put & =a(Z, Z), the right
hand side of (4.2) is

(E0)n) (X, 4. 7))+ %<X, 1)

= (EOnRYX, Y)a(Z, Z) by (1.9)
= 2(E[In)a(R(X, Y)Z, Z) since « is parallel
= 2{a(4:4;R(X, Y)Z, Z)+a(4:4:Z, R(X, Y)Z)} .

This proves (4.2).
By (1.9) we have

{AeA:Z, Wy = <(R~(Z, W)E, np>— %<Z, WXE, 7).
Therefore
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<[A£A‘7n R(X) 7)]Zv m
= {A4¢4; R(X, Y)Z, Wy+<A4:4:Z, RX, V)W)
= <{R*(R(X, Y)Z, W), ﬁ>——§—<R(X» Y)Z, W& >

+CRH(Z, RX, DYW)E, 7y—2-<Z, R(X, D)WXE, m>
= {[R*(X, ), R~(Z, W), >, since R* is parallel.
On the other hand,
(R(4:4;X, Y)Z, W>—<R(X, 4;4:Y\Z, W>
= (R(Z, W) A 4;X, Y>—<R(Z, W)X, A;A:Y>
= —<[44;, R(Z, W)X, V> =<[R*(X, ), R*(Z, W)E, n>
by the equality just proved. This proves (4.3).

2<Ad(AEA;'X,X)?’ Z>
= C<A5A5X)Y><X’ Z>+C<X» Y><AEA;7X) Z>

—2R(A:4:X, V)X, Z> by (1.8)
= C<X» Z><AEA5X’ I-7>'1’C<){a ?XAEAﬁXv Z>
_<R(A£A;IX) Y)X’ Z>‘<R(X:?)AEA1—1Xy Z> ’ by (1‘7)

On the other hand, by (1.8)

{AeAAux Y, Z>
= X, YXA4:4:X, Z)—<A:A:R(X, V)X, Z),

LAy, 0A:4:Y, Z) = {AeA:iAux 02, Y
= X, Z)XA:4;X, Y>—<R(X, Z)X, A;4:Y>
= X, ZXXA4:4;X, Y>—<R(X, 4;4:Y)X, Z> .

Thus
2<Aa(AEA;,,xx)I7; Z>—<A£A§Aa(x.x)?, Z>"<Aa(x,x)Av‘1A£Y’ Z>
= {[4ed5, R(X, V)X, Z)—<R(A:4: X, V)X, Z)+<R(X, 454:Y) X, Z>

=0, by (4.3).
This proves (4.4).
Aux,a0Z = Agrx,onZ — %<X, Y>A:Z by (1.9),

AA gz X = £2_<17, X>A:Z + ‘7’<Z, X>A4;Y—AR(Y, X)Z

by (1.8). Therefore
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Aa(X,AE7)Z+ AAy7, 5 X—R(X, ?)AgZ— %(X, Z>A$i7
= Aprx, 2+ ARX, V)Z—R(X, Y)A:Z =0,

since ¢ is parallel. This proves (4.5).
(X, Aoz V) = RY(X, V)a(Z, W)— 2<X, Dya(Z, W) by (19)

= a(R(X, Y)Z, W)+ a(Z, R(X, ?)W)—%(X, Y>oa(Z, W),
since a is parallel. On the other hand,

AZ, Ayxm¥) = g<x, Yoa(Z, W)+ g<w, Yoa(X, Z)—a(Z, R(X, V)W)

by (1.8). 'This proves (4.6). q.ed.

We define a triple product {x,y, 2}=(x]y)z on V*=0Q*'+T*+N"* by
the table in §3, except for (£[J»)¢, which is defined by (4.7). The triple
system (V'*, [1) is said to be associated to (M, 0). We want to show that (V*, [J)
becomes a positive definite hermitian Jordan triple system. The condition
(i) in §3 is obvious from the table. The condition (ii) is also clear from the
table, except for (£(Jn)f=([Jn)¢. This is verified as follows: We may
assume p=a(X, X). Then by (4.8) we have ([ ]5){ = a(4:X, 4;X), which
is symmetric in £, {. This implies the required equality. The conditions (iii)
and (iv) will be proved in the next section. The following lemma will be used
there.

Lemma 4.2. For an endomorphism ¢ of V*, let ¢* demote the adjoint
endomorphism of V* with respect to {x, y)=<x, y>. Then

xO*=yOx  for x,ysV*.

Proof. This is clear for X[&,X[]4 and £[]4 by the arguments in §3.
So we prove this for X[, €[] and A[]B.

() XOv
(XOY)Z, W) =<R(X, Y)Z, W) = —<Z, RX, V)W)

=<Z, R(Y, X)W> = (Z, (YOX)W) .
((XOY)E, &) = <a(X, 4:Y), & = {4:X, 4>
=&, a(deX, Y)> = <&, a(4eX, V) = (¢, (YIX)E) .

(XOnc, 4y = g<x, Y, 4y =<c, §<X, >4
= (C, (YOX)4) .
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Thus we get (X Y)*=Y[X.
(1) &0

(EOmZ, X) = <445 Z, X> = <Z, 4;4:X>

=<Z, 4,4:X> = (Z, (n[1§)X) .
For £=a(X, X) we have by (ii)

(EONE A = (COE, M) = Aa(di4:X, X), A>
= 2{4;4:4:X, X> = 2{4;X,4: A5 X>
= Kt, aA(AiX, 4;X)> = 28, a(AX, 4,X)>

((EOn)C, 4) = (C, (»n[05)4) = 0.

Thus we get (£[07)*=yJ&.
(II1) ACIB
((40OB)Z, X) = §<A, BXZ, X> =<z, %<B, Axy

= (Z, (BOA)X) .

(AOB)E, &) = (L, (BOA)E) =0.

((ACIB)C, D) = (A4, BXC, D> = <C, (B, A>D
— (C, (BLIA)D)) .

Thus we get (A[JB)*=B[A4. q.e.d.

5. Jordan triple systems associated to projective manifolds with
parallel second fundamental form

Let M CPy(c) be a full complex submanifold with parallel second funda-
mental form and take a point oM. We retain the notation in §4. We prove
first that the condition (iii) holds for the triple system (V*, []) associated to
(M, 0). We put

T(l, m; 2, ) = [[Cm, xCy]—((0m))y-+=C((mO1Dy)
for x,y,l,meV™*. The condition (iii) is equivalent to the vanishing of T.
Lemma 5.1. T(/, m; x, y)=0 implies T(m, I; y, x)=0.

Proof. Applying the anti-automorphism ¢—¢* of gl(V*) to T(I, m; x, )
=0, by Lemma 4.2 we get

[y, mCl]—y ] ((Cim)s) () = 0.
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Since the left hand side equals —T'(m, [; y, x), we get T(m, [;y, x)=0.  q.e.d.

In the following computations, V™" is always assumed to be

z=C+2Z+¢.
) T(L, M; x,y)=0.

(LOM)XOY)z

— R(L, OR(X, V)Z+ (L, Aucx,s5W) -5 <L, XX, T5C .
(XOY)LOM)=z

= R(X, V)R(L, M)Z+ (X, Aur,4;inY )+ f (X, YXL, M>C.
{(LOMX)OY}=

= R(R(L, )X, V)Z+a(R(L, M)X, A, 7)+ -2“—<R(L, mx, V>C.
{XO(MOL)Y)}=z

= —R(X, R(L, MV)Z—a(X, AR(L, 71)¥)— % (X, R, V)>C.

Thus we have by (1.9)
T(L, M; X, V)z
— (R(L, M)-R)(X, Y)Z+R~(L, M)a(( X, A;:Y)— %(L, Mya(X, A;Y)
—a(X, AgrameY)+ %(L, Mya(X, A:Y)—a(R(L, M)X, A;Y)
—a(X, A:R(L, M)Y)
= (R(L, M)-R)(X, V)Z+R(L, Ma(X, 4:7)—a(X, Ag+q,inc )
—a(R(L, X, A, ¥)—a(X, AR(L, M7) =0,
since R and « are parallel. For {=a(U, U) we have
(LOM)(EDn)z = R(L, M)A¢A;Z+20(L, Aucaga-v.nM),
(ECIn)(LOM)z = A A;R(L, B Z+ a(As 4L, AcH)
+a(d¢4;A:M, L),
{(LOM)E) O}z = Autr, ;i AsZ+-20(A iz, 4,045 U, U),
{EOMDOL)}=z = ArAuazemZ+20(AsAuas iU, U) .
Thus by (1.9) we have
T(L, M; &, 5)2 = R(L, M)A A;Z—A:A;R(L, M)Z
— At medsZ+ % <L, M>A:A;Z— ArA g+, mvnZ

— <L, M A:4;24-2R~(L, M) 443U, U)— <L, Mya(4:4;U, U)
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—a(Aed;L, AeM)—o(AeA;4:M, L)—20(Ar ., ined5U, U)
+&L, Mya(AsA;U, U)—2a(AeAgq,m3U, U)—e<L, Mya(A:A;U, U)
— 2{a(4:4;R(L, MU, U)+a(Ae4;U, R(L, M)U)}
—{(L, Mya(A:4;U, U)+a(AeA;L, A+ a(A:d; A, L)}
=0, by (4.2).
Making use of (1.9) we have
T(L, M; X, 9)z
= R(L, M)A A;X—Ap+ e Az X—AcA;R(L, M)X— A A ionX
+ - R, MAX—AR(L, MX— A, 07X, ZE* =0,

since « is parallel. We have
T(L, M; X, B)z
- %<E, E*X>{R(L, M) X, Z)— (X, R(L, M)Z)—o(R(L, M) X, Z} =0,

since a is parallel. A straightforward calculation shows T(L, M; 4, B)=
T(L, M; £, B)=0.
Now these vanishings together with Lemma 5.1 imply T(L, M; x, y)=0.

In T, w; x,y)=0.

For {=a(U, U) we have

MO XOY)z = AdR(X, Y)Z+a(AdsX, A:Y)+a(44:4.Y, X),
(XOY)AOw)z = R(X, V)44 Z4-20(X, AacayazonY),

{(Ow)X)OY}2 = R(A,4:X, Y)Z 4+ a(4,4:X, A;Y) +§<A,\AFX, Y>c,
{XO((eOMNY)}e=R(X, 4:4,Y)Z+ (X, A;AFAAI?)+A§—<X, A A7>C.

Therefore
T, 13 X, Y)z
— [4,A4z, R(X, Y)|1Z—R(4,4:X, Y)Z+R(X, A:A,Y)Z
+a(X, 4,4z 4:Y)+ (X, AcAFAAY)_za(Xr Aa(A)\Ap.U,U)?)
—o0, by (4.3), (44).
For é=a(V, V), n=a(W, W), {=a(U, U) we have
AOp)EOn)z = A,4pAA7Z+20(A\Ap A AU, U)+20(A,A4:U, A:A4;U),
EOn)(AOw)z = Aed;4\AZ+20(A:A;4,A:U, U)+2a(A4:4;U, A\A:U),
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{((XDM)f)D"?}z = ZAa(A)\AF.V,V)A;IZ +4a(Aa(A>\Ar~V,V)Aﬁ U, U) ’
{E0(rOON)}2 = 24 A yoag i nZ+4a(AeAucagaivinU, U) .

Thus by (4.4)
T(n, p; & n)z = A\ ApdA;Z— A A;A\AiZ — A\A A A Z
— A ApA\A7Z+ Ae Az A A Z+ A A A\AZ
F20(A,A; 443U, U)—20(AeA:A4,A:U, U)—20(A,A:A: 45U, U)
—20(AeA;4,A45U, U)+20(As Az 4, 45U, U)+-20(A:4:4,4,U, U)
=0.
For n=a(V, V), {=a(U, U) we have
AOp)(XOn)z = 4,4:4:4;X ,

(XD“?)(XDM)Z = %Q‘L‘,X’ AAAIIZ>E++2A¢(A)‘A,7,U,U)A;1X ’

(OOWX e = £ A AeX, DY+ A A A X

{XD((#DK)W)}z = C<Aﬂ’(Ap,A)‘I_’,I7)X’ Z>E++2A§AM(AEAM7,7)X .
Therefore by (4.4)

T, w3 X, m)s = — KAz AiX, ZHE* — = {A:A,4:X, Z)E*

+ 2 Aad 45X, B A4 A5X, ZYE
+A4,4;A4:4; X — A As A A; X — A Az A\ A; X
—A:4;4,4: X+ A AzAA; X+ A A;A,A: X = 0 .
Straightforward calculations show T(\, u; 4, B)=T(X\, p; X, B)=T(\, p; €, B)=0.
Thus by Lemma 5.1 we get T(\, ; x, y)=0.

(III) TR, S; x,y)=0.
This follows by straightforward calculations.

(IV) T(L» s X, y):o'
By a straightforward calculation we have

T, p; X, V)=
= % {R(Y, X)AzL— %c"f, X>AzL— % AL, XOY + Awazr, X, ZYE*

+A ao(X,Agl_’)At_hL_R(X) Y)AgApL— %<AP~L) X>A§?+A§AQ(A;LL,7)X
—o, by (1.8), (4.5).
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For {=a(U, U) we have

T(L, p; &, )2
= 24uagaz0. Al — A A5 A Az L— A A;4: 4L
—0, by (4.4).

For {=a(U, U) we have

T(L’ JTEER Y)z
= Auagz. AL~ & CAGL, Z>AT—R(Z, DYAAGL A Aellaczs 17

—a(A:Y, A AiL)—a(As AL, A:Y)+2a(AtAusz1, 75U, U)

=0, by (1.7), (4.5), (4.1).
L, p; X, B)z

= % (B, E*){A yx.nAzL— —cz—(ApL,Z)X—— f2—<A,-LL, X>Z+R(X, A:L)Z}

=0, by (1.8).

Straightforward calculations show T'(L, p; 4, B)=T(L, p; X,7)=T(L, p; 4, Y)
=T(L, p; &, B)=T(L, p; 4,7)=0. Thus we get T(L, p; x,y)=0.

(V) T(L,S;x,y)=0.
T(L, S; X, Y)z
c ,3 4 V4 V4 V4 4 4
— £, O£ <X, DL-RE, DL—Aur 0¥ +-5 <L, T
+ <5, E{a(L, R, ¥)Z)—a(X, dua.nY)—a(4ua. 0¥ 2)
+£<L, PalX, 2)} =0, by (18), (4.6)

For {=a(U, U) we have

T(L, S; X, )z
= £ 8, B { £ <X, ZDL— A A X~ Aut pAiZ+REX, A31)Z)

+ <8, EMaL, A3 432)—20(A s, 43U, U)X, AcA5L)}
=0, by (4.6), (4.1).
T(L, S;4, Y)z
— 244, S| T, DL—Aua0T— R T2+ £ L, T52]

=0, by (1.8).
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Straightforward calculations show T'(L, S; &, n)=T(L,S; A, B)=T(L, S; €, Y)=
T(L,S; X,B)=T(L, S; £, B)=T(L,S; A,7)=0. Thus we get T(L, S; x,y)=0.
(VI) TO\" S; x, ¥)=0.
This follows by A[]S=S[Ja=0.

Now (I)~(VI) together with Lemma 5.1 implies that 7'(/, m; x, y)=0 for
all L m, x,yesV™.

We prove next the condition (iv): 7(x, y)=Tr(x[Jy) is a hermitian inner
product on V*. By Lemma 4.2 7 is a hermitian form on V*. Moreover, it
is seen from the definition of x[Jy that V*=0Q*+T*+N* is an orthogonal
sum with respect to 7. Thus it suffices to show that 7 is positive definite on
each of O*, T* and N*.

Choose orthonormal basis {Z;} and {{,} of T* and N*, respectively, with
respect to the hermitian inner product {x, y)=<x, ¥>. For A=Q* we have

(4, A) = 2 (ADA)Z;, Z;)+ <A, 4>
= 2i<A, AN Zy ZY)+ LA, o>

—nt zann?

where n=dimsM. Thus 7 is positive definite on Q*. For X&T* we have
(X, X) = 2{((XX)Z;, Z)+2((X OX)Ea Lad+ % 1 X2

= 2URX, X)Z;, Z;)+-2 (X, AuX), L)+ % X1,

where

SURX, X)Z,, Z)) = SXR(X, X)Z;, Z;>
= 2<%<X, X>Z,+ g—<Z.-, X>X— Ay 20X, Z> by (1.8)

§n<X, ot 24X, B> Matx, 2%, Z>

Laixie—scax, Zy), a(X, Z))

j+ ~‘+

I

Lelixie— 2[<a(X, Z;), Lol?

LI RI<4eX, Z51,

and
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E«Q(X) AgaX), Cu» = 2<a(X) Ag“X), Z¢>
= 2<A§aX’ AgaX = §I<AZaX’ Zi>|2 .

Therefore we get

X, x)="% 2o1x)17,

and hence 7 is positive definite on T*. For &, =N+ we have

T(E: 77) = 2(((‘5']77)2:) Zx>>+2 <<(g|:l77)§a) Cu» ’

where
2((EOZ;, Z,) = 34452, 2> = A2, AsZy
is a positive semi-definite hermitian form on N*, and 2W(EDE)Z,Z)y=0>A4:Z;

=0 for each i=><a(X, Y),E>=0 for each X, YE T"=E=0by a(T*"QT")=N".
Thus 7 is positive definite on N*, if

‘7(‘5, 7]) = E«(ED"])Cm Ca» for E, nENA“

is a positive semi-definite hermitian form on N, which will be proved in the
following. It is a hermitian form on N* by Lemma 4.2. Let T=T+QT*
equipped with the natural hermitian inner product {,) which extends (, )
on T, thus a is a surjective linear map T—N*. Let a*: N*—T denote the

adjoint of a. We define linear endomorphisms of B of T* and g of T by
B =34, Az, B=BBL+IRQA.

Since

<<BX’ Y» = 2<A€mAZ¢X, Y> = 2<A§¢Xa A§¢Y>
for X, YeT?*, B is a semi-positive hermitian endomorphism of T'*, and hence
,é is also a semi-positive hermitian endomorphism of 7. We define

&(u, v) = ((BAa*(xu, o) for u,0eT.
Lemma 5.2. &(u, v)=o(a(u), a(v)) for u,ve T.

Proof. We may assume u=UQU’, v=VQV’, where U, U, V,V'eT*.
We put E=a(u)=a(U, U') and p=a(v)=a(V, V'). Then

8(u, v) = (Ba*a(UQU"), VRV,
= (a(UQU"), a(BV QV'+VRBV"))
= (&, a(BV, V')+a(V, BV"))
= DWE, a(Az, AV, V) +a(V, Az, A V')>
= 2{<A§“A§mt7, A£V’>+<A§m‘4§m7,v A£V>}
= 2(0{(14;“17, A£71)+a(A€wV" AgV), fa>
= 2KEON w Eou> by (4.8)
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= o(&, 7) = o(a(n), a(v)). qeed.

Now by the above lemma & is a hermitian form on 7T, and hence Ba*a
is a hermitian endomorphism on 7, ie., (Ba*a)*=@a*a. Thus we have
(a*a)/é= ,é(a*a). Since both 8 and a*a are semi-positive, Ba*a is also
semi-positive. Therefore & is positive semi-definite on T. Since a is surjec-
tive, the above lemma implies that ¢ is positive semi-definite on N*.

Thus we have proved the following

Theorem 5.3. Let M be a full complex submanifold of Py(c) with parallel
second fundamental form, and take a point oM. Then the triple system (V+, [J)
associated to (M, o) is a positive definite hermitian Jordan triple system.

Let (V, () and (V’, [(J') be positive definite hermitian Jordan triple sys-
tems. They are said to be isomorphic, if there exists a linear isomorphism
¢: V-V’ such that ¢{x, y, 2} ={px, ¢y, p=2}’ for each x, y,2=V. Then it is
easily verified that the isomorphism class of (V'*, []) in the above theorem does
not depend on the choice of E€ V with [E]=o and <E, E>=4/c.

6. Classification of projective manifolds with parallel second
fundamental form

Theorem 6.1 (Koecher [9], cf. also Satake [13]).

1) For each positive definite hermitian Jordan triple system (V,[]) there
exists an effective hermitian symmetric Lie algebra (g, o, J) of compact type such
that we have an identification V=>9p* with

(6.1) XOY = —pi([X, Y]) for X, Yep*,

where py: YC—gl(p*) is the faithful representation given by pi=ady+.

2) The correspondence (V, [J)W(8, o, J) induces a bijection from the set
of all isomorphism classes of positive definite hermitian Jordan triple systems to
the set of all isomorphism classes of effective hermitian symmetric Lie algebras of
compact type.

Let MCPy(c) be a complete full connected complex submanifold with
parallel second fundamental form, and oM. As in §4 we choose E€V
with [E]=o0 and <E, E>=4/c, and put E*=w*(E)esV"*. Let (V*, []) be the
positive definite hermitian Jordan triple system associated to (M, 0). We use
the notation in §4 for (V'*, [J). Let (g, o, J) be the effective hermitian sym-
metric Lie algebra of compact type with V*=p* and (6.1). Note that then
we have an identification Vp=p together with the complex structures J. We
use the notation in §2 for (g, o, J).

Lemma 6.2. E*&bp* satisfies the conditions (i) and (ii) in Lemma 2.1.
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Therefore (8, o, ]) is irreducible.
Proof. By (6.1) we have ad ,(H,)=E*[JE*. Since <E*, 173+>=£, by the
P y
table of x[]y we have ¢
(ETOENYCH+Z+E)=2C+Z  for CeQ* ZeT* teN*t.

Thus we have

p;:Q+) pi‘.:T*-) pJ:N+)
and hence
(6.2) pt = ps+pi+ps, with p; = CE*.

For each Aepf=0" and £p; = N* we have 4 ]£=0, and hence by (6.1)
p3([4, E])=0. Thus we have [p3, pi]={0}, which implies also [p{, p3]={0}.
Therefore by (6.2) t¢=[p*, p*] is decomposed as

(6.3) 1€ = 1§10 +16, .
Now (6.2) and (6.3) imply the decomposition
(i) ¢°=gf+af+a%i+af+g%, with of = CE*.

For the proof of (ii): p§[af, g% ], it is enough to show [t%;, pi]=ps, since
gl =¥0+4pt, g€ =1¥,+pf and p§=pi+pi. Let X,Yepf =T". Then
WY)=[E*, Y], and

(6.4) [A(Y), X] = —[[Y, E*], X] = (YOEHX by (6.1)
= %<E+, Ea(Y, X) = a(X, Y).

Now [t¢,, pi]=p¢ follows from a(T*QT+)=N". q.e.d.

Lemma 6.3. The inner product <, > on Vg is invariant under the action of

Proof. It suffices to show that pi(f) leaves invariant the hermitian inner
product {, ) on p*. Let F=[X+X, Y+Y]et with X, Yep*. Then
pi(F) = p3([X, Y])+p([X, Y])
— _XOY+YOX by (6.1)
= - XOY+XOY)*, by Lemma 4.2.
Thus p3(F) leaves (, ) invariant. Since [p, p]=1¥, this holds for each F&l.
q.e.fi.
RemARK. The trace form 7 for (V'*, (J) is actually given by
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(%, y) = n;rzc«x, yy  for x,yeV*.

In fact, ¥ leaves { , ) invariant (Lemma 6.3). Also it leaves 7 invariant, since

it preserves the triple product. Thus the assertion follows from the f-irreduci-

bility of V* (Lemma 6.2) and 7(4, A)=n—'2—zc||/1||2 (A4<0).

Lemma 6.4. Let M'=K-[E]C(P(p,]),g) be the complex submanifold
associated to (8, o, J), where g is defined by the t-invariant inner product <, > on
p=Vpg with <E, E>=4[c. By means of the identification (p, J)=V, we identify
as (P(p,]), g)=Pxy(c), [E]=0 and M'=K-0CPy(c). Then M=DM'.

Proof. Submanifolds M and M’ are complete connected submanifolds of
Py(c) with parallel second fundamental form, passing through the same point
o and having the same tangent space at 0. Moreover, they have the same sec-
ond fundamental form at o, which follows by Lemma 2.5 and (6.4). Then the
uniqueness of Frenet curves implies (Naitoh [11]) that M=M". q.e.d.

Let D be an irreducible symmetric bounded domain with dimsD=N-1
(N=1). Let G* be the identity component of the group of holomorphic auto-
morphisms of D. Fix a point pe D and put

K = {asG*; a-p = p}.

Let p: K—GL(V) be the isotropy representation on the holomorphic tangent
space V of D at p. Let Py(c) denote the complex projective space associated
to V, endowed with a Kihler metric with constant holomorphic sectional cur-
vature ¢>0, invariant under the natural action of K through p. Taking a
highest weight vector E€V (E=0) of the irreducible K-module V, we define

M = K-[E]CPy(c).

Theorem 6.5. The correspondence D\W—M induces a bijection © from
the set 9 of all holomorphic equivalence classes of irreducible symmetric bounded
domains D with dime D=2 to the set M of all equivalence classes of complete full
connected complex submanifolds M of Fubini-Study spaces (with curvature ¢>0)
with parallel second fundamental form. Here MCPy(c) and M’ CPy/(c) are
said to be equivalent if N=N" and there exists a holomorphic isometry ¢ of Py(c)
such that ¢(M)=DM'.

Proof. Let (g%, o*, J*) be the effective hermitian symmetric Lie algebra
associated to (D, p). Then the dual effective hermitian symmetric Lie algebra
(8,0, J) of compact type is irreducible, and M= K-[E]CPy(c) defined by
(D, p) is equivalent to the complex submanifold of Py(c) associated to (g, o, J).
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Thus by Theorem 2.7 M is a compact full connected complex submanifold
of Py(c) with parallel second fundamental form.

Let D and D’ be holomorphically equivalent, thus N=DN’, and let
M=K -[E]CPy(c) and M'=K'-[E']CPy(c) be constructed in the above way
from D and D’, respectively. Then there exist a Lie isomorphism yr: K—K'
and a linear isomorphism ¢: V—V" with $(E)=E’ such that

PHRNGE) = dlp(kj)  for kEK,vET.

Recalling that a K-invariant hermitian inner product on ¥V is unique up to
positive constant multiple, we know that ¢ induces an equivalence between
McCPy(c) and M'CPy(c). Thus our correspondence DAMW— M induces a map
D: D—->M.

Conversely, let M C Py(c) be a complete full connected complex submanifold
with parallel second fundamental form. Take a point oM and let (V*, [J)
be the positive definite hermitian Jordan triple system associated to (M, o).
Let (g,0,J) be the effective hermitian symmetric Lie algebra of compact
type corresponding to (V'*, []). It is irreducible by Lemma 6.2. Let finally
D be the irreducible symmetric bounded domain corresponding to the her-
mitian symmetric Lie algebra (g%, ¢*, J*) which is dual to (g, o, J).

Let M < Py(c) and M’ C Py/(c) be equivalent, thus N=N’, and let D
and D’ be constructed in the above way from M and M’, respectively. By
Takeuchi [20] (M’, g’) is a symmetric Kihler manifold and any holomorphic
isometry of (M’, g’) is extended to a holomorphic isometry of Py(c). Therefore
we may assume that there exists a holomorphic isometry ¢ of Py(c) such that
¢(M)=M' and ¢(0)=0". Thus (V*,[]) and (V*', [J) are isomorphic, and
hence (g, o, J) and (g’, ¢, J') are isomorphic by Theorem 6.1. Therefore D
and D’ are holomorphically equivalent. Thus our correspondence M MWD
induces a map ¥: H—9.

Now we have ®oW=1I g, by Lemma 6.4, and ¥o®=1g by the construction.
Thus @ is a bijection. q.e.d.

Here we list up all our submanifolds M C Py(c).

D = (I), 44;: unit ball in C**, N=n.
M = P,(C)CP,(c): identity map.

D= Dpen(1=p=9), N=@p+1)(g+1)—1=pgt+p+q.
M = P,(C)X P, (C)CPy(c): Segre imbedding.

D = (II),,, (#=3), N= %(n+2)(n—|—1)~1 , dimgM = 2a.

M = G, ,(C)CPy(c): Plucker imbedding.
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D = (Il),,, (e=1), N=— %(n—l—l)(n—l—Z)—l .

M = P,(C)CPy(c): 2nd Veronese imbedding.
D= (IV),,,(n=3), N=n+1.

M = Q,(C)CP,\(c): standard imbedding.
D=(V), N=15, dim;M=10.

M = SO(10)/U(5)c Py(c): canonical imbedding.
D= (VI), N=26, dim;M=16.

M = E4|T-Spin(10) C Py(c): canonical imbedding.

Here, G, ,(C) is the complex Grassmann manifold of all 2-planes in C**?; Q,(C)
is the complex quadric of dimension #; See Sakane-Takeuchi [15] for the
canonical imbedding.

7. Non-singular hyperplane sections of projective manifolds with
parallel second fundamental form

Theorem 7.1. Let MCPy(C) be a full compact connected complex sub-
manifold with parallel second fundamental form (with respect to a Fubini-Study
metric). Then a non-singular hyperplane section of M is unique up to holomorphic
automorphisms of M.

Proof. By Theorem 6.5 we may assume that M CPy(C) is the projective
manifold M=KZ¢.[E*]C P(p*) associated to an irreducible hermitian symmetric
Lie algebra (g,0,J) of compact type. Furthermore we may assume that
E*ep* satisfies the condition 3) in Lemma 2.2. We use the notation in §2.
We choose root vectors E,=g¢ such that

[EyE.]=——2% o, E,—~E., (ac3).
(a, @)

Let A={v,, -, 7,} ©=* be as in the proof of Lemma 2.2, and put

Ef =Ey,, Er=E;, E;=E{+E7,
2
(Vo 72

Thus we may assume E*=E;}. Note that (v, H;)=28;;(1=4,j<r). Then
a={E,, -, E,}p is a maximal abelian subalgebra in p, and the Weyl group
W of (g, o, ]) relative to a consists of linear maps E;—+E ) (1=5i<7), s€6,
(Takeuchi [19]). Thus

H,= —[Ef, E7] = v, (1=i=r).

C= (B = 2h,20}
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is a closed Weyl chamber in a, and hence we have p=K-.C. Since the pro-
jection @~ : p—p~ is a K-equivariant R-isomorphism, we get

(7.1) p-=K-C,
where
¢ =w(C) = {DhEr; bz 2h, 20} .

Moreover, for H=>a;H;=¥° we have

(7.2) (exp H)-2IME; = 23 h; exp (—2a,)ET .
Therefore by (7.1) and (7.2) we get
(7‘3) P——{O} =KC'{X;7 ) X;‘—},

where X;=E7+-+E; (1=i<7).
Now let H(p*) denote the set of all hyperplanes of P(p*) and S, the set
of all hyperplane sections of M, i.e.,

Sy = {MNH; He J(p")} .
Let moreover S denote the set of all non-singular hyperplane sections in Sy,.
The group K€ acts on P(p~), H(b*), Sy and S} in a natural way, and the natural
maps
P(p7) —=> H(p") —> Su
are KC-equivariant. Here the first map is defined by [X]—Hiy), where

Hip = {[Y]€P(p*); (Y, X) =0},

and the second one is defined by H—M NH. Therefore by (7.3) the orbit
space K°\S,, is given by

(7.4) KO\S, = {K®-S;; 1<i<r},

where S;=M N Hix-1 (1=1<7).

We shall show that for each 7 with 1<{<r—1 S; has a singular point.
Denoting by 7: p*— {0}—P(p*) the canonical projection, we put M=z"'(M).
Then we have M=KC-E*=KC-Ef. Since we may assume r=2, there exists
seW with sE,=E,, sE,=E, and sE;=E;(2<j=<r—1). Take k€K which
normalizes a and induces s on a. We have then

(7.5) k-Ef =Ef, k-Ef=E#, k-Ef=FEf (2<j<r—1).

Since (B}, X7)=0(1<i<r—1) and E}=k-E{ €M, [E;]€P(p*) is a point of
S;. We show that [E;] is a singular point of S;. For this purpose we define
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a linear form \; on p* by
(X)) = (X7, X) for Xep*,
and prove that (d\;)] M vanishes at E; M. Since
Ty M= k-Ty+M = k-[t° E*] = k(b1 +91),
any Ye TE:M is written as Y=£k-X by an element X €p{ +p;. Then
(@\)p(Y)= (X7, V)= (k" X7, X)=0,

since by (7.5) k' X;=E;+--+E;+E;Eb;.

Therefore by (7.4) the orbit space K°\Sj consists of the single orbit
K€-.S,. On the other hand, as mentioned in §2, the action of K¢ and that
of Aut’(M) are the same on M. Thus Aut’(M)\Si consists of the single
orbit Aut’(M)-S,. This proves the theorem. q.e.d.

Theorem 7.2. Let M C Py(C) be the same as in Theorem 7.1 with
dimeM =2 and S C M a non-singular hyperplane section of M. Then the Lie
algebra a(S) of holomorphic vector fields on S is reductive if and only if the
trreducible symmetric bounded domain D corresponding to M is a unit ball or of
tube type.

Lemma 7.3. Let a(M) denote the Lie algebra of holomorphic vector fields
on M, and put

a(M, S) = {Xsa(M); X|S is tangent to S} .
If D is not a unit ball, then a(M, S) is naturally isomorphic to a(S).

Proof. If D=(III),,, (n=2), we have S=0Q,_,(C)c M=P,(C), and hence
the assertion follows from Takeuchi [20]. The assertion was proved by Sakane
[13], Hano [2] for D=(I),4, 5+ (1=p=¢), by Kimura [5] for D=(II),, (n=3),
(V)2 (823), (V) or (VI). qed.

Lemma 7.4. A hyperplane H of Py(C) such that M N H=.S s unique.

Proof. Recall the exact sequence (Hirzebruch [4])
0—C—T(M, {S}) —» TS, {S}IS)—0,

where {S} denotes the homomorphic line bundle on M associated to the non-
singular divisor S of M, and T'( - ) the space of holomorphic sections. Here
T'(M, {S}) is naturally isomorphic to the dual space of CV*' (Takeuchi [20]).
Thus the space of linear forms on CV*! vanishing on S is 1-dimensional. This
proves the assertion. q.e.d.
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Proof of Theorem 7.2. If D=(I),,, (n=2): the unit ball in C**!, then
S=P, (C)cM=P,C), and hence a(S)=8l(n, C), which is reductive. So
we may assume that D is not a unit ball.

We may assume that M CPy(C) is the same as in the proof of Theorem
7.1 and S=S,. In general, for a subalgebra b of g¢ and X<g¢, the nor-
malizer of CX in b will be denoted by ny(X), i.e.,

ny(X) = {Yeb; [Y, X]e CX}.

Let t'C denote the derived algebra [£€, £¢], which is isomorphic to a(M) as
mentioned in §2. Now by Lemmas 7.3 and 7.4 a(S) is isomorphic to ny¢(X7).
We define

X)=X; =E{+--+E}, F=H+--+H,.
We have then [X}, X;]=—F, [F, Xf]=42X}, and hence 8°={X;, X;, F}¢
is a 3-dimensional simple subalgebra of g¢, which is the complexification of
the subalgebra 83=gN8° of g. By (2.3) and (2.4) the possible eigenvalues of
ad(F) are 0, 41 on ¢, 42, 41 on p°. The corresponding eigenspaces are

denoted by £5), t&1), PE.2), PE.1), respectively. Then we have the decomposi-
tion

g% = &)+ 16, -t 0+ P+ + PG+ 92 -
It is known (Korinyi-Wolf [10]) that D is of tube type if and only if
(7.6 ey = {0},
which is also equivalent to that F belongs to the center ¢ of €. We define
1© = {Xete; [X, 59 = {0}}.
Then 3¢ is reductive, since it is the complexification of the compact algebra
i={Xet; [X, 8]={0}}. We put
@)= {Xet§); (X, 5= {0}},
§ =1t .
We have then
& = 37+ = DI§ .
Note here that F <(3°)*, since we have

(¢ F) = (° [X7, X71) = (3 X7], X7) = {0} .

Now applying the representation theory of 3-dimensional complex simple
Lie algebras to the 8°-module g¢, we know that ad(X7) annihilates 3¢ and
¢.1), and it induces linear isomorphisms £§,—p&.) and (3°)"—bE,. Recall
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that in particular we have ad(X;)F=2X;. Therefore we have
we(X7) = g (X7)+HE
where

e (X7) = $°@®CF, 1¢,Cte,

Furthermore a(S)=npc(X;) is given by
(7.7) a(S) = nye(X7)+IE, .

Here n;zg(X,— )"=*nfg))(X,‘ )/c is reductive since n;(c['))(X,‘ )=3°@CF is reductive,
and £f,, is an abelian ideal of a(S). In particular, ££,, is contained in the
radical of a(S).

Assume first that D is not of tube type. Decompose F as F=F"+F'
(F"ec, F'el€). Then F'Enr(/(g(X,‘). We may find X1, with X0 by
(7.6.). Then [F’, X]=[F, X]=—X=0. Thus the radical of a(.S) is not con-
tained in the center of a(S), and hence a(S) is not reductive.

Assume next that D is of tube type. Then ££,)={0}. Thus by (7.7) we
get a(S)——:nr(/oC)'(X,‘ ), which is reductive. Actually, by F &c we have a(S)=3°.

q.ed.

Corollary. Let SCMcCP,(C) be the same as in Theorem 7.2.

1) In the following cases, S admits no Kdhler metric with constant scalar

curvature.
M = Py(C)X P(C)CT P,y p+(C) (1= p<q): Segre imbedding,
M = G, (C)CPipuine-1(C) (n=3, odd): Plicker imbedding,
M = SO(10)/U(5)C P;5(C): canonical imbedding.

2) Otherwise, S is a kihlerian C-space, and therefore it has an Einstein Kdihler
metric.

Proof. 1) These are the all cases where D is not a unit ball nor of tube
type. Suppose that S admits a Kihler metric with constant scalar curvature.
Then by a theorem of Matsushima-Lichnerowicz (cf. Kobayashi [7]) a(S)
is reductive. 'This is a contradiction to Theorem 7.2.

2) This was proved by Hano [2] for D=(I),., 5+ (p=1), by Sakane [14]
for D=(II),p4, (m=2), by Kimura [6] for D=(VI). In the remaining cases
we have S=P,_,(C) or Q,_,(C). Thus the assertion is obvious. q.e.d.

ReEMARK. The assertion 1) was proved by Hano [2], Sakane [14] by
explicit computation of a(S) for each S.
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