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Introduction

In this note, we shall consider the topological semisimple degree of sym-
metry of manifold with the homotopy type of a product (S1)' X (S2)s X (S3)*
of spheres. Here the topological semisimple degere of symmetry is, by definition,
the maximum of dimension of compact connected semisimple Lie group which
acts on the manifold topologically and almost effectively.

This note is motivated by works on the degree of symmetry of manifold
with large low homotopy groups as K(π, l)-manifolds or product of 2-sρheres
(see [1], [S], [6], [9], [14] or [15]). We shall prove the following

Theorem A. Let M be a Zm-dimensional closed topological manifold with
the same integral cohomology ring as a product of 3 -dimensional spheres. If a com-
pact connected simple Lie group G acts on M topologically and almost effectively,

then G is SU(2) or SO(3).

By a slight modification of the method of the proof of Theorem A, we
can prove the following

Theorem B. Let M be a closed topological manifold with the homotopy
type of N=(S1)rx(S2)sx(S3)t. If a compact connected simple Lie group G
acts on M topologically and almost effectively, then G is SU(2) or SO(3).

Moreover we shall, prove the following

Theorem C. Let M be as in Theorem B and G a compact connected Lie
group which acts on M topologically and almost effectively. Then G is locally
isomorphic to TuX(SU(2))V with u+v^r+2 (s+t).

In this note, we shall consider only topological almost effective action
and "manifold" means "connected paracompact Hausdorff manifold".

The authors would like to thank the referee for his valuable suggestions.
In this note, we shall use the following notations;



494 K. SAITO AND T. WATABE

1. Tn and T denote w-dimensional and 1 -dimensional toral group, respectively
and we call a 1- dimensional toral group a torus.
2. If a compact Lie group G acts on a topological space X and H is a sub-

group of G, then XH denotes the fixed point set of H.
3. X~χ Y means topological spaces X and Y have isomorphic cohomology rings

with coefficient group A.
4. Z and Q denote the ring of integers and the field of rational numbers, re-
spectively.
5. H\X) denotes z'-th cohomology group of X with coefficient in Q.

6. dim H*(X: -4)=Σ timAH\X\ A) for a field A.
i^O

7. If a compact Lie group G acts on X, then X"G denotes the orbit space of

EGχX under the action of G defined by g(e, x)=(eg~l, gx), where EG->BG is
the universal G-bundle.

1. Preliminaries

In this section, we shall recall some basic facts about the Leray spectral
sequence of the orbit map. Let G be a compact connected Lie group and
act on a connected completely regular space X. Let π: X-+XIG=X* be the
orbit map and {Eϊ'q, dr} the Leray spectral sequence of π. Then we have
Ep

r'
q=Hp(X*: H\π)\ where H\π) is the sheaf generated by the presheaf

U*-*Hq(π-\U*)) for open set U* in X* (see [4]). Recall the following facts
about the Leray spectral sequence.

ii) E°2'
q= Γ(Hq(π))=the vector space of all sections of H'(π).

iii) The stalk of H\π) at x*=π (x) is Hq(G(x)).
iv) The edge homomorphism e\ Hq(X)-*E\'q is given by e(a)(x*)=if(a),

where ix\ G(x)->X is the inclusion and x*=π(x).
v) The following diagram is commutative;

7Γ*

H*(X*) - »H*(X)

EP

2'° - > ££° .

See [4] for the details.
We have the following Propositions.

Proposition 1. Let k be the dimension of a principal orbit of the action
of G on X. If the action has a singular orbit, then the edge homomorphism
e: Hk(X)->E°2'

k is trivial. In particular, we have E^k=0.

See [14] for the proof.
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Proposition 2. Let k be as above. If there is a point x in X such that
i f : H\X)-*H\G(x)) is trivial, then the edge homomorphism e: Hk(X)-*E°2'

k is
trivial.

This Proposition is proved by the same method as the proof of Proposition 1.

Proposition 3. Let M be a closed Zm-dίmensίonal manifold such that there
are m elements a±, •••, am in H\M) with non-zero cup product a^ a^Q. Assume
the group SU(2) acts on M with a finite principal isotropy subgroup and a
singular orbit. Then there is a point x in M whose isotropy subgroup SU(2)X is
a torus.

See [14] for the proof.

Proposition 4. Let M be as in Proposition 3. Assume the group SU(3)
or Sp(ΐ) acts on M with a finite principal isotropy subgroup. Then there is a singu-
lar orbit.

This Proposition follows the following Lemma and the same argument
as in the proof of Proposition 5 in [14].

Lemma 5. Let M be a closed manifold and a compact simple Lie group
G act on M almost freely, i.e. all isotropy subgroups are finite. Then we have

l'z^\, where {Ep

r-
q, dr} is the Leray spectral sequence of the orbit map

Proof. It follows from a result in [7] (The argument in the proof of Theo-
rem 1 in [7]) that H3(π) is locally constant, i.e. for every point x* in Λf/G,
there is a neighborhood U* of x*=π(x) such that H\π)\ [/*= U*xH\G(x)).
Thus we have E$>3=r(H3(π))ZH\G(x))=Q. Q.E.D.

Moreover we have the following

Proposition 6 (cf. Chap. VII in [3]). Let M be a closed manifold with
M~S"ιχ ~ xSnm (n~l, 3 for i=l, •••, m). Assume a torus T acts on M with

a fixed point and M is totally non-homologous to zero in the fiber bundle M->
MT-*BT over Q. Then we have

Mτ~Skι X ••• X S*~ with k{^niy Λ, —1,3 for all i .

Moreover if bl9 •••, bs^H3(MT: Z) are ^-dimensional generators of H*(MT: Z),
then bl9 •••, bs are in the image of the homomorphism H\M: Z)-*H\MT: Z) in-
duced by the inclusion.

REMARK 1. Proposition 6 is valid for a finite dimensional space if coeffi-
cient group Z is replaced by Q (see [3] Chap. VII).
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2. The assumption that M is totally non-homologous to zero in the fiber
bundle M->Mr— >J5Γ holds when T has a fixed point and nί= =nm= 3.

2. Proof of Theorem A

In this section, we shall prove Theorem A. To prove it, it is sufficient
to show that the group SU(3) or Sp(2) can not act on M, because the excep-
tional group G2 and simple Lie group of rank^S contain SU(3) or Sp(2).

Since the case of Sp(2) is completely parallel to the case of St/(3), we
shall prove that SU(3) cannot act on M.

From now on, we assume that M is a closed 3w-dimensional manifold

with M~S3 X — XS3 (fli-times) and admits an action of 517(3). Put G=SU(Z)

and let φ: GxM-+M be the given action of SU(3).
Let K=SU(2) be the standard subgroup of SU(3) and ψ : KxM-*M

the action obtained from the restriction.
First we shall prove the following

Proposition 7. The action -ψ has a finite principal isotropy subgroup and
there is a point x in M whose isotropy subgroup Kx is a torus.

Proof. We shall prove the first part. Assume the contrary. Then

the identity component of a principal isotropy subgroup is a torus. Hence
the center C of K is contained in every isotropy subgroup, which means Mc

=M. It follows that C is contained in the ineffective kernel of the action φ.

This implies that C is contained in the center of G. It is easy to see that this
is impossible.

Next we shall prove the second part. Assume that there is no point whose

isotropy subgroup is a torus. It follows from Proposition 3 that ψ is almost
free. Consider the Leray spectral sequence {Eϊ'q, dr} of the orbit map

7r: M->M/K=M*. It is proved that the edge homomorphism e: H\M)-*El'z

is non-trivial. In fact, assume the contrary, we have E0^3=0. It follows

that H3(M)=E%3=H3(M*)9 which is easily seen to be a contradiction. Then
Proposition 2 shows that the homomorphism i f : H3(M)-^H3(K(x)) is not

trivial for every point x in M. It follows from the following commutative dia-
gram that H3(G(x)) is non-zero.

H\M) — H\G(x))

*\ /**

Here ixandjx are inclusions and k is the natural map.
It follows from a result in [14] (Proposition 8 in [14]) that Gx is finite for

every point x in M, which contradicts Proposition 4. Q.E.D.
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Next we shall prove the following

Proposition 8. Let C be the center of K. Then Mc is a proper subset of
M and

Mc^Slx "XS1xS3x ••• xS3 (m-times).

Proof. Assume M°=M. Then the same argument as in Proposition 7
leads a contradiction. To prove the second part, recall the following

Lemma (cf. Chap. VII in [3]). Let G=Z2=Z/2Z or T act on a compact
space X. Then we have dimH*(X\ A)^dimH*(XG: A\ where A=Z2 (if G=Z2)
or A=Q (if G— Γ). The equality holds if and only if X is totally non-homologous
to zero in XG.

It follows from the Lemma that we have

( 1) dim#*(M) = dim#*(M: Z2)^dimH*(Mc: Z2)^dimH*(Mc).

Let M0^!/! U ••• U If* be the decomposition into connected components and T a
maximal torus of K. Since Mτ is connected (see [3] Chap. VII), we may assume
MΓCL1. We prove that Mτ is a proper subset of Lj. Assume MT = L1.
Since L± is ίC-invariant, Mτ is also .KΓ-invariant, which means MT—MK. In
fact, for every point x in Mτ and every element g of Ky gx^MT and hence
we have Tgx=gx. It follows that g~lTgξ^Kx for every g^K and hence K=
(Jg^TgSzKx, which implies x^MK. This contradicts Proposition 7, which

proves Mτ^Lλ. It follows from the above Lemma that we have

( 2) dim H*^)^dim ff "((jy^dim H*(MT).

Since M is totally non-homologous to zero in Mτ (see Remark 2 in section 1),
we have the following equality;

( 3 ) dim H*(M) = dim H*(MT).

It follows from (1), (2) and (3) that we have

(4) dim H*(M) = dim H*(M: Z2) = dim H*(MC: Z2)= dim H*(MC)

= dim JΪ*(L1)=dim H*(MT),

which implies that Mc is connected, M and M° are totally non-homologous to
zero in Mc and (Mc)τ over Z2 and Q, respectively, and H*(MC: Z) has no 2-
torsion. Hence the homomorphism i%: H\MC: Z2)-*H3(M: Z2) is surjective,
where ic: M-*MC is the inclusion. Put H\M: Z2)=(al9 •••,««,> with al—am

Φθ. Choose elements a^H3(Mc: Z2) such that /*(#') — #, for /=!, •••,»!.
Consider the homomorphism /?: H\MC\ Z2}-*H\(MC)C: Z2)= Σ H^Bc' Z2)
®Hj(Mc: Z2). Then we have
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where bij^Hi(Mc: Z2) and H*(BC: Z2)=Z2[t] (deg t=l). By the same argu-
ment as in [3] (see the proof of Theorem 10.2 in Chap. VII in [3]), it can be
shown that afi can be chosen so that bi2—biQ=Q and 6?3=if1=0. In fact, let
£* *(Z2) and E?'*(Z) be the spectral sequences of MC->BC with respect to Z2

and Z coefficients, respectively. Note that Ep

2'
q(Z) = Hp(Bc: Z)®Hq(M: Z),

because C acts on H*(M: Z) trivially. As noted above, jB? *(Z2) degenerates.
Since the reduction Efrq(Z)-*E£q(Z^ is a monomorphism for p>Q, £* *(Z) also
degenerates. It follows that the edge homomorphism H*(MC: Z)-+E2'*(Z)=

H*(M: Z) is surjective and hence the homomorphism H*(MC: Z)-*H*(M: Z2)
is surjective. This shows that a\ can be chosen from the image of H*(BC: Z)®
H^(MC:Z)-^H^(BC:Z2)®H^(MC:Z2) for all ί. This implies bi2=bio = Q.
Since H*(MC: Z) has no 2-torsion, the reduction H*(MC: Z)->H*(MC: Z2) is
surjective and hence x?=Q for every x in Hoάd(Mc: Z2). Since flί ^φO and
y$ is injective (Theorem (1.5) in Chap. VII in [3]), we have

θΦyί(*ί - a'm) = (Σ tq®blq) ... (Σ fff®*«,)
9 4

and hence some product blqι bmqm is non-zero. Thus 6lβι, •••, iw<7m generate an
exterior algebra, which must equal ίί*(Mc:Z2), since both have dimension
equal to 2*= dim H*(M: Z2). It follows from the equality dim H*(MC: Z2)=
dim H*(MC) that H*(MC) is also an exterior algebra Λβ(A l f f l, ~ jbmqm). Since
MΓ has the same rational cohomology ring as *S f lX ••• χS1xS3 xS3 (m-times)
and Mc is totally non-homologous to zero in (MC)Γ, degree of bjq. is odd for

every j. Q.E.D.

Now we shall prove Theorem A. Consider the following commutative
diagram:

>* i*
H3m-3(M, M-MC) -+ H3m~3(M) ~> H3m~3(M-Mc) -> H3m-\My M-MC)

H3(M)

where i, y and k are inclusions. Since it follows from Proposition 8 that A* :
H*(M)->H3(MC) is not injective, k* is not surjective and hence y* is not sur-
jective. Thus there are elements αl9 ~ ,αm-l in H3(M) such that i^(α1 αm-l)
ΦO. Since isotropy subgroups of the action of K on M—MC are all cyclic of
odd order, (M—MC)/K is a rational manifold of dimension 3m— 3, which is
clearly not compact, and hence we have H3m~3((M—Mc)/K)=0. Consider the
Leray spectral sequence of the orbit map π: M—MC^(M—MC)/K. Assume
the edge homomorphism *: H\M- Mc)-+Eξ 3 is trivial. Then TT*: H\(M-
MC)IK)-*H3(M—MC) is an isomorphism and hence there are elements
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bj<=H3((M-Mc)/K) such that ιr*(fy)=f*(βy) (H1* -» «-!)• Then we have

OΦ**^ - fl.,0 - **(*! -. *«.,) - 0 ,

since b1 bm-1^H3m~3((M—Mc)/K)=0. This is a contradiction, which means
the edge homomorphism e is not trivial, in other words, i f : H\M—MC)-*
H\K(x)) is not trivial for some point x in M—MC.

Consider the following commutative diagram:

i*
H\M, M-MC) -> H\M) > H\M—MC) -> #4(M, AT—Λfc)

A /*
H\K(,)) ,

where ix9 jx and i are inclusions. It follows from Propositions 1 and 7 that
jf is trivial. If dim McΦ3/w—4, then it can be shown that H\M, M—Mc)=0.

In fact, if dimMc=3w—2, it follows from Proposition 8 that Mc~S'xS3X •••

X S3 (iii-times) and hence H\My M-Mc)=H3m-4(Mc)=H2(Mc)=Q. It is easy
to see that H\M, M-MC)=Q if dimMc<3m-4. Thus if dimMcΦ3m-4,
then if is trivial, which is a contradiction. Assume dimMc=3w—4. Let
bl9 •••, bm^H3(M) be generators of H*(M). It is easy to see that i*(4f-)=ir*(c{)
(ί=l, —, m) where c'i<=ΞH\(M-Mc)IK). It follows from the diagram (#) that

we may assume i^(b1 bm-l)^0. But we have **(&ι #m-ι)—π*(c{ ••• _̂ι)=0,
because c( ^-ιe/ί3>M"3((M— MC)IK) = Q. This contradiction completes the
proof of Theorem A.

3. Proof of Theorem B

In this section, we shall prove Theorem B. Let M be as in Theorem B
and /: M-*N= S1 x x S1 X S2 X x S2 x S3 X X *S3 a homotopy equivalence.

r-times s'-times s*-times

Put s=s'+s". By the same argument as in [14], we can construct a principal
Γs/-bundle M over M and a homotopy equivalence /: M-*N=S1X xSlx

r-times

S3X > XS3. It follows from results in [10] and [13] (Theorem 17 in [10] and
s-times

Theorem 4 in [13]) that every action of a torus or compact connected semisimple
Lie group on M can be lifted over M. Thus, to prove Theorem 5, it is
sufficient to show that M cannot admit any action of a simple Lie group of

rank^2. Hence we may assume N=Slx — xSlxS3x xS3. Let Λ^
S1X xS1 (r-times) and /i be the composition of/ and the projection N-^N^
Consider the universal covering M-»M. Note that M-»M is the pull-back

ofRT-+N1byf1.
Let a19 •••, ar&H\M 9 Z) and bl9 •••, bs<=H\M\ Z) be the generators of the

ring H*(M\ Z) defined by generators of H*(N\ Z). We use the same notations
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for generators of H*(M).
Assume a compact simply connected semisimple Lie group G acts on M.

It follows from a result in [8] (Theorem 4.3 in [8]) that the given action of G
on M is lifted over M. It follows from the same argument as in [15] (see
Lemma 2 in [15]) that the natural map M/G->M/G is a covering projection
and the following diagram is commutative;

P

LWJ.

{ ,
M - > M\G

and moreover the classifying map g: M/G-WVj of the covering M\G->M\G
satisfies that /i is homotopic to the composition g°π. Hence g*: H^(Nl: Z)->

; Z) is a monomorphism.

REMARK. Consider the spectral sequence {Ep

r'
q, dr} of the covering M-»M

with Ep2>q=Hp(Zr\ Hq(M)). It is clear that the group Zr of the covering trans-
formation acts on if *(M) trivially and we have El>q=Hq(M).

We shall prove the following Propositions which are slightly more general
than Propositions used in section 2.

Proposition 9. Let M be as above. Assume the group SU(2) acts on M

with a finite principal isotropy subgroup and a singular orbit. Then there is a

point x in M whose isotropy subgroup is a torus.

Proof. Assume the contrary. Put K=SU(2). Let {Ep'q, dr} be the

Leray spectral sequence of the orbit map π: M-+M/K. Since Hi(K(x)) = 0
for ί=l, 2 and for every point x, we have E3

2

 Q=E^Q and Hi(M)=Hi(MIK)

via the homomorphism π* for /=!, 2. Since there is a singular orbit, it fol-

lows from Proposition 1 that E^3= 0, which implies H3(M)=H3(MJK) via

7r*. It is easy to see that this leads a contradiction. Q.E.D.

Proposition 10. Let M be as above. Assume the group G—SU(3) or
Sp(2) acts on M with a finite principal isotropy subgroup. Then there is a singular

orbit.

Proof. Let φ be the given action and φ the action on M which is a lifting
of φ. Assume φ has no singular orbit. Then φ has also no singular orbit.

Since M is simply-connected, it follows from a result in [7] (Theorem 1 in [7])

that the second term of the Leray spectral sequence of the orbit map π: M — »

MjG is given by Hp(M/G)®Hq(G). We have the following exact sequence;
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( * ) 0 -> E™ - > H\M) -* E^ ->0 .

Since E^°=H\MIG) and dim^ϊ 3=l f we have dim Im$r*^ί-l. Consider
thespectral sequence {/?*•«, dr} of the covering M/G->M/G with Ep

2-
q=Hp(Zr:

H\MIG)). Since Eξ'°-*Hp(M/G) is a monomorphism, we have that q*:
H\MIG )-*H\MIGyr is an epimorphism since Hi(MlG)=0 for ί=l, 2, where
H\MIGyr is the subgroup of H3(M/G) which is invariant under the action
of the group Zr of covering transformations. It follows from the Remark
noted above Proposition 9 and sequence (*) that #3(M/G)zr=#3(M/G). Con-

sider the following commutative diagram;

π*
H3(MjG) >H\M)

#3(M/G) —

We have shown that we may assume that p*(b^)> •• >p*(bs-ί) are in Im TT*. Put
f *(4ί)=**(δ}/), where b'/^H^M/G) for i=l, -, *-l. Since j*: #3(M/G)->
H3(MjG) is an epimorphism, we have 4//=g*(4{), bi^H3(M/G) for /=!, •••,
s—1. Put 6i=Σ βimna'ιama'n-i-Ay where -4 is indecomposable, for ί=l, •••,$—!.

It follows from the fact that Hi(M/G)=0 for ί=l, 2 that we have ί*(4{)=?*(^)>
which implies that ty may be chosen as 4/=A Since />*: H\M)-*H\M)

is injective on <&, •••, 4S_1>, ar*(-4) is in <4j, •••, έs-ι> and /)*(π *(^4))=7r*ίHί(^4)
= ^*(4ί/)=/>*(4f ) for ί=l, ••-,$—1, we have 4ί=;r*(-4). This implies that
bl9 •• ,4ί»1 are in Imπ *. As before, put 4l =τr*(4f) for /=!, •••,$—!. Since
Hi(G(x))=0 for t=l, 2 and for every point # in M, we have H1(M/G)=H1(M).
Put ai=π*(ai) for ί=l, •••, r. Then we have

because dimM/G^dimM—8, which is a contradiction. This completes the
proof. Q.E.D.

To prove Theorem B, it is sufficient to show that SU(3) or Sp(2) can not
act on M (see the proof of Theorem A). Since the case of G=Sp(2) is com-
pletely parallel to the case of 5C7(3), we shall consider only the case of G—SU(3)
and prove that SU(3) cannot act on M.

From now on, we assume that G=SU(3) acts on M. Let K=SU(2)
be the standard subgroup of G. Let ψ be the action of K obtained from the
restriction. We shall prove the following

Proposition 11. The action -ψ has a finite principal isotropy subgroup
and there is a point x in M whose isotropy subgroup is a torus.
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Proof. The proof of the first part is the same as Proposition 7. We
shall prove the second part. Assume the contrary. It follows from Proposi-
tion 9 that Λ/r is almost free and hence the lifting ψ> of -v/r is also almost free.
It is not difficult to see that the Leray spectral sequence of the orbit map
n: M-+M/K collapses and hence we have H*(M)=H*(MIK)®H*(S3). This
implies that the homomorphism /*? : H\M)->H\K(x)) is non-trivial for every
point £ in M. It is clear that the natural homomorphism H\K(x))—>H\K(5t)}
(p(x)=%) is an isomorphism. We have the following commutative diagram;

H\M)

where p* is an epimorphism. It follows that i? is non-trivial. This implies
that the homomorphism j*: H3(M)-*H3(G(x)) js non-trivial for every point
x in M, which means that Gx is finite (see Proposition 8 in [14]) for every point
x in My which contradicts Proposition 10. This completes the proof. Q.E.D.

Proposition 12. Let T and C be a maximal torus and the center of K, re-
spectively. Then Mτ and Mc are proper subsets and

(1) Mτ~Slx : xSlxSkιχ xSk (ki=\ary)

(2) Mc~Slχ. xSlxS"ιχ xSn*(n~lor3).
V r-times

Proof. We have shown that Mτ and Mc are not empty. The same argu-
ment as in Proposition 7 shows that Mc is a proper subset.

We shall prove (1). To prove it, it is sufficient to show that M is totally
non-homologous to zero in the fiber bundle M-+MT-*BT. Consider the cover-
ing M{ over M which is the pull-back of the covering N~RiχS1X xS1X

(r— ί) -times

S3χ ••• χS3-^>N by/, where R* denotes the /-dimensional Euclidean space.
Clearly Mj is a covering over My-!, which is the pull-back of Nj—>Nj-1 by a
homotopy equivalence of f j - ι ' . Mj^— >ΛΓJ _1. Note that T acts on Mf and Mj-1

in the way that projection^: M;->M;_! is Γ-equivariant.
It follows from Remark 2 in section 1 that Mr is totally non-homologous

to zero in the fiber bundle Mr->(Mr)T-*BT.

To prove (1), it is sufficient to prove the following assertion.

Assertion 1. If Mj+l is totally non-homologous to zero in the fiber bundle
Mj+1->(Mj+l)T->BT, then Mj is totally non-homologous to zero in the fiber bundle

This assertion is equivalent to the following assertion.
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Assertion 2. // if+1: H*((MJ+l)τ)->H*(Mj+l) is surjective, then if:

H*((Mj)τ)-*H*(Mj) is surjective for j=r—l, •••, 0. Here /,: Mj-*(Mj)τ is an
inclusion.

Now we shall prove the assertion 2. We have the following observations.

(i) The mapping (pj+ι)τ

: C^y+Or ~* (Mj)τ *s a covering projection and
the group Z of covering transformations acts on H*((Mj+1)τ) trivially.

The first part is clear and the second part is proved as follows. Consider

the spectral sequence {Ep

r

>q

y dr} of the fiber bundle Mj+1->(Mj+l)T->BT. Let

t'\ (Mj+1)τ-^(Mj+l)τ be a covering transformations Then it is clear that t'

can be represented as (t)Ty where t: Mj+1->Mj+1 is a covering transformation
of the covering M;+1-»M; . Then (t)τ induces the homomorphism 1®**:
Et q=H\Bτ)®H\Mj+l)^Eξ « = H*(Bτ)®H\Mj+l). Since t*: H\Mj+l)-+
Hq(Mj+1) is easily seen to be trivial, (ΐ)$ is also trivial, which proves the ob-

servation.
(ii) To prove the assertion it is sufficient to show that if:Hk((Mj)τ)-*

Hk(Mj) is surjective for k=l and 3. Here this holds the case k=l.

The first part follows from the fact that H*(Mj) is generated by 1 -dimen-
sional and 3 -dimensional elements. The second part follows easily.

(iii) The homomorphism (pj+ι)* H3((My)Γ)->/f3((My+1)Γ) is surjective.
Consider the spectral sequence {Eξ'q, dr} of the covering (Mj+1)τ~->(Mj)τ.

It is clear that EP

2'
9= 0 if p^2, which means that E%9=E^9. It follows that

(Λ+1)ί: H^M^El'^H^M^Y which equals H*((Mj+l)τ) as shown in
(i) is surjective. Now consider the following commutative diagram

We can show that if is surjective as follows. Take an element a in H3(Mj)
which is not decomposable into a product of lower dimensional elements and

choose an element a' in H\(Mj)τ) such that pf+ι(a)=if+ι(pj+ι)$(a') Then
we have pf+ίif(a')=pf+ι(a). Put

a' = Σ «, X«X+Σ bjka'/b'k+b

where α£, αy, af

k and a'/ are of dimension 1, b'k is of dimension 2 and b is of

dimension 3 such that bί and b are not decomposable into a product of lower
dimensional elements. Then if(a') = i*(b), since a is not decomposable.

Thus we havepf+ι/f(&)— ̂ /Vι(#), which means a=if(b) because pf+ 1 is injective
on the subgroup of indecomposable elements. This proves the assertion 2.
Then a result in [3] (Theorem 10.2 in Chap. VII in [3]) shows (1). By the
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same argument as in Proposition 8, we can show (2). Q.E.D.

Now we shall prove Theorem B. The proof is almost parallel to the

proof of Theorem A, but it is more complicated. By the same argument as

in Theorem A, we can prove that M—Mc~(M—Mc)IKxS3, and hence

/*: H\M—Mc)->H3(K(x)) is non-trivial for every point x in M— Mc.

Let βlf -,ar<EΞH\M) and b^ •-, bs^H3(M) be generators of H*(M). Put

dimM=m. If dimMc<m—4, then the same argument as in Theorem A
leads a contradiction.

Assume dimMc=m—4. Since Hl(M, M—MC)=Q for ί=l, 3, we have

the following exact sequence;

I*
0 -> Hl(M) > H'(M-MC) -> Hi+1(M, M-MC) ί = 1, 3 .

It follows that i*(θί)=**(βO and **&)=**(%) for *=1> ->r and ;'=!» -»*»
where π: M-MC-*(M-MC)/K is the orbit map and a^H^M-M^/K),

b'j^H3((M—Mc)IK). From the diagram (#) and the same argument as in

Theorem A, we may assume **(α1 tfri1 &s_1)Φθ or ί̂ ^ ύ .̂a
This is proved easily to be impossible.

Finally assume dimMc = m—2. Then we have MC~S1X •
w (r + l)-times

X xS3. As proved above, we can prove that /*(#,) = τr*(α'), where
(5-l)-times

a'i^H\(M-Mc)IK)> for z=l, -,r.
Let a*^Hi(M) denote the dual element of a^H\M) and [M] == (a^-

a& 'bs)* the fundamental class of a closed manifold M.

We have the following commutative diagram;

i*
H'(M, M-MC) > H'(M) > H'(M-MC)

J«* |»?

H'(K(x))

where k: MC-+M is the inclusion.

Let k*(bs)=Q. Then we have k*(a^arb^£,•—i,)=0 for j=l, —,ί—1,

here ;̂ denotes the removal of bj. This implies that (Λ1 αrft1 6y As)* is not

Im A* for y=l, —, s-1. It follows from (#)3 that z*(^)φO for y=l, •••, s—l,

because ftyn [̂ =(-1)'-^-^-^—*.)*
Since j* is trivial, we have i*(bj) = π*(b$) (b'j^H\(M-Mc)IK) for

;=l,-,i-l.
It follows from (#)«,-3 and the fact k*(bs)=Q that i*^ — αA

because (αj αΛ-^-i) Π [^-(-l)5-1**. Then we have
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since αί α^i oί.

4. Proof of Theorem C

In this section, we shall prove Theorem C. Let M be as in Theorem C.
As noted in the beginning of section 3, we may assume N=SlX xS1χS*
x xS3. r tίmes

s-times

We first prove the following Lemma.

Lemma 13. Let X be a closed (r-\-Zs)-dimensίonal manifold with X^S1

X χS1xS3X xS3. If (r+s)-dίmensional torus T acts on X almost freely,
/•-times s-times

then XjT has non-zero Euler characteristic.

Proof. Consider the fiber bundle X-*XT->BT. Since the action is almost
free, it follows from the Vietoris-Begle Theorem that XT~X/T, because the

natural map π: X-*X/Thas fiber π'l(π(x))=BTχ and H\BTχ)=-Q for all />0.
It follows from a result in [11] (Theorem (VII. 7) in [11]) that HΌdd(Xτ)=0.
This completes the proof. Q.E.D.

Corollary. If an n-dίmensίonal torus T* acts on X almost freely, then n
is at most r+s.

This is an easy cosequence of Lemma 13.
Now we shall prove Theorem C. It follows from Theorem B that G

must be locally isomorphic to TuxSU(2)χ xSU(2). This is the first
ί -times

part of Theorem C. To prove that u+v^r+2sy it is sufficient to show that
if an w-dimensional torus Tn acts on M, then n is at most r-\-2s. Assume T*
acts on M. Then we can decompose T* as a product T"=TlxT2 such that
TI acts on M with a fixed point and T2 acts on MΓ* almost freely. Note that
the homomorphism ev%: πι(Tl9 e)-*πι(M, x) induced by the map evx: T^
M; g-*gx is trivial for x in MΓι. It follows from a result in [8] (Theorem 4.3
in [8]) that the action of Tl is lifted over M (=the universal covering of M).
Then the argument in the proof of Proposition 12 can be applied here and we
have

α-times £-times

where α+δ— r-\-s and r<a. Let dim T1=t. Then it follows from a result
in [12] (Theorem 2.2 in [12]) that 2t^dimM-dimMT^ = r+3
==2(s—b)> i.e. t^s—b. It follows from Corollary to Lemma 13 that n— t^
which means that n^a-\-s—r-{-2s— b^r-\-2s.

This completes the proof of Theorem C.
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