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Introduction

Let (#!, •••, xm: rl9 •••, rn) be a presentation of a group G. Then an Alex-
ander matrix of G can be obtained by mapping the n X m matrix (drJdXj) into
a matrix with coefficients in the group ring JH of some homomorphic image
H of G. (We are using i for the row index and j for the column index. More-
over, what we call Alexander matrices are called in Fox [4] Ήomomorphisms
of the Jacobian'.) In this note, we consider the reverse of the above procedure.
We start with a matrix A over a group ring, and look for groups with an Alex-
ander matrix equal to A.

Let F be the free group on the set of m letters {xly •••, xm}> and JF be the
integral group ring on F. Let %: F-+H be an epimorphism from F onto a
group H, and let %: JF->JH be the extension of % to group rings. Then
for an n X m matrix A with entries /j over JH, if G is such that

Φ\ A
G

commutes and (drildxj)*=A, we say G realizes A w.r.t. %. Here φ is the
canonical projection, and ψ is the epimorphism induced by %. Let R denote
Ker %. We show

Theorem I. Given an n X m matrix A with entries f j over JH, there is
a group G realizing A w.r.t. X iff Σ/U />£(#,—1)=0, ί=l, —, n. Further if
the entries of A satisfy this condition and G is a group with presentation (xly •••, xm:
rD '•*> rn) such that (dri/dxJ)*=A, the collection of all groups realizing A w.r.t X is

(1) Submitted as part of the requirements for the degree of Master of Science at Osaka
City University, March 1983.
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Thus 'up to [Ry R]\ groups realizing A w.r.t. X are unique, a result in effect

established in Crowell [1] (by a different method) and attributed there to Blanch-
field.

For the proof, we consider the set Δ(/i, ••-,/«) defined with respect to
/!, -9fminJHby

Δ(Λ, -, Λ) - {w^F: X(dwldXj) = fj9 j = 1, .-, m} .

We also use the following condition (*):

Σ7-ι /A*>—1) = A— I/* > for some h(ΞH ( * )

and show

Theorem II. Δ(/lf —,/„,) ώ won έ?;ra/>£y ijjf /I, — ,/* ίαίts^y (*), m

•••,/.,)=«>[*, R\.

As an immediate corollary, we give a description of

Θ(A) = {« -, ̂ n)eFw: (dw'ldxj)* = A} .

When a group G realizing A w.r.t. % satisfies a certain condition, we say
that A is the pseudo Fox Alexander matrix of G w.r.t. %. (See section 1)

We give necessary and sufficient conditions on A for A to be the pseudo Fox
Alexander matrix of some group w.r.t %.

In order to compare matrices of different size, we introduce the concept

of a satisfactory (matrix, homomorphism) pair (A, %), where (A, %) is satis-

factory iff A can be realized by some group w.r.t. %. To every satisfactory

pair there is uniquely associated a (group, homomorphism) pair we call the

associate. We define an equivalence relation in the spirit of [4] between satis-
factory pairs, and an equivalence relation between associates, such that equiva-

lent satisfactory pairs have equivalent associates, and satisfactory pairs with
equivalent associates are equivalent. Further, we consider satisfactory pairs

(A, X) such that A is the pseudo Fox Alexander matrix of some group G w.r.t. %,
and show that in this case the associate of (A, X) has group G/G", where
G" is the second commutator of G. In the special case H is the trivial group,
the uniqueness of % renders the concept of a pair redundant. The satisfactory
pairs are effectively all matrices A over JH=J. The associate to A turns out
to be the abelian group with relation matrix A. Moreover, the equivalence
relation on satisfactory pairs reduces to the usual equivalence relation on rela-

tion matrices of abelian groups, and the equivalence relation on associates is

that of group isomorphism. We have thus generalized the well known abelian

group — integral matrix correspondence.
In some cases, it is a simple matter to determine whether polynomials

/ι> •••>/»» satisfy (*). Good examples are the abelianizer F-*F/[F, JP], and
the epimorphism F-><ί> onto the free group on one element defined by Xj-*t
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for ally. Here Ker% equals {w€ΞF: exponent sum over each generator is
zero} (Lyndon [5], corollary 4.2), and {zυ^F: exponent sum equals zero},
respectively. Moreover, in the proof of sufficiency of (*) for Δ(fly * ,/w) to
be non empty, we explicitly construct an element w in Δ(/!, •••,/„,).

Section 1 contains the proof of the main result and corollaries. Section
2 deals with satisfactory pairs and their associates. In section 3 we give some
examples of the construction of a w in Δ(/j, ••-,/«) for fl9 •••,/„, satisfying (*).
It gives me much pleasure to thank my supervisors Professor J. Tao and Pro-
fessor A. Kawauchi, for all their help and encouragement.

1. The main results

Suppose there is a w^F such that X(9aj/8#y)=/y> j=l, ,m. By the
fundamental formula (Fox [3], 2.3), we have

Then applying %,

Noting that X(w)GH, condition (*) in the introduction is seen to be necessary
for Δ(/1, •••, fm) to be non empty. We proceed to show sufficiency.

Lemma 1.1. Let fl9 ••-,/„, be elements of JH, and h be an element of H,

such that *Σ?=ιfj%(Xj—l)=h—ljif Then there is a word w<=F such that X(w)
=h> and X(9a;/8*y)=/y,y==l, — , m.

Proof. Let Ά denote Ker %. Let w*<=F be an element of %~\K). (recall
% is assumed to be onto.) Let /* be representatives of ^~1(fj)^j=^9 •"> w,

and set /=Σ"-ι/Λ*/- 1)+ 1. Then %(Qffixj) = fj> /=!, — ,«• For
3(/*(^-l))/9^-/*δί7, for any/*e/F. Further, %(/-<MΣ7=ι /y«(^-
!)+!)— A=0. So/-^*e5i. Hence /w^—leίi, since 3? is an ideal. Let
denote the fundamental ideal ([3]) of JF. By [3, 4.10], there is an element

such that/zϋ*"1— r e jRSf moreover, since 5i3C is an ideal, we have/— rw*
Set α;=rα;*<EΞF. Then X(w)=A, and by [3, 4.5], X(8(/-w)/8*y)=0,

or X(dwldXj)=X(df/dXj)=fj,j=l, •••, w, as required.

Corollary 1.2. Δ(/ί, — , /„) ώ wow «»/> ίy ifffl9 ; fm satisfy (*).

The proof is immediate.
We now turn to the question of structure in Δ(/ί, •••, fm).

Lemma 1.3. For a^[R, R], aw^A(fly —,/„,) whenever «?eΔ(/!, —,/„).

Proof. By [3, 4.9], the ideal 5i3? determines the commutator subgroup
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[R, R] of R. Hence {a^F: a-1^3i3C} = [R9 R]. But by [3, 4.5], for
an element a— 1 is in <R3S iff all derivatives of a belong to Sί. Hence for
αε[JR, R], %(da/dXj)=Q,j=l, •• ,m. So as d(aw)ldXj = dalQXj+a(βιoldXj), we
see %(d(aw)/dXj)=Q+X(dw/dxj)=fj,j=l, •• tmy completing the proof.

Lemma 1.3 implies that w[R, R]=[R, Λ]wcΔ(/ί, — ,/„) for «;eΔ(/i, ••-,/»,).

Lemma 1.4. Any two elements w, w'^Δ(fίt ~ ,fm) differ by an element
of [R, R\, so that w[R, K\=[R, R]w=Δ(fl9 -,/„).

Proof. By assumption, X,(dwldxj)=fj = %(dw'ldXj),j=l,~-,m. Hence
%(d(w—ιo')ldxj)=Q, j=l, — , m. Then, by [3, 4.5], w—w'&SR3£. But w-w'
in 313? implies aw'"1— Ie3l3?, since 513? is an ideal. So by [3, 4.9], ww'""^
[7?, JR], and the proof is complete.

Proof of Theorem II. Corollary 1.2 and Lemmas 1.3 and 1.4.

Corollary 1.5. Given an nxm matrix A with entries /}• over JH, Θ(A)=

Proof of Theorem I. Assume G is a group realizing A w.r.t. %, with

presentation (xl9 •••, Λ?W: rls •••, rΛ) such that (dri/dxj}*=A. By the fundamental

formula ^-1=27-1 (9rJΛ:8;.)(^— 1), i=l, -, n. Hence X(r,-l)=Σ!y-ι X(9rί/
dχj)(xj—tyy i= 1> •", w. But by our assumption on G, %(rl )=l, and we have

0=Σl7_ι X(8rfV9Λ?y)X(Λ?y--l)=27-ι/ί X(^--l), ί=l, — , «, as required.
Conversely, suppose the entries of A satisfy 27- 1 fffi(xj~ty= 0> ί=l> ••*> w.

Since this is just (*) with h=ljff, Theorem II gives elements r, eΔ(/ί, •• ,/iι),
ί=l, •••,». Using the definition of Δ and the fundamental formula, we see

0 = 27-i/}«(^-l) ̂  Σ7-ι X(8r,/8*y)X(*y-l)=X(r<-l) ,

whence %(r, )=l, ι=l, - , n. It is now easy to see the group G presented by
(#!, ••-,#»: rx, •••, rn) realizes A w.r.t. %. That all groups G* realizing A w.r.t.

%, with presentation (#!,•••,#„,: f f, •••, r?) such that (drfldXj)*=A have the
stated form follows from Corollary 1.5 and Theorem II, after noting that
(if, — , rί)dθ(A). This completes the proof.

Let λ: F->G/[G, G] be the composite F-^G->G/[G, G], and λ be its ex-

tension to group rings. Fox ([4, §4]) calls the nxm matrix (drjdx^ an Alex-
ander matrix of G. This leads to the question of when, for a group G realizing
A w.r.t. %, there is an isomorphism σ: G/[G, G]->ίf such that the diagram

F-^H
X\/r

Gj[G, G]
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commutes. When such a diagram exists, we say that G has A as its Alexander
matrix in the pseudo Fox sense w.r.t* %, or that A is the pseudo Fox Alexander

matrix of G w.r.t. %.

Lemma 1.6. Let A be an nxm matrix with entries /}• over JH, and G

be group realizing A w.r.t. %, with presentation (xly ••-,#„,: rly •• ,rn) such that

(dri/dxj)*=A. Then G has A as its Alexander matrix in the pseudo Fox sense

w.r.t. % iff H is abelίan and A° is a relation matrix for H, where o denotes the

trivίalizer JH-+J.

Proof. Observe that AQ=(fij)0=(drildxJ)°. Suppose that G has A as its
Alexander matrix in the pseudo Fox sense w.r.t. %. Then G/[G, G]^H.
H is therefore abelian, and by [4, 3.5], A° is a relation matrix for H. This
proves sufficiency.

Conversely, suppose H is abelian and A° is a relation matrix for H. Since
H is abelian, there is an epimorphism σ: G/[G, G]-+H such that

G/[G, G]

commutes. Moreover, by [4, 3.5], A° is also a relation matrix for G/[G, G],

whence G/[G, G]^H. But any homomorphism from a finitely generated
group onto itself is an isomorphism, from which we deduce σ to be an isomor-
phism. This completes the proof.

2. Satisfactory pairs and their associates

We say that the pair (A, %) is satisfactory when there exists a group G

realizing A w.r.t. %. Recall that if G is a group realizing A w.r.t. %, there
is a diagram

Define the subgroup G++ of G to be [φR, φR]. Since G++cKerψ>, ψ in-
duces an epimorphism :̂ G/G++->#. Let G=G/G++. Then

Theorem 3.1. The pair (G, ψ* is determined uniquely by the satisfactory

pair (A, %).
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Proof. The quotient G has a presentation which may be obtained from
a presentation of G by adding {a: a^[R, R]} as relators. The proof now
follows from the description of all groups realizing A w.r.t. % given in Theorem I.

(G, ψ*) is called the associate of (A, %). The associates (G, ψ) and (G*, ψ*)
of satisfactory pairs (A, %) and (A*, %*) are said to be equal in case there is
an isomorphism p: G->G^ such that

P
Ψ / xτ
<n Ύ*

commutes. Equality is the equivalence relation between associates mentioned
in the introduction. We define an equivalence relation between satisfactory
pairs as follows:

DEFINITION (compare [4], p. 199.). Two satisfactory pairs are equivalent
if one can be obtained from the other by a finite number of elementary trans-
formations (I), (II), (I)"1, (II)-1, defined as follows:

(I) Replace (A, %) by (A1, %'), where A' is obtained from A by adjoining
a new row equal to a left linear combination of the rows of A, and %'=%.

(II) Replace (A, %) by (A'9 %'), where A' is the result of adjoining to
A a new row and a new column (say the pth and qth respectively) such that:

(a) The entry in the intersection of the row and column is 1.
(b) The remaining entries in the new column are all 0.

(c) The remaining entries/f, •••,/£, •••,/&+! in the new row satisfy '—(*)';
that is

Σ$=ιfffi(Xj—1) = —A+l/jy, for some h€=H,

and the epimorphism %' from the free group F' on m+l letter {xly " 9xqt ••• ,
xm+1} onto H is defined by %'(#,)=X(#y),y=l, ••• , q, •••, m+l\ X'(xq)=h.

(I)"1 The inverse operation to (I).
(II)"1 Replace (A, %) by (A'9 %'), where A' is obtained from A by removal

of the pth row and the gth column, and %' is the restriction of % to the free
group F' generated by {xly •••, xq, •••, xm}. Here A satisfies

(a) The entry in the intersection of the ^>th row and the qth column is 1.
(b) The remaining entries in the gth column are all 0.

If (A, %) is satisfactory, by Theorem I Σ?-ι/$£(*,—1)=0 If in addί-
tion A satisfies condition (a) of (II)"1,

So/f, •••,/£, — ,/i satisfy '—(*)' for h=X(xq). This together with the next
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lemma justifies the label (Π)"1.
Since the interchange of any two rows or any two columns is easily seen

to be an elementary transformation, we shall assume throughout the rest of this
paper that the pth row and qύi column are the bottom row and extreme right
hand column respectively.

Lemma 2.2. The result of applying (I), (II), (I)'1, or (II)"1 to a satisfactory
pair is again a satisfactory pair.

Proof. For the elementary transformations (I), (I)"1, and (II), this is
clear. In the case of (II)"1 we must show the map %' from Fr into H is onto,
or X(xm) can be written in terms of %(̂ ), •••, %(#w_ι). By Lemma 1.1, there is
a word v^F such that X(v)= 1, and %(dv/dXj)=fnj, ./—I, •••,*». In the special
case the number of times xm occurs in v is one, the relation X(v) = l shows
X(xm) is expressible in terms of %(#ι), •••, X(xm-ι), and %' is onto. So suppose
the number of times xm occurs in v is p>l. As %(dv/dxm)=ly p is odd, and
among the p terms in this derivative, there are (p—1)/2 cancelling pairs cor-

responding to particular occurrences of xm and xΰl in v. Focussing on one
pair, write v=ax*mbx'£cy f=±l, and note the assumption

^[(a-axlbx-^dx^/dx^] = 0

implies δeKer%. Consequently v1=abc is such that %(^)=1, and fyQvJdx*)
= 1. Moreover, vl has fewer cancelling pairs by one. Repeating this argument
enough times brings us back to the special case, and %' is seen to be onto.
This completes the proof.

Theorem 2.3. Equivalent satisfactory pairs have equal associates.

Proof. Let (Ay %) be a satisfactory pair, and G be a group realizing A

w.r.t. % with presentation (xl9 ••-, xm: r^ " ,rn) such that (driIQxj)*=A. By
Lemma 2.2, it suffices to show the satisfactory pair obtained from (A, %) by
applying any one of (I), (II), (I)"1, or (II)'1 has associate equal to that of (A, %).
For this, let G' be any group realizing A' w.r.t. %'. Let φ': F'-*G' be canon-
ical projection, and ψ ': G'-+H be the epimorphism induced by X'. We find
a G' and an isomorphism p: G->G' such that

•(a)

commutes. Then pφ Ker %=φ' Ker %', and p induces an isomorphism p: G-

G' such that
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commutes. Hence this suffices to show (A, %) and (A1, %') have equal associ-

ates. The isomorphism p: G->G' is defined as follows. A group G' realizing
A' w.r.t. %' can be obtained by applying a Tietze transformation ([4], p. 197)
to (#!, •••, xm: rl9 •••, rn) of the same type as the type of the elementary trans-
formation used to obtain (A', %') from (A, %). For an elementary trans-
formation of type (I) or (I)"1, this follows from [4], p. 199. For a type (II)
elementary transformation, by Lemma 1.1, there is a w^F such that %(«;)—

h=X(xm+l), and ^(dwldXj)=—fΓ\j=^9 •••, m. But then

j = 1, -, m ,%'(Q(xm+lw-l)ldxj) = ί -%'((xm+1w-l)(dwldxj)) = fT

So we may take G' to be the group presented by (xly •••,#„,, xm+l: r^ * ,rw,
xm+ίw~l). For a type (II)"1 elementary transformation, recall that in Lemma 2.2

we showed %(#ι), •• ,%(#,«-ι) generate H. Hence there is a word w^F' such

that %(α>)=%(Ό> and %(dwldχj)=fnh j=I> "Ί w— 1. We may thus assume the
presentation of G is (̂ , •••, Λ?m: rlf •••, rm_j, ^w'1). The isomoiphism p: G->G'
induced by the Tietze transformation is easily seen to satisfy diagram (a), and

the proof is complete.

Next we establish the converse to this theorem.

Theorem 2.4. Satisfactory pairs with equal associates are equivalent.

Proof. Let (A, %) and %#) be satisfactory pairs, where A* is a
u X t matrix over JH and %# is an epimorphism from the free group F% on t
letters {yίy •••, yt} onto H. Further, let G be a group realizing A w.r.t. %,

with presentation (#ι, •••,#«: rx, •• ,rw) such that (Qrildx^=A\ let G* be a
group realizing A* w.r.t. %#, with presentation (y^ •• ίyt: sl9 •••,$„) such that

=A^ y and let p: G-+G* be an isomorphism such that

commutes. We must show (A, %) and (^4^, X^) are equivalent. We begin
with two observations. First, a Tietze transformation T applied to (xl9 •••, xm:
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rι> '">rn) induces an elementary transformation on (A, %) of the same type as
follows. Let the result of applying T to (xl9 •••,#«: rl9 •• ,rn) be (x{> •• , Λ ? O :

r'ι, ~ ,r'p). Denote the group presented by (x{, " ,#ό': r{9 •• ,r'p) by G', and
let p: G— >G' be the isomorphism induced by T. Denote by φ' the canonical
projection from the free group F' on {#', •••, x'Q} onto G', and define the epimor-

phism %': F'->H to be the composite

Set Af=(Qr'ildXj)*', i=l, —,p; j=l, —,o. Then it is easy to see that the
satisfactory pair (A'9 %') differs from (^4, %) by an elementary transformation

<5 of the same type as that of T. We say <S was induced by T. Second, let

{al9 a29 •••} and {b19 b2y •••} be subsets of F and F* respectively which generate
[Ker %, Ker %] and [Ker %*, Ker %#] respectively. Then G is presented by

(xl9 ~*,xm: rl9 ~9rn9 a19 a2, •••) and G* is presented by (yl9 —9yt: sl9 •••,$„, bl9

b2, •••). Moreover, X(90/9#y)=0, for all a^{al9 a2, •••} and /= 1, •••, w, by

Lemma 1.3 with «;= 1, and /1== ••- =/βl=0. So denoting by #F any finite subset

of {«!, β2> *"}> the Alexander matrix -4' of the presentation (xl9 " 9xm: rl9 •••,
rny aF) at % is just A with finitely many zero rows added. Hence (A9 %) and
(A'9 %) differ by an elementary transformation of type (I), so are equivalent.

Similarly, X>*(dbldyk)=Q, for all b^{bly b2y ••-}. And denoting by bF any finite
subset of {bl9 b2, •••}, the Alexander matrix A* of the presentation (yl9 " 9yt:

^i>'">^>^) at ^* i§ Just ^* w^h finitely many zero rows added. Hence
(A*, %#) and (A*, X*) are equivalent. Our method of proof is to give a finite

sequence of Tietze transformations starting from (xί9 " 9xm: ΐΊ, 9rn9 aF) such
that the induced sequence of elementary transformations applied to (A ', %) gives

(A*9 %^). Here aF is the smallest subset of {al9 a2j •••} necessary for the mani-
pulations which follow. It will be clear that aF is finite.

Let v: F-*G denote the composite F-+G-+G of canonical projections.
Define v%: F*->G* similarly. Pick a representative pl in v~lp~lv*(yj) and

add a new generator yl and a new relator ytpjl for each /,/=!,•-, t9 obtaining

( î, ,^,JΊ, >.)Vι, 'i^yiίΓ1, ,ytpΊ\aF) ......... (1).

Let ( î, %x) be the result of applying the induced elementary transformations to

(A'9 %). The epimorphism %x maps from the free group on {xly , xm, yl9 9yt}

onto H, and is defined by Xi(#y)=%(#y),/=l, * ,w; %ι(^/)=X(ί/), /=!, — , ί.
For all Tietze transformations, hence all induced elementary transformations, are

of type (II). The matrix A± is the Alexander matrix of the presentation (1) at %P

Now {p~lv*(yι)\ 1=19 •••, t} generates G. Hence v(xί)= p"1^?;) for some
word q} in F*. Using the yp"1 type relators, q can be rewritten as a word
Wj in F. Then tfyZuJ1 is in Ker v, the consequence of {rl9 ,rn9 al9 a2, » },y =

1, « ,m. But the number of times elements of {aly a2y •••} appear in XjWj1 is
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finite, whence there is a finite subset of {aly a2y •••} (assumed to be in aF)

which together with rly •••, rn have XjWj1 in its consequence, /=1, •••, m. Use

this, together with the yp~l type relators, to add in relators Λ^J1, 7=1, •••, w.
Moreover, ίΛ can be rewritten as a word vk in F, and vk is easily seen to be in

Ker v. Use this, together with the arguments above, to add in the relators

sky k=ly •••, u. The result is the presentation

(xy y: ry s, yp~\ xq~\ aF)

where we have suppressed the subscripts of the generators and relators. Let

(A2y %2) b
e the result of applying the induced elementary transformations to

(Aly %i). The epimorphism %2 is equal to Xly since all Tietze transformations
are of type (I). The matrix A2 is the Alexander matrix of the presentation

(2) at %2.
Reversing the roles of G and G*, it follows that (yly " yyt: sly •••,$„, bF)

is equivalent to

(xyy: r, s, yp~\ xq-\ bF) ......... (3).

Here bF is the smallest subset of {bly b2y •••} necessary for the proof. It will

be clear bF is finite. Let (A3y %3) be the result of applying the induced ele-

mentary transformations to (A*, %*). The epimorphism X3 from the free

group on {xly , xmy yly , yt} onto H is defined by %3(*;HX*(?/)> J = l, — ,w,
'X,3(yι)='X,*(yι)y l=l, ,t. The matrix A3 is the Alexander matrix of the

presentation (3) at %3. The arguments used to add the relators sk> k=l, •••, uy

to (1) are easily adapted to first add bF to (2) and then add the resulting aF to
(3). The result in both cases is a presentation of the form

(x9 y:r,s, yp~\ xq~\ aF, bF) .

All transformations are of type (1), so if X2=X3, (A2, %2) is seen to be equivalent
to (A3> %3), and the proof will be complete. But by associate equality

X , j = , -, m,

and

This completes the proof.

In Lemma 1.6, we showed that if H is abelian, A is a matrix over JH such

that ^4° is a relation matrix for H, and G is a group realizing A w.r.t. %, then

G has ^4 as its Alexander matrix in the pseudo Fox sense w.r.t. %. It is easy
to see that the equivalence relation on satisfactory pairs is such that the mat-
rices A° and A? obtained from equivalent pairs (A, Xj) and (A, %i) are rela-
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tion matrices of isomorphic groups. So if the matrix of one pair in an equiva-
lence class is a pseudo Fox Alexander matrix with respect to its epimorphism,
all are. We claim that in such an equivalence class, the associate has group
equal to G\G" . This will follow if G++=G". But if A has G as its Alexander
matrix in the pseudo Fox sense w.r.t. %, Kerλ— Ker%. (Section 1.) Then
[Kerλ, Kerλ]-[Ker%, Ker%], and G"=[Kerλ, Kerλ] = [Ker%, Ker%]-
G++, as required.

3. Examples

EXAMPLE 1. Let F be the free group on {xl9 x2, x3}. Let %: F->(ty
be defined by Xj-+tyj=l, 2, 3, and % be the extension of to group rings. Set

Then /1+/2+/3=l+*+*2> and *Σ3-ιfj(t-l)=?-l. % Theorem I there is
no group realizing A=(f1f2f3) w.r.t. %. But by Lemma 1.1, Δ(/lf /2, /3) is non
empty; we use the method of proof to construct an element. Set

/* =-

ft = 2xT1+xl .

Then /=Σ?-ι /*(*,— 1)+ l=-4 + 2xl + Sx\+2xίlx2~2xlX2-Sxlx2 + 2x^x3+
xlx3. %(9//8^ )=/y, j = l 2, 3. Further, f—ic* is in Ker%, whence by [3],
p. 549, we can write

/-** = Σί

where fA=±l; ^A> ek> an<l ck ar^ in F\ skι rk are in Ker%, and rk=dksfd£l,
and ck=dks

(1-*k»2ek. Let w=(Πί-ι **)w*. Then w is in Δ(/!, /2, /3); this is
the essence of the proofs of Lemma 1.1 and [3, 4.10]. A method for determin-
ing the rk is to be found in [3], p. 549; we write:

1#3 = 2(xϊ1x2—

2x1— 2x^2 = 2(xlx2

lxϊl—

xlx3— xl = (xlx3xϊ3— V)x\ ,

5xί—5xιX2 = 5(xιX2

1xT3— I)x\x2 ,

and put
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w = (ffΓ1^)2^1^)2^?*^

(order is immaterial among the /Vs.) %(dwldXj)=fj,j=l, 2, 3.

EXAMPLE 2. Let JPbe the free group on {xl9 x2}. Let X: F-*FI[F, F]

be the abelianizer, let %(#ι)— #ι, %(#2)— % and let ^ be the extension of % to

group rings. Set

Then /ί(#ι— l)+/2(^2"-l)=0, so by Theorem I there is a group G realizing
A=(fi /2) w.r.t. %. Further, since ^4°=(0 0) is a relation matrix for Fj[F9 F],

it follows by Lemma 1.6 that G has A as its Alexander matrix in the pseudo

Fox sense w.r.t. %. To find a G realizing A w.r.t. %, set

/* = -4

fί — 2Λ??Λ?2

Then /= Σy-i/fK— 1)+ 1 = -4*Γ2*ι + 4JC2-1

 Xl + 2x1x^-2x1x100, + 2x\x\-
2— 2x\x2-{-\. Proceeding as in the previous example, we write

/—I = 4(xιX22xTlxl— l)«^2"2^ι + ^(x2lXιX2xϊl — ]-)xιX2l + 2(xιX2x1x'2~
1xϊ3— V)x\x2-\-

2(xlxlxT1X22xT2— l)xιxlxu and set

The group G presented by (xly x2: w) has A as its pseudo Fox Alexander

matrix w.r.t. %.
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