Minami, H. Osaka J. Math. 21 (1984), 457-460

A REMARK ON ODD-PRIMARY COMPONENTS OF SPECIAL UNITARY GROUPS

Dedicated to Professor Minoru Nakaoka on his 60th birthday

HARUO MINAMI

(Received March 9, 1983)

Let G be a compact connected Lie group of dimension d>0, and let us assume that an orientation of G is chosen. Let \mathfrak{L} denote the left invariant framing of the tangent bundle of G. For the pair (G, \mathfrak{L}) we obtain by the Pontrjagin-Thom construction an element $[G, \mathfrak{L}]$ in π_d^s . Ossa[6] proved that $72[G, \mathfrak{L}]=0$. Of course this implies that the *p*-primary component of $[G, \mathfrak{L}]$ is zero for any prime p>3. As for information on the 3-primary part of general nature we have the following results of Becker-Schultz: For G=SO(2n), Spin(2n) or U(n) the 3-primary component of $[G, \mathfrak{L}]$ is zero [2]. For the exceptional Lie groups Knapp[4] proved that the 3-primary component of $[F_4, \mathfrak{L}]$ is zero. In this note we give the following additional information:

*) For $n \equiv 0$ or 3 mod 4 the 3-primary component of $[SU(n), \mathfrak{L}]$ vanishes.

Let τ be an involutive automorphism of G and let K denote the closed subgroup of G consisting of all elements fixed by τ . Then using the equivariant stable homotopy theory for involutions, we have

Proposition 1. If K is of odd codimension in G, then

 $[G,\,\mathfrak{L}]_{(odd)}=0$

where $a_{(odd)}$ denotes the odd-primary part of a.

The assertion *) is an immediate corollary of this proposition. According to the classification theorem of irreducible Riemannian symmetric spaces, examples of Lie groups to which this proposition applies are SU(4n), SU(4n + 3), Spin(2n) and SO(2n). For SU(n) (resp. Spin(n+1) and SO(n+1)) we adopt the involutive automorphism corresponding to the symmetric space of AI-type (resp. of BDII-type), whose fixed point set is of codimension (n-1) (n + 2)/2 (resp. n).

In the final section we make a remark on the real Adams *e*-invariant e'_R and we show

$$e'_{R}[SO(16n+6), \mathfrak{L}] = e'_{R}[Spin(16n+6), \mathfrak{L}] = e'_{R}[SU(4n), \mathfrak{L}] = 0 \ [1, 4].$$

1. Proposition 1 is generalized as follows. Let $R^{p,q}$ denote the euclidean space R^{p+q} with the linear involution which reverses the first p coordinates and fixes the last q. Let M be a closed smooth manifold with a smooth involution τ . If there exist integers r, $s \ge 0$ and an isomorphism of Z_2 -vector bundles

$$\Phi_{\tau}: TM \oplus (M \times R^{r,s}) \to M \times R^{p+r,q+s}$$

for r, s where TM is the tangent bundle of M, then we say that M is (p, q)-framed. (This terminology stands for Segal's $R^{p,q}$ -framed in [7].) Let $\pi_{p,q}^{S}$ be the (p, q)-th equivariant stable homotopy group of sphere with involution of Landweber [5].

When M is (p, q)-framed, the pair (M, Φ_{τ}) defines an element $[M, \Phi_{\tau}]^{Z_2}$ in $\pi_{p,q}^{S}$ via the equivariant Pontrjagin-Thom construction. Here forget the involution, then Φ_{τ} becomes the usual stable framing of M which we denote by Φ . We also denote as usual by $[M, \Phi]$ the element of π_{p+q}^{S} defined by the pair (M, Φ) similarly.

Proposition 2. Suppose that M is (p, q)-framed and p is odd. Then

$$[M, \Phi]_{(odd)} = 0.$$

Before we prove Proposition 2 we observe that G is $(d\text{-dim } K, \dim K)$ framed. Recall that identifying \mathbb{R}^d with T_eG in the orientation preserving way, the left invariant framing $\mathfrak{L}: TG \to G \times \mathbb{R}^d$ of G is given by $\mathfrak{L}(v_g) = (g, (L_g^{-1})_*v_g) v_g \in T_gG$, where T_gG denotes the tangent space at $g \in G$ and $L_{g^{-1}}$: $G \to G$ the left multiplication by g^{-1} . If we consider here the action on TG induced by τ , then it is easy to check that \mathfrak{L} itself is an isomorphism of Z_2 -vector bundles $TG \to G \times \mathbb{R}^{d-h,h}$ where h denotes the dimension of K. Thus we see that Proposition 1 is obtained as a corollary of Proposition 2.

2. Proof of Proposition 2. According to [5] there are different equivariant stable homotopy groups of spheres with involutions $\lambda_{p,q}^{S}$ and an exact sequence involving them

(1)
$$\rightarrow \lambda_{p,q}^{S} \rightarrow \pi_{p,q}^{S} \xrightarrow{\phi} \pi_{q}^{S} \rightarrow \lambda_{p,q-1}^{S} \rightarrow$$

where ϕ is the fixed-point homomorphism. Furthermore we have by [5], Proposition 6.1 and Corollary 6.3 an isomorphism

$$\lambda_{p,q}^{S} \cong \pi_{2^{a}+q}^{S}(P^{\infty}/P^{2^{a}-p-1})$$

for a suitably large a (depending on p and q) where P^k is the k-dimensional real projective space. Using the Atiyah-Hirzebruch spectral sequence we therefore obtain

458

ODD-PRIMARY COMPONENTS OF SPECIAL UNITARY GROUPS

(2)
$$\lambda_{p,q_{(add)}}^{s} = 0$$
 for p odd.

(For a finite abelian group A, $A_{(odd)}$ denotes the odd components of A.) From (1) and (2) we have an isomorphism

(3)
$$\phi: \pi_{p,q_{(odd)}}^{s} \cong \pi_{q_{(odd)}}^{s} \quad \text{for } p \text{ odd } [3].$$

We now prove Proposition 2. Let *I* be an involution of $\mathbb{R}^{p+r,q+s}$ defined by $I(x_1, x_2, \dots, x_{p+q+r+s}) = (-x_1, x_2, \dots, x_{p+q+r+s})$. Assuming that *M* has the equivariant stable framing Φ_{τ} as above, we see by definition that $\phi[M, \Phi_{\tau}]^{\mathbb{Z}_2}$ $= \phi[M, (1 \times I)\Phi_{\tau}]^{\mathbb{Z}_2}$. So it follows from (3) that

(4)
$$[M, \Phi_{\tau}]^{Z_{2}}_{(odd)} = [M, (1 \times I)\Phi_{\tau}]^{Z_{2}}_{(odd)}.$$

By definition we also have $\psi[M, (1 \times I)\Phi_{\tau}]^{z_2} = -[M, \Phi]$ where ψ is the forgetful homomorphism. By this and (4) we therefore have $[M, \Phi]_{(odd)} = 0$, which completes the proof of Proposition 2.

3. We prove here the following

Proposition 3. Suppose that $4n-1 > p \ge 0$ and $p \equiv 1$, 5 mod 8, n even; $p \equiv 3$, 7 mod 8. Then the composite

$$e'_R\psi\colon \pi^S_{p,4n-p-1}\to Q/Z$$

is zero.

Proof. By $\Sigma^{p,q}$ we denote the one-point compactification of $R^{p,q}$ with ∞ as base point. Let $f: \Sigma^{8r+p,8r+4n-p-1} \to \Sigma^{8r,8r}$ be a base point preserving Z_2 -map for large r and \overline{f} be the map obtained from f by forgetting the action. Applying \widetilde{KO} to the cofibre sequence

$$S^{16r+4n-1} \xrightarrow{\bar{f}} S^{16r} \xrightarrow{\bar{i}} C_{\bar{f}} \to S^{16r+4n} \to S^{16r+1}$$

where $C_{\bar{f}}$ is the mapping cone of \bar{f} and \bar{i} is the injection map, we have an exact sequence

(1)
$$0 \leftarrow \widetilde{KO}(S^{16r}) \stackrel{\overline{i}^*}{\leftarrow} \widetilde{KO}(C_{\overline{j}}) \leftarrow \widetilde{KO}(S^{16r+4n}) \leftarrow 0.$$
$$\cong Z \qquad \cong Z$$

Using the periodicity theorem and Lemma 4.1 in [5] we get

(2)
$$\widetilde{KO}_{Z_2}(\Sigma^{\beta r+p,\beta r+4n-p-\ell}) \simeq \begin{cases} 0 \text{ or } Z_2 \text{ if } \ell = 0\\ 0 \text{ or } Z \text{ if } \ell = 1 \end{cases}$$

Furthermore it follows from the argument in §2 that $\lambda_{p,4n-p-1}^{s} \otimes Q = 0$ and hence $\pi_{p,4n-p-1}^{s}$ is a finite group. So applying \widetilde{KO}_{z_2} to the cofibre sequence

H. MINAMI

induced by f, we see that

$$i^*: \widetilde{KO}_{Z_2}(C_f) \to \widetilde{KO}_{Z_2}(\Sigma^{8r, 8r})$$
 is onto

where *i* is the injection map $\Sigma^{8r,8r} \subset C_f$. Therefore we can choose a generator ξ of $\widetilde{KO}_{Z_2}(C_f)$ such that $i^*\psi(\xi)$ generates $\widetilde{KO}(S^{16r})$ where ψ denotes the forgetful homomorphism in *K*-theory. Let ψ^k be the *k*-th Adams operation in *KO*- or KO_{Z_2} -theory. Since $\psi\psi^k = \psi^k\psi$ we have by [5], Lemma 3.3 and (2)

$$\psi^k\psi(\xi)=k^{8r}\psi(\xi)\,,$$

which implies that (1) splits as an exact sequence of groups admitting operations ψ^k . Hence by definition

$$e'_R[f] = 0$$

where [f] is the stable homotopy class of f. This completes the proof.

Again considering the classification of involutive automorphisms of Lie groups, we have the examples above to which this proposition applies.

References

- [1] M.F. Atiyah and L. Smith: Compact Lie groups and stable homotopy of spheres, Topology 13 (1974), 135-142.
- [2] J.C. Becker and R.E. Schultz: Fixed point indices and left invariant framings, Lecture Notes in Math. 657, Springer-Verlag, 1978, 1-31.
- [3] G.E. Bredon: Equivariant stable stems, Bull. Amer. Math. Soc. 73 (1967), 269– 273.
- [4] K. Knapp: Rank and Adams filtration of a Lie group, Topology 17 (1978), 41-52.
- [5] P.S. Landweber: On equivariant maps between spheres with involutions, Ann. of Math. 89 (1969), 125-137.
- [6] E. Ossa: Lie groups as framed manifolds, Topology 21 (1982), 315-323.
- [7] G.B. Segal: Equivariant stable homotopy theory, Actes Congres intern. Math. Tome 2 (1970), 59-63.

Department of Mathematics Osaka City University Sumiyoshi-ku, Osaka 558 Japan

460