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1. Introduction. This paper studies direct sums M=(BiζΞIMi of in-
decomposable modules. Specifically, we give a number of necessary and suffi-
cient conditions for such a sum to be quasi-continuous or continuous. This
question was settled in [6], in a very satisfactory way, in case the index set / is
finite, or the ring is right-noetherian, but the general case dealt with here is
much more complicated.

Such sums M=@i^IMi have been investigated in great detail, in a long
series of papers since about 1970, by M. Harada and his collaborators, usually
under the additional hypothesis that the M{ have local endomorphism rings
(so that the Krull-Schmidt-Azumaya Theorem applies). One of the central
results is the following:

Theorem 1 ([3], p. 22). For a module with a decomposition M=®ieIMh

and with all endoίM,) local, the following statements are equivalent:

(1) The decomposition is locally semi-T-nilpotent;
(2) it complements direct summands

(3) any local direct summand of M is a direct summand.

(The relevent terms are defined later on in this section.)

The present paper owes a great deal to the work of these authors. In
particular, we refer to [5], [4] and the manuscript [7], results of which are an-
nounced in [8]. The reader will notice considerable overlap with the paper
by K. Oshiro, and some of our arguments are lifted from it with little modifica-
tion. Our main original contribution is the application of [1] (cf. our Lemma
1), from which we derive that any quasi-continuous M=@iςΞIMi with inde-
composable M{ is locally semi-T-nilpotent, and which allows us to free the
results of [7] from their relativization with respect to uniform dimension (ie.
the conditions (a—Cf ) defined in Section 4), and to simplify the proofs. More-
over, applications of the main theorem of [6] yield a short proof of Theorem 8.

All our modules are right-modules over a ring i?. m° denotes the an-
nihilator in R, of the element MIGM, XCL'M and YdΘM signify that X is
an essential submodule, and Y a direct summand, of M. The sum of an in-
dependent family of submodules of M is called a local direct summand if every



366 BJ. MϋLLER AND S.T. RlZVI

finite subsum is a direct summand. For a given decomposition M = φ $ e / M l

and a subset / of the index set /, M(J) stands for © t e / M { .

A module M is called continuous if it satisfies
(CO: for all XdM there exists X* with I c ' I * C ® M ; and
(C2): for every XdM which is isomorphic to a direct summand of M, Xd®M
holds.

A module M is quasi-continuous if it satisfies (Q) and
(C3): for all X, Yd®M with Xf] Y=0, I 0 7 c W holds.

For details about these concepts, we refer to [6] and the literature cited
there.

For a module with a given decomposition M = 0 t e / M ί , one is also inter-
ested in the following conditions:
(Cί): for every Xd®M and Jdl with XnM(J)=0, X®M(J)d®M holds.
(This is obviously a consequence of (C3).)
(C£) (relative injectivity, the lettering is taken from [7]): M(J) is M(I—J)-

injective, for a l l / c / .
(lsTn) (local semi-T-nilpotency): for every sequence fn: Min->Min+1 (ndN)

of non-isomorphisms, with all in distinct, and every Λ;GM ( O, there exists

We note that, if the conclusion of the Krull-Schmidt-Azumaya Theorem
holds for My and in particular if all endo(Mt ) are local, then these conditions
do not depend on the specific decomposition.

2. Ascending chain conditions. In this section, we study an arbitrary
decomposition M = φ f e/Λff . Our first lemma is a reformulation of ([1], Theo-
rem 2.4):

Lemma 1. Λ f = φ l e / M , is B-ίnjective if and only if each M t is B-ίnjective,
and for every choice of m^M; and bdB with /w?3ό° (i^I) the net Γ\i$Fm°i
(F any finite subset of I) becomes stationary.

Motivated by this result and later applications, we introduce three ascend-
ing chain conditions, with respect to the given decomposition Λ f = φ ( e / M ί :
(A7): For any choice of m^Mi (i^I) the net Π i$Fm°i becomes stationary;
(A"): for any choice of m^Mi (id/), with the additional condition that

nήdm^ holds for a suitable j and all /, the net Π i$F

m°i becomes stationary;
(A'"): for any choice of xndMijt (ndN, in distinct) such that the sequence

Xn is increasing, this sequence becomes stationary.

It is clear that (A') implies (A"), and (A") implies (A7//) (in the second
case, take x~Q for all *'Φ4) It is also easy to see that (A') and (A") hold
if and only if they hold for every countable subset of /.
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The first corollary is important for later applications:

Corollary 2. M = 0 i e / M f satisfies (CQ if and only if Mi is Mrinjective
for all iφjy and (A") holds. In particulary this is true if M is quasi-continuous.

Proof. According to Lemma 1, (A") together with the relative injec-
tivities means that M(I—j) is My-injective for all j . It follows trivially that
M{I—J) is My-injective for a l l j e / , and a n y / c / . But then M(I—J) is M(J)-
injective, by ([1], Proposition 1.16 (2)). The converse is obvious; and it is
well known that every quasi-continuous module M = 0 t ( Ξ /M ί satisfies (C5).

The first part of the second corollary extends a well known result of Faith
([2], Proposition 3):

Corollary 3. (1) M = 0 ί e / M I is injectίve if and only if each M{ is injec-
tive, and (A') holds.

(2) M = 0 i e / M f is quasi-injective if and only if Jlί, is M)-injective for all i
andj, and (A") holds.

Proof. (1) Recall Baer's Lemma, and use b=l^R=B in Lemma 1.

(2) As in the previous proof, we obtain that M(I—j) is My-injective for
each j . As Mj is quasi-injective, that is My-injective, we conclude that M=
M(I—j)@Mj is My-injective. As before we deduce that M is M-injective.

3. (Quasi-) Continuity and the condition (A"). In this section, we
consider a decomposition ik ί=0 / e / Λί ί into indecomposable Λf, . We start with
a useful observation:

Theorem 4. Let Λ ί = © l e/Λίf , where all M{ are uniform and Mj-injective
for all j =t=i. Then (lsTn) is equivalent to (A7"). In particular both hold if M is
quasi-continuous.

Proof. Let (A'") be given, and consider the situation of local semi-T-
nilpotency, namely non-isomorphisms fn: Mift-+Min+1 with distinct in, and
# e M f 0. Put xo=x, xn+ι=fn ••• /oO*0 Then obviously Λ?2CΛ?J+I, and there-
fore #£=#1+1 holds for some m, by (A/7/). Thus fm\xmR: xmR->xm+1R is an
isomorphism, and consequently fm is a monomorphism since Mim is uniform
(provided #mΦ0). As Mim is Mίwι+l-injective, fΰ1 extends to a homomorphism
g: Mim+l-+Mim, which is again injective since Mim+1 is uniform. We conclude
that^ and fm1 coincide. Consequently fm is surjective, contrary to the assumption
that it is a non-isomorphism. We deduce xm=0, that is fm ••• / 0(Λ?)=0. This
proves local semi-T-nilpotency.

Conversely suppose the decomposition M = 0 ί e / M ί is locally semi-T-
nilpotent, and consider elements xn^Min as in condition (A7//). If the se-
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quence xl does not become stationary, then passing to a subsequence we may
assume x j ^ ^ + i for all n. Then the natural maps xnR-^xn+1R are not injec-
tive, and hence their extensions by relative injectivity, fn: Min-*Min+1, are
non-isomorphisms. By local semi-T-nilpotency, xm+i=fm ••• /o(#o)—0 holds
for some m. We conclude x%+i=R, in contradiction to «J,+i£4+2.

Finally, if M is quasi-continuous, then it satisfies (A") by Corollary 2,
and this implies (A7//) as noted earlier.

Necessary conditions, for M=®ieIMi to be (quasi-)continuous, are that
the Mj are (quasi-)continuous and M;-injective for aliy=M. In [6], these condi-
tions were shown to be also sufficient, provided the index set I is finite, or the
ring R is right-noetherian. Here we shall show that in general, one has to add
the condition (A"), in complete analogy with Corollary 3 (2). The next lemma
was observed in [7]:

Lemma 5. Let M=@ieIMh with all M{ uniform. Suppose XaM with
X Π M(J)=0 for some Jdl. Then there exists JdKdl with X®M(K) c 'M.

Proof. We take, by Zorn's Lemma, JaKal maximal with Xf]M(K)
=0. Then X®M(K) is essential in M, since the M{ are uniform.

Corollary 6. Let Λf=0 / e /Λf l , with all M{ uniform. Then (C3) and (C£)
are equivalent and in this situation, the decomposition complements direct sum-
mands.

Proof. Let (C3) be given, and let X, Y be two summands of M with
I f l F = 0 . By Lemma 5 there is Kdl with X®M{K)<z'M. Then (Cξ)
implies X®M(K)=My hence X^M(I— K). Thus we can write X=@i^I^κXi

with X^Mi for i^I—K, as well as X—Mi for i^K. Then the decomposi-
tion M = 0 l e/-X"ί is isomorphic to the original one, hence inherits (C3). We
conclude X® YaΘM, that is (C3). The converse is trivial.

The initial consideration has shown that X(BM(K)=M if Xd®M, demon-
strating that the decomposition complements direct summands.

The next theorem improves ([7], Theorem A):

Theorem 7. The following statements are equivalent, for M=®iGIMi
with indecomposable M t :
(1) M is quasi-continuous
(2) the Mi are uniform, and (C5) holds
(3) the Mi are quasi-continuous and M)-injective for allj^i, and (A") holds.

Proof. (2) and (3) are equivalent, by Corollary 2, and since an indecom-
posable module is quasi-continuous if and only if it is uniform. That (1) im-
plies (2), is well known.
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Given (2), we show first the following claim: If X f] M(J)=0 holds for
XdM and /<=/, then there is I c ^ c M and JczKal such that X*®M(K)

Indeed, Lemma 5 yields JczKdl with X®M(K)d'M. We write M=
M(I—K)®M(K), with projections πλ and 7Γ2. Then ker πλ=M(K) has zero
intersection with X, and consequently X^πxXciM{I—K) holds. This inclusion
is easily seen to be essential. The mapping πλX^πιX-^π2x^M(K) is well
denned, and extends by (Cί) to/ : M(I~K)->M(K). We define X * = {z+fz:
z^M(I—K)}. One readily checks that X is essentially contained in X*, and
that Z * 0 M ( ^ ) = M holds true. This completes the proof of our claim.

The special case J=0 of the claim yields (Cj). In another special case,
namely when XczeM> we obtain X=X* hence (C3). As (C3) is equivalent
to (C3) by Corollary 6, we have shown (1).

The following analogous characterization of continuity is related to ([7],
Theorem 2.5):

Theorem 8. The following statements are equivalent, for M = 0 ι e / M t with
indecomposable M,:
(1) M is continuous
(2) M is quasi-continuous, and the M t are continuous',
(3) the M( are continuous and Mj-injective for alljΦi, and (A") holds.

Proof. The equivalence of (2) and (3) follows from Theorem 7, and (1)
implies (2) trivially.

To deduce (1) from (2), it suffices, by Lemma 11 of [6], to show that every
essential monomorphism/: M—>Mis surjective.

We obtain / ( M ) - 0 / e / / ( M t ) c M , and hence by (Q) /(M,.) c T t c
 Θ M.

As f(Mi)^MiCL'Mic:®M is trivially true, Theorem 4 of [6] yields P^M^
We derive essential monomorphisms M ^ ^ M ^ c ' P ^ M , - , which must be
isomorphisms since the M{ are (indecomposable and) continuous. We con-
clude/(M, ) = P , C Θ M.

By (C3), f(M)=®ieIf(Mj) is now a local direct summand of M. As M=
® i e /M t- is locally semi-T-nilpotent by Theorem 4, Harada's Theorem quoted
in the introduction yields f{M)C®M. (Alternatively, we could refer to our
Theorem 13 in Section 5.) From/(M)c 'M we conclude now f(M)—M.

We conclude the section by listing examples which separate the ascending
chain conditions (A'), (A") and (A7//) from Section 2. Each of these examples
is of the type M = ® w e i v M κ , with indecomposable injective (and projective) Mn.

Λ Λ

(1) Let R=ZpXlCp

ooy the split extension of the ring Zp of ^>-adic integers
by the Prufer group Cp°°\ and Mn=R for all
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This decomposition is not locally semi-T-nilpotent (since multiplication
by pn is nonzero on R for all n), hence it does not satisfy (A7").

(2) ([9], p. 314) Let R be any perfect ring such that the injective hull
E(RR) is projective, but E(RR) is not. Write E(RR) = ®Pj9 a finite direct sum
of indecomposables. Let the family of Mn consist of countably many copies of
each Pj.

Then M^=®nζΞNMn is locally semi-T-nilpotent (since R is perfect) hence
satisfies (A"7), but is not quasi-continuous hence does not satisfy (A").

(3) Let R=ΏnGNKn, a product of fields; and Mn=Kn.
Here M is semisimple hence quasi-injective, hence satisfies (A"), but is

not injective (the injective hull being R) hence does not satisfy (A7).

(4) Let R be any quasi-Frobenius ring. Write i ? = φ P y , a finite direct
sum of indecomposables, and let the family of Mn consist again of countably
many copies of each P ; .

Then M is injective, and satisfies (A').

4. The condition (1 — C, ). In this section we study direct sums M=
Θίe/M,- of uniform modules M{.

K. Oshiro [7] introduced relaxations (a—Ct) (z=l, 2, 3) and (a—Cί),
of the conditions (C, ), (C3) defined in the introduction, and obtained by re-
stricting to submodules X (and Y in case of (C3)) of uniform dimension ^a,
for any cardinal α. We actually employ only the weakest of these restrictions,
the one for cc=l9 which is concerned with uniform submodules. Our results
strengthen those in [7].

Theorem 9. Let M=@miMh with all Mf uniform, Then M is quasi-
continuous if and only if (1 — Cι) and (1 —C3) hold.

Proof. The necessity of the two conditions is obvious. As to sufficiency,
in view of Theorem 7, it is enough to show that M(I—j) is My-injective for
each j . Thus we consider a homomorphism f: A-+ M(I—j) from a non-zero
submodule A of Λf; . The module B={a+fa: a^A} is isomorphic to Ay

hence non-zero and uniform. It is easily verified that Bf]M(I—j)=0 holds.
By (1 —Cj) there exists Bd 'B*a®M. Clearly J3* is again uniform and satisfies
5 * n M ( / - ; ) = 0 . Thus (1 —CS) implies B*®M(I—j)=M. One checks that
the restriction —π\Mj of the projection π: B*@M(I—j)-^M(I—j) extends/.

REMARK. Using Lemma 5, one readily obtains the following reformulation
of (1 — C3), in the present situation where the M{ are uniform: whenever X
is a non-zero uniform summand of M with X Π M(I—y)=0 for some j , then
X@M{I-j)=M.

If we add the assumption that endo(Mi) is local for all z, then (1 — C3) can
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be replaced by the weaker (1—C3), as well as by a condition which follows from

pairwise relative injectivity according to the next remark.

REMARK. If Mi9 Mj are uniform, and M{ is M^-injective, then every

monomorphism M,—>ikf/ is surjective.

(Indeed, a monomorphism/: Mέ—>Mj extends to an isomorphism £: E(M,)

-^E(Mj) between the injective hulls. As ilf$ is MΓinjective, g~\Mj)ciMi

holds. One deduces Mj=gg-\Mj)c:g(Mi)=f(Mi)c:Mj, hence/(M,.)=My.)

Theorem 10. Let M=(Bi(ΞIMiy with all M{ uniform and endo(Mί) local.

Then the following statements are equivalent:

(1) M is quasi-continuous

(2) (ί-C,) and (1-C3) hold;

(3) (1 —Q) holds, and monomorphίsms M^Mj are surjective for iφj.

Proof. (1) implies (2) trivially. Let (2) be given, and let / : M^Mj

be injective, where iφj. Then Mf={x-\-fx: #eM t } is isomorphic to Mt

hence uniform. One easily checks Mf®Mj=Mi®Mj and M f nM?=0.

Therefore one has Mh Mfd®My and obtains M^Mfd^M from (1 — C3).

On the other hand, a straightforward calculation shows M^Mf^M^Mj,

and one concludes MiζBMf=Mi(BMj. Thus any J G M ^ can be written as

y=x1-\-(x2-\-fx2)'y Xi, x2^M{. One concludes y=fx2, demonstrating that / is

surjective.

Finally, let (3) be given. The following lemma shows that M(I—j) is

M;-injective for eachy, and Theorem 7 yields (1).

The following lemma is one of the implications of ([5], Theorem 12).

We include a relatively quick and direct proof, for the reader's convenience.

Lemma 11. The condition (3) of Theorem 10 implies (CQ.

Proof. We start by recalling that an element x=^xi&M=(BierMi is

called smooth if it is non-zero, and all its non-zero components x{ have the

same annihilator. It is easily seen that every non-zero element has a smooth

multiple.

To verify (CQ, we have to extend an arbitrary homomorphism / : A->

M(I—j) from a non-zero submodule A of Mj9 to all of Mj. We define F=

{i^I: 7tιf injective}, where the n{ are the natural projections of M = φ i e / M t .

We claim that for every a^A such that a+fa is smooth, F = { i e / : πifa=^0}

holds.

Indeed, any such a is non-zero. If τr t/α=0, then πff is certainly not

injective. If r./βφO, but πifb=0 for some OΦό^^l, then ar=bs4=0 holds

by uniformity of A. This implies 0=πifbs=πifar, hence r^(πifa)°=a° by
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smoothness, and hence ar=0, a contradiction.

In particular, since smooth elements a+fa (a^A) exist, by the initial

remark, F is finite, and the support of any such smooth element a-\-fa is F (J {/}.

As 7r,/=0, we have / = Σ / € Ξ F ^ / + / * , where / ^ Σ I Φ F U O }̂ */- Thus it
suffices to extend the π{f (i^F) and/*. We denote anyone of these maps by g.

We define N= {a-\-ga: ad A}, isomorphic to A hence non-zero uniform,

and obtain Nd'N*clΘM by (1—Q). ΛΓ* is uniform hence indecomposable,

thus isomorphic to some Mk by the Krull-Schmidt-Azumaya Theorem. Con-

sequently it has local endomorphism ring and the exchange property, and we

obtain M=JV*0M(/-A).

In the case g=f*, we have k=j (since otherwise iV* Π M(I—k) contains

ker/*; and ker/* is non-zero as it contains each ad A for which a+fa is

smooth, by our description of F). In the other case g=πιf (idF), we have

k=i or j (since otherwise iV* Γl M(I—k) contains the graph of ττf /) .

If k=j\ then the restriction —π\Mj of the projection π: N*(BM(I—j)

->M(I—j) extends g. Similarly, if k=i (whence g=πif is injective), the

restriction — μ\M{ of the projection μ: N*®M(I—i)->M(I~i)-+Mj extends

g'1. This extension is injective by uniformity of Miy hence bijective by assump-

tion, so that it has an inverse which extends g.

The last and easy theorem of the section is similar to Theorem 10, but it

concerns continuous modules.

Theorem 12. The following statements are equivalent for M=@i(EIMi with
all Mi uniform:

(1) M is continuous

(2) (l-CJ and (l-C2) hold;

(3) (1 — Q) holds, and monomorphίsms Mi-^Mj are surjective for all z, j.

Proof. (1) implies (2) trivially. If (2) is given, then (1—C2) implies

that the M t are continuous and hence have local endomorphism ring. Then

(3) follows from Theorem 10, if we can verify (1 —C3).

But this also follows from (1 —C2): If Xy Y are two uniform summands

of M with I f ! F = 0 , consider the projection π: M=X®U-> U. Then YΠ

kerπ=YΓ\X=0 yields Y^πYdUy and (1-C 2) shows πYci®M hence πY®

V=U. One obtains M=X®U=X®πY@V=X@Y@Vy that is (1-C 3 ).

Finally, (3) implies again that the Λff are continuous hence have local

endomorphism ring; and the Theorems 10 and 8 yield (1).

5. The extending property. We shall be concerned with the following

property of a module M:

(E) (extending property for independent families of submodules): (Bjej

implies the existence of Ajd'AfczM with ®jejAf d®M.
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Our theorem slightly improves ([7], Theorem 3.5), cf. also ([8], Theorem
2). For completeness sake we include a full proof.

Theorem 13. A module has the extending property (E) if and only if it is
quasi-continuous, and is the direct sum of indecomposable submodules.

Proof. (1) Let the module M satisfy (E). The special cases | / | = 1
and | / | = 2 of (E) yield (Q) and (C3), and show that M is quasi-continuous.

We choose, by Zorn's Lemma, a maximal direct sum of cyclic submodules,
φ C ; c M . Clearly the inclusion is essential. By (E) we obtain C^d'CfdM
with ®Cf=M.

Each Cf is of finite uniform dimension. Indeed, otherwise one could find
an infinite direct sum ®Sk which is essential in Cf. As Cf is quasi-con-
tinuous, we obtain Ska'Sf<z*Cf, and (E) yields 0 S ? c φ M hence ®Sf=
Cf. This contradicts the fact that Cf is essential over the cyclic module C ;.

Thus each Cf contains an essential finite direct sum ®Sk of uniform
submodules Sk. By the argument just given, we obtain that each Cf = 0 S f
is a finite direct sum of indecomposables.

(2) Conversely we have to show the extending property for any A= 0Λe/^o»
dM. Adding Ao, maximal with AΌΓiA=0, we may assume Ad'M. Using
(CO, we may replace the Aa by direct summands. Applying Corollary 6,
we then obtain AΛ^M(KΛ), and we may assume that the AΛ are uniform. Thus
we have reduced to the situation where all Aa are uniform direct summands of
My and where A is essential in M, and we have to show A=M.

Suppose A^FM. Inductively we construct an increasing sequence of
finite subsets Fn of/ and subsets /„ of / such that M=A(Fn)(BM(In), as well as
distinct indln

 a n d xn^Mijt—A such that the sequence of annihilators xl is
strictly increasing, and finally rndR such that 0 + xnrn(=A(Fn+1). Once this is
done, we have a contradiction with (A'"), which is valid according to Theorem 4.

To begin with w=0, we take Fo=0 and I0=I. The supposition
allows us to pick io^I=Io and xo^MiQ—A. From Ad'M we obtain

o

To construct the corresponding quantities for fl+1, we observe first that
xnrn^A yields a finite Fn+1dJ with xnrn^A(Fn+1). Obviously we may choose
Fn+1 to contain Fn. As A(Fn+1)cz®M holds by (C3), Corollary 6 yields IH+1czI
with A(Fn+1)®M(In+1)=M.

We write xn=a+J]yieϊA(Fn+1)®®i(ΞΓn+iMi. We note x°n^y°i for all
/£/„+! (since xnr=0 yields y, r = 0 , and since r n $a£ but rwGj? due to xHrH&
A(Fn+1)). xn&A implies yk&A for some k<=In+1. We put in+1=k and xn+1=yk>

for such k. The validity of in+1<=In+ly xn+1(=Min+.—A and A?2£#2+I is then
clear. If in+1=im would hold for some m^n, then we would obtain xmrm^Mim

=Min+1dM(In+1) and xmrm&A(Fm+1)<zA(Fn+1), in contradiction to xmrmφθ.
Finally, Ad'M yields the existence of rn+1dR with Q^FXn+1rn+1dA.
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REMARK. It seems worthwhile to point out here, that a quasi-continuous

module which is the direct sum of indecomposable submodules, behaves in

many ways as if these submodules had local endomorphism rings, though this

need not be the case. Specifically, the assertion of the Krull-Schmidt-Azumaya

Theorem holds true (this follows from [6], Proposition 9), as do the three state-

ments of Harada's Theorem cited in the introduction ((lsTn) holds by Theorem

4, complementation of direct summands works by Corollary 6, and local direct

summands become direct summands by Theorem 13).

We end by giving an explicit example of such a module: Let R be a com-

mutative noetherian ring, and P, (i^I) a family of pairwise incomparable non-

maximal prime ideals. Then M— 0 , e//?/Pt is quasi-continuous by Theorem 7,

as there are no non-zero maps between distinct RIP,. In many instances,

the RjPi are not local (for example, for the polynomial ring R in two variables

over a field).
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