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ON ALGEBRAS OF SECOND LOCAL TYPE, |

Hipero ASASHIBA

(Received December 20, 1982)

Throughout this paper, 4 denotes a (left and right) artinian ring with
identity 1, J its Jacobson radical and all modules are (unital and) finitely gener-
ated.

Let n be any natural number. Then we say that 4 is of »ight n-th local
type in case for every indecomposable right 4-module M, the n-th top top”M:
=M|M]J" of M is indecomposable. (Note that if top”"M is indecomposable,
then so is M since 4 is artinian and M is finitely generated.) Hence for such
a ring 4, the question of indecomposability of right A-modules can be reduced
to the corresponding problem of right 4//"-modules. In [11] H. Tachikawa
has studied the case #=1 and obtained a necessary and sufficient condition
for algebras (by algebra we always mean a finite dimensional algebra over a
field &) to be of this type. Further the representation theory of algebras with
square-zero radical is well known [5], [6], [7]. So in this paper, we examine
the case n=2 and give some necessary conditions for rings with selfduality
to be of this type. Further in particular for QF (=quasi-Frobenius) rings,
we give necessary and sufficient conditions to be of this type. More precisely,
we show the following two theorems:

Theorem 1. Let A be a ring with selfduality which is of right 2nd local
type and e any primitive idempotent in A. Then

(1) JPe is a uniserial waist in Ae if J?e=0 (see section 2 for definition of
a waist),

(2) eJ™ is a direct sum of local modules for every m>2,

(3) for each local direct summand L of e]?, LJ* is uniserial (thus e]* is a
direct sum of uniserial modules).

Further if A is an algebra, we have

(4) Ae is uniserial if h(Ae)>5.

In particular if the base field k is, in addition, an algebraically closed field,
then

(5) Ae is uniserial if h(Ae)>4,
and then

(6) eJ?is a direct sum of uniserial modules.
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Theorem 2. Let A be a QF ring. Then the following statements are
equivalent:

(1) A is of right 2nd local type.

(2) A is of right 2nd colocal type (see section 1 for definition).

(3) For any primitive idempotent e in A, eA is uniserial if h(eA)>4.

4) A[J! is QF for every t>3.

(5) For each M, indecomposable with h(M)>=3, there is a primitive idem-
potent e in A such that M==eA[e]"™,

(6) A=A,Xx A4, for some QF rings A, and A, such that A, has cube-zero
radical and A, is a serial ring.

Furthermore, each of these conditions are equivalent to the corresponding
left side version.

In the theorems above A(M) denotes the height (=Loewy length) of M,
namely A(M):=min{neNU {0} | MJ"=0}. We remark that Theorem 1 (5)
and (6) remain valid also in the case where & is a splitting field for 4.

In section 1, we introduce the basic tools used in the following sections.
Section 2 is devoted to the structure of an indecomposable projective left module
and in section 3, we examine the structure of an indecomposable projective
right module mainly using the technique of Sumioka [10]. In section 4, we
give the proof of Theorem 2. Finally in section 5, we give some examples.

The author would like to thank Professor T. Sumioka and Dr. T. Oku-
yama for fruitful conversations.

1. Preliminaries

1.1. Throughout the paper, we write homomorphisms on the opposite
side to scalar multiplications, and for homomorphisms p: K—L and q: L-M

of left A-modules and for a decomposition D: LzéLi of L, (p, D)=(p;)s1

and (D, q)=(g;)7-7 are matrix expressions of p and g relative to D, respectively
(for homomorphisms of right A-modules, we write as (p, D)=(p;)72, and (D, q)
=(q;)i1). In addition to the definition of right n-th local type for z any
natural number, we define the dual notion: A is called to be of left n-th co-
local type in case for every indecomposable left A-module M, the n-th socle
soc"M:= (the right annihilator of J” in M) of M is indecomposable. It should
be noted that if 4 has a selfduality, then A4 is of right n-th local type iff 4 is
of left n-th colocal type. Further noting that the composition lengths of the
projective covers (over A4) of all indecomposable right A4/J"-modules have a
bound if A4/J" is of finite representation type (i.e. it has only finitely many iso-
morphism classes of indecomposable right modules), we see easily that when
A is of right n-th local type, 4 is of finite representation type iff so is 4/J" (See
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Auslander [3]).

Since the property to be of n-th local (colocal) type is Morita invariant,
we may assume that 4 is a basic ring. We put pi(4):={e, -+, ¢,} to be a
basic set of primitive idempotents of 4.

DrriniTION 1.2 ([2]). Let D: L=_€EBL,- be a decomposition of a right
A-module L and p: K—L be a homomorphism, and j in {1, -+, #}. Then
the pair (p, D) (or simply p: K —>§”9 L)) is called j-fusible in case there is a homo-

morphism ¢: ?L,-eLj such that the diagram
i*j

commutes where (p, D)=(p;)7.%. 'The pair (p, D) is called fusible in case (p, D)
is j-fusible for some j=1, +--, #. Finally (p, D) is called #nfusible in case (p, D)
is not fusible.

Corollary 1.2.1 ([2, Corollary 1.4]). Let K,sL; for each i=1,2 and
h: K,— K, be an isomorphism. Define p,=Fk,, p,—=k,h where k;: K;— L; is the
inclusion map for each i. Then h or h™ is extendable to a homomorphism L,— L,
or L,— L,, respectively iff p: K,— L,BL, is fusible. /l

Proposition 1.2.2 ([2, Proposition 1.1]). Consider an exact sequence K£>L

iM —0 of right A-modules and let D: LzéLi be a decomposition of L, (p, D)
i=1

=(p)7-% (D, 9)=(¢;)i"» and jin {1, -, n}. Then the following statements are

equivalent:
(1) (p, D) is j-fusible.
(2) There is a homomorphism r=(r;):%:: ‘6_'{'9L,‘—>X such that rp=0 and

r; is an isomorphism.
(3) g, s a split monomorphism.

Proof. See [2]. /]

ReMARK. In [2] the fusible maps were defined by the condition (2) above.
P

Proposition 1.3 Let 0—K —>L2>M —0 be a nonsplit exact sequence of
right A-modules and D: Lz'éL,- be a decomposition of L (n>2). Then we have

i=1

(1) i M is indecomposable, then (p, D) is infusible,
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(2) if K is simple, each L; is local and (p, D) is infusible, then M is inde-
composable.

Proof. See [1] or [2]. /]

1.4. Let I be a two-sided ideal of 4 and e and f in pi(4). Then we have
the canonical isomorphisms Hom, (fA4, eAd/el)= eAf|elf S Hom, (Ae, Af/If).
We denote by p* the image of every p in Hom, (f4, ed/el) or the inverse image
of every p in Hom, (Ae, Af/If) under the composition of these isomorphisms.

Proposition 1.4.1 Let e, f,, -, f, be in pi(4), I>m, j in {1, -+, n} and
p=(p;)i%1: G_E fiA—e]"le]' be a homomorphism. Then the following statements
are equivale;;tlz

(M) P(f;AKEP(f.Aﬂ)-

(2) p*: de|] ’“"‘e—>.€_B Afi[]'f; is j-fusible, where p* is the map induced by
the homomorphism ( pi-"),-’;l.‘_l

Proof. There is some u; in ¢J™f; such that each p¥ is the left multiplica-
tion by #;. Then p has the property stated in (1) iff (ujLA+e]’)/e]’<(§uiﬁA
+efye)!
iff ujA<i§;u,~A+e]‘
iff ujzéguia,-—}—b, for some a; in f;4 and b in e]*
iff uj=;;,;u,~a,-+b, for some q; in f;Af; and b in e]' f;
iff ujzéu,-a,.—}—b, for some a; in f;Af; and b in J'f;
iff p* is j-fusible. /]

In future p* shall always mean the above induced homomorphism when
the domain of p is of the form as above.

Corollary 1.4.2. Under the same situation as above but l=m-1, the
following are equivalent:

(1) p: 6_’]'5 fAlf;J—eJ™[e]™*" (the induced map) is a monomorphism.

2) p*:—jéle/ [Je— éPAf,-/ [J™ 1 f, is infusible.

In particular if p':_lﬂ} fiA—e]™ is a projective cover of eJ™, then p*: Ae|Je
— & Af ], is infusible. ||

Corollary 1.4.3. Let p: E_YB fiA—e]™ be a projective cover of eJ™ and 0—



ALGEBRAS OF SECOND LocaL Tyeg, I 331

* ”
Ae| ]e1i> @Aﬁ/ [Jm 1 f;—M—0 be an exact sequence. Then M is indecomposable.

Proof. Clear from (1.4.2) and (1.3). /]

2. Structure of an indecomposable projective left module

For an A-module M, we put |M|:= the composition length of M.

Proposition 2.1. Let A be of right n-th local type, n any natural number
and e in pi(A4). Then J"e is uniserial.

Proof. It is sufficient to prove that | J"e/J"*'e| <1 for every m>n. Sup-
pose | J"e[J"*'e| >2 for some m>n. Then we have a homomorphism p: Af,
@ Af,— J"e[J™"e; f1, f, in pi(4) such that the induced map p: (Afy/Jf,) D(4f/
Jf2)—J"e[J™ e is a monomorphism. Putting L=(f,4/f,J"*") ® (fA[f.J"*"), we

*

have an exact sequence O—>eA/e]a>L->M —0 where M is indecomposable by
(1.4.2) and (1.3). But since p*(ed/e])<LJ"<L]", top"M=top"L is decom-
posable. This is a contradiction. /l

DrriNiTION 2.2 ([4]). Let ,L<,M. Then L is called to be a waist in
M in case 0% L==M and for each ,N < M, it holds that LN or N<L.

Proposition 2.2.1. Let A be a ring with selfduality which is of right 2nd
local type and e in pi(A). Then J% is a waist in Ae if JPe=0.

Proof. Deduced from the following three lemmas for an artinian ring A4:

Lemma 2.2.2 ([9, Lemma 1.2]). Let ,M be nonsimple indecomposable.
Then soc(JM)=soc M.

Proof. Let S be any simple submodule of M and X be any proper sub-
module of M. If S4+X=M then S is not contained in X. Thus SN X=0.
Hence S=M, a contradiction. Therefore S is small in M i.e. S< JM. Hence
soc M < JM and soc M=soc(JM). /l

Lemma 2.2.3. Let ,M be local and soc’M indecomposable. Then soc
(J*M)=soc M if J?M=0.

Proof. Clear from (2.2.2) nothing that JM is nonsimple indecomposable
since J?2M =0 and soc?M < JM. /l

Lemma 2.24. Let A be a ring of left 2nd colocal type, .M be local and
J*M be a nonzero uniserial module. Then J*M is a waist in M.

Proof. Suppose that J2M is not a waist in M. Then for some X<M,
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JPM<LX and X< J?M. And, ’MNX=]'M for some t>3. Hence M|J
=>(PM|]'M)D(X|]'M) where J?M[])'M =0 and X/J'M=0. On the other
hand since soc’(M/J*M) is indecomposable and J(M/J*M)=+0, we have that
soc(M|/]!M)=soc(J*M/]J*M) is simple by (2.2.3). 'This is a consradiction. /]

We get Theorem 1 (1) from Propositions 2.1 and 2.2.1.

Corollary 2.2.5. Let A be a ring with selfduality which is of right 2nd
local type, e in pi(A) and h=h(Ae). Then we have soc"~'(Ae)=]'e for every
t=0, -, k.

Proof. It is clear from Theorem 1 (1) in case #>2. The other cases
(=0, 1) are trivial.

Lemma 2.3.1. Let ,L, and ,L, be local of height>3 such that for each
1=1, 2, soc®L; is uniserial and J?; is a uniserial waist in Ae; where Ae; is the
projective cover of soc®L;. Suppose that ,K is simple and there exists an isomor-
phism p;: K—soc L; for each i=1, 2. Consider an exact sequence:

x P=(tn 1) =[]

0>K— 1222 1 oL, sM—0.

Then soc’M is decomposable if p: K—> soc’L, @ soc’L, is fusible.

Proof. Assume that p: K— soc’L,@P soc’L, is fusible, say 2-fusible. Then
we have a commutative diagram

K——Pi——>socL

Lo

———> soc?L, .

And, M>(soc’L))¢,+L,g,=U@®L,q, where U=(soc’L;) (¢,—rq;)*0. Now
for each x in soc?M, x=I,q,+1,q, for some (/,, l,) in L,PL,. Since ux=0
for each u in J? we have ul,q;=—ul,q,=L,q,N\L,q,=Kp,q; (=: S). Hence
J*hqy=J%1,¢,<S where S is simple. In particular, soc?M <soc’L,q,+soc’L,g,.

i) In case for each x in soc’M, there are [}, [, with x=I,¢,-+1,¢, such that
J*hgi=]%,¢,=0. Then we have J%,=0 for ¢, is monic. Thus /, is in soc’L,
and x is in U@ L,g,. Therefore soc?M<U@ L,q,. Hence soc?M is decom-
posable.

ii) In case for some x in soc?M, there are [, [, with x=I,q,-+1q, such
that J?,q,=J%,¢,=S. We may assume that x—=ex for some e in pi(4). Since
S is simple and ¢; are monic, J*,=J%,=0. Thus /; is in soc®L;\soc’L; for
each 7. Also, we may assume that I;=el; for each 7 since x=ex. Further
we have soc’L;=Ael; for each =1, 2 since soc®L; are uniserial. Hence we
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may assume that e=e,—e,. Define a homomorphism s: soc’L,—soc’L, by
ael,\— ael, for each a in A. Then s is well-defined. In fact, if ¢ is in Ae and
t],=0, then ¢ is in Ann,/(l,), the annihilator of /, in Ae. On the other hand,
by the fact that JZl 40, we see Ann,,(l;) does not contain J?% which is a uni-
-serial waist in 4e. Hence Ann,,(l;) is contained in J% and ¢ is in J%. Thus
tl, is in J3,=0.

Further the diagram

K ﬁ———) soc’L,

|, b

K —~——> soc’L,

is commutative. For, J¥/, ,) (%=0) is contained in the simple module Im p
since J%(l;, [,)9=0. Hence J*(/;, I,)==Im p. Let ¢ be a nonzero element in K.
Then K=Ac and cp=(ul,, ul,) for some u in J2. Therefore c(p,s)=ulis=ul,
=cp,. 'Thus p;s=p,.

Then putting V':=(soc’L,) (¢,—sg,), the same argument as in i) shows that
soc?M <V @ L,g, and soc’M is decomposable. /]

Proposition 2.3.2. Let A be a ring with selfduality which is of right 2nd
local type and ,L,, L, be local of height>3 such that soc’L; are uniserial and
|L| < |L,|. Then for every isomorphism r: socL,—>socL,, r is extendable to a
monomorphism L,— L, if r is extendable to a homomorphism soc?L,—> soc?L,.

Proof. Put K=soc L,, p,=identity map of soc L, and p,=r. Consider

an exact sequence 0— K P—:(M LPL, kX M — 0. If ris extendable to a

homomorphism soc?L,— soc’L,, then p: K—> soc’L,P soc’L, is fusible. Hence
by (2.3.1), soc®M is decomposable, thus M is decomposable. Therefore p:
K— L @L, is fusible by (1.3). Hence by (1.2.1), r is extendable to a homo-
morphism ¢q: L,— L, since | L,| < | L,| where ¢ is monic since soc L, is simple. [/

2.4. Throughout the rest of this section, 4 is a ring with selfduality which
is of right 2nd local type. Here, we examine indecomposable projective left
A-modules of height>4.

Proposition 2.4.1. Let ¢ and f be in pi(A4) and f]e|f]?¢+0. Then Af is
uniserial if h(Ae)>4.

Proof. Take some u in f]e\ f/% and define p: Af— Je by the right multi-
plication by u. Then Ker p<< J?f or Ker p> J?f since J2f is a waist in Af
(if J2f=#*0). Assume that Ker p> J?f. Then h(Im p)<2 since Im p=Af/Ker p
is an epimorph of Af/J?f. Hence Im p<soc’(de)< J?% for h (Ae)>4 and soc?
(Ae)=J"49-%, But by the definition of p we have Im p<< J%, a contradiction.
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Accordingly, Ker p< J?2f. Then Kerp=]'f for some ¢>2 and Af/J'f is em-
bedded into Je. Therefore | Jf/J?f|=1 since Jf/]'f is embedded into J% which
is uniserial. Hence Af is uniserial. /]

Proposition 2.4.2. Assume that e is in pi(A4), h(Ae)>4 and Ae is not uni-
serial. Then
(1) all simple submodules of Je[]% are pairwise isomorphic, and

(2) JlelJPe=J%/J%.
Proof. Let u: é'aAf,.—>]e/]“e be a projective cover of Je/J'e. Then n>2
i=1

since Ae is not uniserial. Putting L;:=(Af;)u, we have L;NL;=]%/]%, L;=
J?e[J*e for each i=%j in {1, ---,n}. By (2.4.1), each L, is uniserial and A(L;)=3.
Further soc L;= J%/J* is simple and soc’L;= J?%/]*e for each i=1, ---, n.

(1) For any i=j in {1, -+, n}, the identity map p: soc L;—>soc L; is ex-
tendable to a homomorphism soc’L;—soc’L; since L;NL;=J%|]J*¢e=soc’L,=
soc’L;. Hence by (2.3.2), p is extendable to an isomorphism L;— L;. Thus all
simple submodules of Je//% are pairwise isomorphic.

(2) Putting p;: J%/J'¢—L; and ¢;: L,—L,+L, to be inclusion maps
for i=1, 2, we have an exact sequence

&)

0 prefie 2P por L%y

where L,+L, is colocal. Hence the identity map 7: soc’L,—>soc’L, is not
extendable to any isomorphism L,— L,. On the other hand, the identity map
p: soc Ly—soc L, is extendable to an isomorphism s: L;— L, since r|(soc L,)
=p. As a consequence, s|(soc’L,)=r. But if J%/J%3c J%[]'e, then the re-
striction map

Hom,(soc?L,, soc’L,) — Hom,(soc L,, soc L,)

is an injection. 'This implies that s|(soc’L,)=r since both s|(soc’L;) and r are
extensions of p. 'This is a contradiction. /]

Proposition 2.4.3. Assume that e, f and g are in pi(4), h(Ae)=5, Ae is
not uniserial, fJe/f]?e+0 and J’¢|J’e=Ag|Jg. Then fAf|f]f=gAg/g]g as rings.

Proof. There exists a submodule L of Je/J% such that L is uniserial of
height 3 and top L==Af|]f, top JL=Ag[Jg. We identify these isomorphic
modules. Further Af and Ag are both uniserial by (2.4.1) and the fact that
h(Ae)>5 and also h(Af)>4. Then we can define a homomorphism ¢: End (A4f/
JN—End,(g/Je) by tp):=(gI JFIF'F) for each p in End,(Af/Jf) where p is
induced by some ¢ in End,(4f/J*f) and 7 is the map in End,(Jf/J?f) induced
by 7 for every r in End,(Jf/J3f). (We identified End,(Jf/J?f)=End(4g/Jg).)
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Then ¢ is well-defined and injective since for each ¢ in End(4f[J*f), (4f/J3f)q
JfAPS M (JAIPHe<J*fIJ*f (See [10, section 3]). Further by (2.3.2), every

automorphism p of soc L is extendable to an automorphism of L if p is extend-
able to an automorphism of soc’L. Thus # is surjective. (Note that both

Af|J*f and Jf/J*f are quasi-projective since we have Jf/J°f==Ag/]?¢ from the
fact that Ag is uniserial.) Hence fAf[f]f =End,(A4f|]Jf)=End(Ag|Jg)=gAg/g]g

as rings.

ReEMARK. In the above, if A is a k-algebra, then the isomorphism defined
as above is a k-algebra isomorphism.

2.4.4. Proof of Theorem 1 (4) and (5). Assume that A4 is an algebra
and suppose that Ae is not uniserial, and A(4e)>4. Let p: _é_bP,.-» JelJ% be

a projective cover of Je/J% where each ,P; is indecomposable. Then n#>2.
By (2.4.2), there is an f in pi(4) such that every P; is isomorphic to Af. And,
J?e[JPe=Ag|Jg for some g in pi(4). If we put L;:=(P;)p for i=1, 2, then
L;=Af|]*f, J?¢|J’ex=L;< Je[J%, LN\ L,=]%[]% and top L;=Af]|]f for each
i=1, 2. Since we have an exact sequence

0> J%/JPe — L@ L, — Ly+-L, — 0

where J%[J%e=Ag|Jg, L,®L,=~=(Af|J*)® and L,+L, is colocal, there exists an
infusible homomorphism Ag/Jg— (Af[J*f)® by (1.3;1). Therefore (fA[f])®
is isomorphic to a direct summand of gf/g/? by (1.4.2). Hence dim (g]f/
&% f) sasrsrs=2. If h(Ae)>5 or k is algebraically closed, then by (2.4.3), d:=

dimg4701,(8Jf18)"f)=dim(g]f[g]* ) 1517 22. Hence (Ag|Jg)® is isomorphic
to a direct summand of Jf/J2f and d>2. Thus | Jf/J?f|>2. This contradicts

the uniseriality of Af. Hence Ae must be uniserial. /]

3. Structure of an indecomposable projective right module

Lemma 3.1. Let 0-—>K—?i>L—q>M~>O be an exact sequence of left A-modules
such that K is simple, D: L= éL,. is a decomposition of L (n>2) and for each
i=1, -, n, L;=_"A4e;/I; for so11;e=le,~ in pi(A4) and J"le,<I;= J"e;(m>1). Then
JM=soc"M if (p, D) is infusible.

Proof. Put l;:=e;+1;, L,=L;+]JL, m;:=lgq, m;:=m;+JM and m}:=
m;+soc”M. 'Then we have éAii=L/]LzM/]M=élAmi where each Aim,

is simple. It follows from A(M)<m-1 that JM<soc"M. Assume that JM
==soc"M. Then we show that (p, D) is fusible. (Clearly, we may assume
that each p;#0 i.e. each p; is a monomorphism where (p, D)=(p;):Z:1.) By
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assumption the sum M/soc”’M—-E Am! is redundant i.e. Am} <2 Am! for
i=1
some j, say j=1. So m{=2)—am} for some a; in 4. By puttmg a,=1,
” =Sy
we have Eza;mie soc"M and J™(a;l;);%1-¢=0. Thus J™(a;l;);“1<Imp. Further
putting e:=e, we may assume that @;=ea; for each i%=1. Put l:=(a;l});x,.
Then we have /,&L,, IE?L,-, l,=el,, I=el and J™(I;, )<Im p. On the other
i1
hand, it holds that J™(/,, /)=4=0 since we have J"/,=0 by the assumption I;5= J"e;.
Accordingly, J™(I;, )=Im p since Im p is simple. Define a map r: L,— ?L,-
iF1
by «xl— xl for each x/,&L,. Then r is well-defined. In fact, if x/,=0, then
xecI;<J" and then xe(l;, [)&Im p. Thus we(l, [)=sp for some s in K.
Therefore sp,=xel,=x[;=0 and s(p;);+;=xel. But since p, is a monomor-
phism, we have s=0 and x/=xel=0. Further by the similar argument as

in (2.3.1), pr=(p;)iz1 i.e. (p, D) is fusible. /!

Proposition 3.2. Let A be a ring with selfduality which is of right 2nd
local type,m=2, e, fi, -, f,(n=2) in pl(A) and p: €B f:A—e]"[e]™** be a projective
cover of eJ"[e]J™* . Then p* Ae|Je— GB]f /]”'“f is infusible.

Proof. Let 0—Ae/ ]e—> EBI Af;|J™f;—M— 0 be an exact sequence. Then
M is indecomposable by (1.4.3). By (3.1), JM=soc"M. Accordingly, JM is
indecomposable since JM > socZM and soc?M is indecomposable. Then from

the exact sequence O——)Ae/]e—> EB]f |J™*! fi— JM— 0, we obtain that p*: 4e/Je
— EB]f/]”'“f is infusible by (1. 3) /]

3.3. Proof of Theorem 1 (2). Let p: é fi:A—e]™ be a projective cover of
i=1
eJ™ and f; in pi(4) for each i=1, ---, n. If n=1, then the assertion is trivial.
So we may assume that #>2. There is some u; in eJ™f\eJ/™'f; such that
the 7-th coordinate map of p is the right multiplication by u; for each i=1,
o, m. Put Bpi=u;tef™, uli=u;+J""'f; and e':=e+Je. Then eJ"=2> u;A
i=1
where each #;4 is local. Suppose that ¢/™ is not a direct sum of local modules.

Then Zua =0 for some q; in 4 and u;a;%0 for some j=1, ---, n. We may

i=1

assume that there is some g in pi(A4) such that u;a;g40 and a;=fa;g for each
i=1, -+, n. Then it holds that g; is in f; Jg for each i. In fact, if f;=g, then

a;€ f;Ag=f;Jg. And, in case f;=g, we have f;Aglf; Je=f.Af:[f.]f: is a divi-
sion ring. Furthermore, z’:‘_l,u,-ai=0 implies gﬁia;=0 and hence each #;a;=0,
since #;4 are independent. Then putting @;:=a;+f; Jg, we have that #a; is
defined and is zero. Hence if g; is not in f;Jg, then #,=(#a;)a;'=0, a con-
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tradiction. Further Au,=J"f; since J"f; is uniserial for m>2. Therefore we
may assume that Au,a; < Au,a, for each 7 and Au,a,=]°g for some s>m-+1>3.
Define a homomorphism g;: Af;/J"*' f,—Ag[]**'gby x+> xa; for each i=1, .-+, n.
Then g, is a monomorphism since soc(Af, /] f,)=]"f,[J"f, is simple and is
mapped by ¢, onto the simple module J°g/J**'g. Further putting ¢/:=g;|
(JfilJ™ fi), we have Im 95<500 (JelJ* " g)=J*1""g[]**'g=Im g, for each
i=1, ., . Hence if we put g/’ :=qt: Jf;[J™ fi— J+mg[]** g and q:=(q¢}’)7.3,
then p*: Ae/Je -—:ﬂ? Jf:/J™f; is fusible since e’p*q=0 and ¢,’ is an isomor-

phism. This contradicts (3.2). Hence ¢/™ must be a direct sum of local modules.

3.4. Proof of Theorem 1 (3) and (6). Suppose that |LJ*/LJ**'|>2 for
some s>>1. LJ*is a direct sum of local modules for LJ* is a direct summand
of ¢J?*s. Further L=vA for some v in eJ?g\eJ3¢ and for some g in pi(4).
Hence L)*=v]*=u,A®u,APD --- for some u; in eJ***f,\eJ3**f; where f; are
in pi(4). Then for each i=1, 2, there is some g; in gJ*f; such that u;=wva;.
Define a map p;: Ag/Jg—Af;/J***f; by xl—>xa,- for each i=1,2. Then p, and
p. are both monomorphisms since putting v’:=v+J3% and u!:=u;~+J**f,

soc(dg/J*g)=J/J*g=Av" and soc(J*filJ*f)=]**f/J*f,=Au’ are simple

modules and (4v')p,=Au} for each =1, 2. In particular, Ag is uniserial by
Theorem 1 (1).
i) Incase s>2. By the above,

o o P (pepress py e (AT

is fusible. Also, soc®(Af;/J**3f)=]"f;/J***f; is uniserial. Hence

o Po2D (g e iy @ (AR

is fusible by (2.3.2), say 2-fusible. Then for some a in f,Af,, the diagram
P 1 s+3
Ao = Af,[J* f;

right multiplication by a
Aot 2 apjyey,

is commutative. Therefore uj=ufa. Putting #;:=u;+eJ**3 for each i=1, 2,
we have #,=1%,a since u, is in w,a+eJ**3f,. Thus #,A<@A. This contradicts
the linear independency of 2,4 and #,A.

ii) In case the base field % is algebraically closed. It remains only the
case s=1. Similarly, it holds that

o P22 1 s S U
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is fusible. But since 0u,ceJ3f, < J3f; for each i=1, 2, h(Af;)>4 and then
Af;[J*f; is uniserial of length 4 and Jf;/J*f,;=soc*(4f;[J*f;) by Theorem 1 (5).
Then

, (bv P2)
Av' =255 (AT ) D (AL )
is fusible by (2.3.2). Hence by the same argument as in i) we have a contradic-
tion. /!

4. OQF rings of right 2nd local type

Lemma 4.1. Let A be a QF ring and e and f be in pi(A) such that f]e|f]%
+0. Then

(a) If JelJ?e is simple, then h(Af)>h(Ae); and

(b) If f][f]? is simple, then h(eA)=h(fA).

Proof. (a). It follows from the fact that Je//% is simple and f]e/f]%¢=+0
that there is an epimorphism p: Af— Je. If p is a monomorphism, then Je is
injective and is a direct summand of Ae. Thus Je=0 for Je is small in Ae.
But this is impossible since Je/J% is simple. Therefore Ker p>soc Af=J+AN-1f
since Af is colocal. Hence A(Af) > h(Je)+1=h(Ae).

(b) Similar. /]

4.2. Proof of Theorem 2. Let (x)’ be the left side version of (x) for each
x=1, 3. We show the following implications: (1)=(3)'<(3)=(6)=“#)=(5)=
(1). Note that (2)<(1)" is clear since A has a selfduality. Denote by D the
selfduality Hom,(?, 4) of 4.

(1)=(3)". Let e be in pi(4) and h:=h(Ae)>4. Then J% is a uniserial
waist in Ae. Hence soc’eA=D(Ae/]%) is a waist in eA=D(A4e) and soc’ed
=eJ""? is a direct sum of local modules for A—2>2. But since e¢J"?<e4
and ed is colocal, eJ*~? is local. Hence | Je/J%|=|soc’(ed)/soc(ed)|=1 and
Ae is uniserial.

(3)’=(3). Clear from the fact that both height and uniseriality are pre-
served by D.

(3)=(6). By the equivalence (3)«<(3)’ and left-right symmetry, it is
sufficient to prove that under the assumption (3)’, if 4 is an indecomposable
ring and /30, then A4 is a left serial ring. Let O be the left quiver of 4, namely
the oriented graph with vertex set {1, :--, p} where pi(4)={e, -, ¢,} and
with n;; arrows ¢—j iff dimg;a,,.,;7.5(e; ]ei/e; J%e;)=n;;. Note that A is an
indecomposable ring iff Q is connected. It follows from J3==0 that h(4e;)>4
for some =1, -+, p and then Ae; is uniserial by (3)’. By 4.1 and the self-
duality D, we have h(Ae;)>h(Ae;) (>4) if either

(a) there is an arrow Z—j; or
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(b) there is an arrow j—z.

Hence Ae; is uniserial of height>4 for any j=1, -+, p by (4.1), (3)’ and the
fact that Q is connected. Thus 4 is a left serial ring.

(6)=>(4). Clear from the fact that for a serial ring 4, 4 is QF iff the ad-
missible sequence of 4 is constant.

(4)=(5). Let M, be indecomposable of height 2>3. Then A/J* is OF

by (4). Let 0——>Kc—»‘€BlP,<—>M-—>O be a projective cover of M over A/J* with
each P; indecomposable. Then soc(@lP,-)$K implies that soc P; <K for some

i=1, .-, m and then P;NK=0 since P; is colocal. Hence P, is embedded
into M. But since P; is injective, P; is isomorphic to a direct summand of M.
Hence P;=M for M is indecomposable. Further P;=<eA4/e]* for some e in
pi(4).

(5)=(1). Clear. /!

5. Examples

In this section, we give some examples using bounden quiver algebras
over an algebraically closed field k. (See Gabriel [8] for details concerning
bounden quiver algebras.)

ExampLE 1. Let A4 be the algebra defined by the following bounden
quiver:
B
a 1222, Ba=ary=0, a*=98,
v

namely, the algebra having {e, e,, @, 8, v, ¥B3, BY} as k-basis and with multi-
plication given by the following table:

N e e, a B v vB B
e e a Y 7B

2 & IS BY
a o 7B

IS B By

v Y YR8

7B 78

By BY

(each blank is zero).
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Then A is weakly symmetric and hence QF. Further as easily seen, A
has cube-zero radical. Therefore 4 is of right (and left) 2nd local type by
Theorem 2. But since 4 is not a serial ring, 4 is neither of right (1st) local
type nor of left (1st) local type.

ExampLE 2. Let A be the algebra defined by the following quiver Q:
5

4718“233,

namely, the algebra having {e,, e,, ¢, ¢,, &5, a, 8, 7, 8, aB} as k-basis with multi-
plication given by the following table:

left right e, e e e e a B v o6 af

2 e a Yy & ap
ez ez ﬁ

€3 €3

e, &y

€5 (4

(each blank is zero).

Then as easily verified, A4 satisfies all the conditions stated in Theorem 1.
But it is not of right 2nd local type. For instance, let M be the right A-module
corresponding to the following k-representation of Q°” (the opposite quiver of
0, with all arrows reversed)

k
J@,0)
k(<0,1)k®-k<(1) (1)>k EBk(—l-’—lsk

namely, the module having {m,, m{, m,, m}, m;, m,, ms} as k-basis and with right
A-action given by the following table:
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e & e ¢ e a B v 3 af

m, m, my m, Mg

mj m] mh m, my

4

ms m; mg

m, m,

(each blank is zero).

Then M is indecomposable but top®?M is decomposable:
0 k

| I

top’M = k<1—ka—>0 &) O<—k—1>k—>0

Hence the conditions stated in Theorem 1 are not sufficient for algebras
(even if & is algebraically closed) to be of right 2nd local type.

ExampLE 3. Let A be the algebra defined by the following bounded
quiver:

N
3 ;

7N

4 5

Then we can see that 4 has just 13 indecomposable left modules (up to
isomorphism), all of which have indecomposable second tops and second socles
since the indecomposable left 4-modules of height>3 are both projective and
injective. Hence A is of right and left 2nd local type.” But it is neither of
right (1st) local type nor of left (Ist) local type. For instance, let M, and M,
be the left A-modules corresponding to the following k-representations of the
bounden quiver:

Ba=38y=0.

1) In Part II of this series of papers, we shall give some necessary and sufficient conditions
for artinian rings to be of right and left n-th local type for any natural number n. Using
this result, it is clear that the algebra defined in Example 3 is of right and left 2nd local

type.
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0 0 k k
AN / N\ 7
N N /1
k and k , respectively.
1, Nl 7N\
¢ N 4 N
k k 0 0

Then M, and M, are indecomposable but M, is not colocal and M, is not
local.
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