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ON ALGEBRAS OF SECOND LOCAL TYPE, I
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Throughout this paper, A denotes a (left and right) artinian ring with
identity 1, J its Jacobson radical and all modules are (unital and) finitely gener-
ated.

Let n be any natural number. Then we say that A is of right n-th local
type in case for every indecomposable right ^4-module M, the w-th top top*Λf:
—MIMJn of M is indecomposable. (Note that if toρwM is indecomposable,
then so is M since A is artinian and M is finitely generated.) Hence for such
a ring A, the question of indecomposability of right A -modules can be reduced
to the corresponding problem of right ^//"-modules. In [11] H. Tachikawa
has studied the case n—l and obtained a necessary and sufficient condition
for algebras (by algebra we always mean a finite dimensional algebra over a
field k) to be of this type. Further the representation theory of algebras with
square-zero radical is well known [5], [6], [7]. So in this paper, we examine
the case n—2 and give some necessary conditions for rings with self duality
to be of this type. Further in particular for QF (=quasi-Frobenius) rings,
we give necessary and sufficient conditions to be of this type. More precisely,
we show the following two theorems:

Theorem 1. Let A be a ring with self duality which is of right 2nd local
type and e any primitive idempotent in A, Then

(1) J2e is a uniserial waist in Ae if J2e^0 (see section 2 for definition of
a waist),

(2) ejm is a direct sum of local modules for every τw>2,
(3) for each local direct summand L of eJ2> LJ2 is uniserial (thus ej* is a

direct sum of uniserial modules).
Further if A is an algebra, we have
(4) Ae is uniserial if h(Ae) > 5.
In particular if the base field k is, in addition, an algebraically closed field,

then
(5) Ae is uniserial if h{Ae) > 4,

and then
(6) ej2 is a direct sum of uniserial modules.
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Theorem 2. Let A be a QF ring. Then the following statements are
equivalent:

(1) A is of right 2nd local type.
(2) A is of right 2nd colocal type (see section 1 for definition).
(3) For any primitive idempotent e in A, eA is uniserial if h(eA)^4.
(4) AjJ* is QFfor every t>3.
(5) For each MA indecomposable with A(M)>3, there is a primitive idem-

potent e in A such that M^eAjeJHM).
(6) A=AxχA2 for some QF rings Aλ and A2 such that Ax has cube-zero

radical and A2 is a serial ring.

Furthermore, each of these conditions are equivalent to the corresponding
left side version.

In the theorems above h(M) denotes the height (=Loewy length) of My

namely h(M):=mm{neiN{J {0} \MJn=0}. We remark that Theorem 1 (5)
and (6) remain valid also in the case where k is a splitting field for A.

In section 1, we introduce the basic tools used in the following sections.
Section 2 is devoted to the structure of an indecomposable protective left module
and in section 3, we examine the structure of an indecomposable projective
right module mainly using the technique of Sumioka [10]. In section 4, we
give the proof of Theorem 2. Finally in section 5, we give some examples.

The author would like to thank Professor T. Sumioka and Dr. T. Oku-
yama for fruitful conversations.

1. Preliminaries

1.1. Throughout the paper, we write homomorphisms on the opposite
side to scalar multiplications, and for homomorphisms p: K->L and q: L-+M

of left ^4-modules and for a decomposition D: L=®L( of L, (p, D)=(pi)nii
ί = l

and (Z), q)=(qi)J=Ί are matrix expressions of p and q relative to D, respectively
(for homomorphisms of right ^4-modules, we write as (p> D)=(pi)j2ί and (Z), q)
==(?ί)«-i) I n addition to the definition of right n-th local type for n any
natural number, we define the dual notion: A is called to be of left n-th co-
local type in case for every indecomposable left ^4-module M, the n-th socle
socΛM:= (the right annihilator of Jn in M) of M is indecomposable. It should
be noted that if A has a selfduality, then A is of right n-th local type iff A is
of left n-th colocal type. Further noting that the composition lengths of the
projective covers (over A) of all indecomposable right ^[//"-modules have a
bound if A\]n is of finite representation type (i.e. it has only finitely many iso-
morphism classes of indecomposable right modules), we see easily that when
A is of right w-th local type, A is of finite representation type iff so is AjJn (See
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Auslander [3]).
Since the property to be of n-th local (colocal) type is Morita invariant,

we may assume that A is a basic ring. We put ρi(^4):={^, •••, ep} to be a
basic set of primitive idempotents of A.

DEFINITION 1.2 ([2]). Let D: L=®L{ be a decomposition of a right

A -module L and p: K-+L be a homomorphism, and j in {1, •••, n}. Then
n

the pair (p, D) (or simply/): K-> φ/>, ) is called j-fusible in case there is a homo-
ί l

morphism q: φ L -^Ly such that the diagram

I * /

commutes where (p, D)=(pi)JsaΊ. The pair (py D) is called fusible in case (p, D)
isj-fusible for somej^l, •••, n. Finally (p, D) is called infusible in case (/>, D)
is not fusible.

Corollary 1.2.1 ([2, Corollary 1.4]). Let K{%Li for each ί = l , 2 and
h: K1-+K2 be an isomorphism. Define pι=kl9 p2=k2h where &t : X", -^L t is the
inclusion map for each L Then h or h~ι is extendable to a homomorphism Lι->L2

or L2->Lly respectively iff p: Kλ-> L^L2 is fusible. //

PProposition 1.2.2 ([2, Proposition 1.1]). Consider an exact sequence K->L
q n

-+M->0 of right A-modules and let D: L=φL{ be a decomposition of L, (p, D)
ί = l

=(pi)JJl, (D, q)=(qi)irLi and j in {1, •••, n}. Then the following statements are
equivalent:

(1) (p, D) is j-fusible.
H

(2) There is a homomorphism r=(r f )f ! i : ©Lf.->-XΓ such that rp=0 and
ί = l

r} is an isomorphism.
(3) q} is a split monomorphism.

Proof. See [2]. //

REMARK. In [2] the fusible maps were defined by the condition (2) above.

p q
Proposition 1.3 Let 0->K-*L->M-+0 be a nonsplit exact sequence of

n

right A-modules and D: L = φ L , be a decomposition of L (n^2). Then we have

(1) if M is indecomposable, then (p, D) is infusibley
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(2) if K is simple, each L{ is local and (p, D) is infusible, then M is inde-
composable.

Proof. See [1] or [2]. //

1.4. Let / be a two-sided ideal of A and e and/ in pi(^4). Then we have
the canonical isomorphisms Hom^ (fA, eAjeI)~ eAf'jelf~ HornA (Ae, Afjlf).
We denote by p* the image of every p in Hom^ (fA, eAjel) or the inverse image
of every p in Hom^ (Ae, Afjlf) under the composition of these isomorphisms.

P r o p o s i t i o n 1.4.1 Let e, fly •••,/„ be in pi(^4), l>m> j in { 1 , •••, n} and

p=(Pi)ili: ΦfiA->eJm/eJι be a homomorphism. Then the following statements
ί = l

are equivalent:

(1) pif AXΣipif A).

(2) p*: AejJι~~me-> ® Afijj1 fi isj-fusible, where p* is the map induced by
ί = l

the homomorphism (pf ), i i .

Proof. There is some u{ in ejmf{ such that each pf is the left multiplica-
tion by Uf. Then p has the property stated in (1) iff (Ujfj

iff MyiKΣM+ζ/'

iff uJ='Σiuiai-\-by for some a{ in f{A and b in ejι

iff uj=^2uiai+bi for some a{ in fAfj and b in ej'fj
«φy

iff Uj=='Σluiai-\-b> for some aέ mfiAfj and b injιfj
*φy

iff />* isy-fusible. //

In future p* shall always mean the above induced homomorphism when
the domain of p is of the form as above.

Corollary 1.4.2. Under the same situation as above but l=m-\-l, the
following are equivalent:

n

(1) P- ®fiAlfiJ->eJmleJm+ι (the induced map) is a monomorphism.

(2) p*: Aejje -> 0 4/'t//Wi+1/i is infusible.
ί = 1 «

In particular if p: ®fiA-^e]m is a projective cover of ejm, then p*: Aejje

is infusible. 11

n

Corollary 1.4.3. Let p: (BfiA->eJm be a projective cover of ejm and 0
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p* n
AelJe->(BAfiIJm+1fi-*M->Q be an exact sequence. Then M is indecomposable.

i = l

Proof. Clear from (1.4.2) and (1.3). //

2. Structure of an indecomposable protective left module

For an A -module M, we put | M \ := the composition length of M.

Proposition 2.1. Let A be of right n-th local type, n any natural number
and e in ρi(-4). Then Jne is uniseriaL

Proof. It is sufficient to prove that \Jme/Jm+ιe\ < 1 for every m^n. Sup-
pose \Jme/Jm+1e\ > 2 for some m^n. Then we have a homomorphism p: Afx

®Af2->JmelJm+1e;f1J2 in pi(A) such that the induced mapp: (AfilJfi)θ(Af2l
Jf2)-*JmelJm+ιe is a monomorphism. Putting L={fιAlfιJ

m+ι)®{f2Ajf2J
m+ι)y we

P*have an exact sequence 0->eAleJ->L->M->0 where M is indecomposable by
(1.4.2) and (1.3). But since p*(eAjeJ)<iLJm<ιLJn, topnM^topnL is decom-
posable. This is a contradiction. //

DEFINITION 2.2 ([4]). Let AL<~AM. Then L is called to be a waist in
M in case OΦLΦM and for each AN*ζAM, it holds that L<ΛΓ or N^L.

Proposition 2.2.1. Let A be a ring with self duality which is of right 2nd
local type and e in ρi(^t). Then J2e is a waist in Ae if J2eΦθ.

Proof. Deduced from the following three lemmas for an artinian ring A:

Lemma 2.2.2 ([9, Lemma 1.2]). Let AM be nonsimple indecomposable.
Then soc(/M)=soc M.

Proof. Let S be any simple submodule of M and X be any proper sub-
module of M. If S+X=M then S is not contained in X. Thus S Π ^ = 0 .
Hence S=M, a contradiction. Therefore S is small in M i.e. S^JM. Hence
soc M < JM and soc M= soc(JM). //

Lemma 2.2.3. Let AM be local and soc2M indecomposable. Then soc
(J2M)=soc M if

Proof. Clear from (2.2.2) nothing that JM is nonsimple indecomposable
since / 2 M Φ 0 and soc2M< JM. //

Lemma 2.2.4. Let A be a ring of left 2nd colocal type, AM be local and
J2M be a nonzero unίserial module. Then J2M is a waist in M.

Proof. Suppose that J2M is not a waist in M. Then for some X < M ,
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J2M^X and X4J2M. And, J2Mf]X=fM for some *>3. Hence Mjf
>{J2MirM)®{XjrM) where βMtf'MΦO and X//<MΦO. On the other
hand since soc^M/J'M) is indecomposable and J2(M/JtM)Φ0f we have that
soc(M/JtM)=soc(J2MIJtM) is simple by (2.2.3). This is a consradiction. //

We get Theorem 1(1) from Propositions 2.1 and 2.2.1.

Corollary 2.2.5. Let A be a ring with selfduality which is of right 2nd
local type, e in pi(^4) and h=h(Ae). Then we have soch~t(Ae)=Jte for every
f=0, ..., h.

Proof. It is clear from Theorem 1 (1) in case t^2. The other cases
(f=0, 1) are trivial.

Lemma 2.3.1. Let ALλ and AL2 be local of height^3 such that for each
ι = l , 2, soc3L, is uniserial and J2e{ is a uniserial waist in Ae{ where Ae{ is the
protective cover of soc3L, . Suppose that AK is simple and there exists an isomor-
phism pi: K-+soc L, for each i= 1, 2. Consider an exact sequence:

n Γ H M )
 g~L

Then soc2M is decomposable if p: K->soc2L1φsoc2L2 is fusible.

Proof. Assume that p: K—>soc2L1(&soc2L2 is fusible, say 2-fusible. Then
we have a commutative diagram

K —^-> socALi

And, M^(soc2L1)q1-{-L2q2=U(BL2q2 where C7=(soc2L1) (gΊ—r^2)Φθ. Now
for each x in soc2M, x=lιqi+l2q2 f° r some (/j, l2) in L i 0 L 2 . Since z/x=0
for each u in / 2, we have w/1g

r

1=— M ^ G L ^ Π ^ ^ - K p i ί i ( = : *5) Hence
J2lλqi=J2l2q2tζ:S where 5 is simple. In particular, soc2M<soc3L1g

r

1+soc3L2?2
i) In case for each x in soc2M, there are lly l2 with x=lχqι+l2q2 such that

/ 2 / 1 ^ 1 =J 2 / 2 ^ 2 =0. Then we have J2l1=0 for ^ is monic. Thus lλ is in soc2!^
and x is in U(&L2q2. Therefore soc2M^UφL2q2. Hence soc2M is decom-
posable.

ii) In case for some x in soc2M, there are lly l2 with Λ?=/I3I+/2?2
 s u c h

that J2l1q1=J%q2=S. We may assume that x=etf for some e in pi(^4). Since
S is simple and g£ are monic, J3li=J%=0. Thus /f is in soc3L,Λsoc2^ί f°r

each i. Also, we may assume that /,-=£/,• for each / since x=ex. Further
we have soc3Li=Aeli for each i=l, 2 since soc3L, are uniserial. Hence we
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may assume that e=eλ=e2. Define a homomorphism s: soc3L1-*soc3L2 by
ael1\~^ael2 for each a in A. Then s is well-defined. In fact, if t is in Ae and
£/χ=0, then t is in Ann^/j), the annihilator of lx in Ae. On the other hand,
by the fact that y ^ φ O , we see AimAe(li) does not contain J2e which is a uni-
serial waist in Ae. Hence Anni4e(/1) is contained in J3e and t is in J3e. Thus
ί/ 2 i s in/ 3 / 2 =0.

Further the diagram

soc3L2

is commutative. For, J\ll9 l2) (ΦO) is contained in the simple module Imp
since J\lly l2)q=0. Hence J\lly I2)=lmp. Let c be a nonzero element in K.
Then K=Ac and cp=(ully ul2) for some w in / 2 . Therefore c(p1s)=ulιs=ul2

=cp2. Thus jp!i=/>2.
Then putting F:=(soc3L1) (qi—sq2), the same argument as in i) shows that

soc2M< V®L2q2 and soc2M is decomposable. //

Proposition 2.3.2. Let A be a ring with self duality which is of right 2nd
local type and ALU AL2 be local of height^3 such that soc3Lt are uniserial and
\LX\ < \L2\. Then for every isomorphism r: socZ^-^socLg, r is extendable to a
monomorphism LX-^L2 if r is extendable to a homomorphism soc2Zq->soc2L2.

Proof. Put .K^socZq, pϊ= identity map of socLj and p2=r. Consider

p(ρ}y ρ2} q
an exact sequence 0->K •> LX®L2 -> M -> 0. If r is extendable to a
homomorphism soc2^-*soc?L2, then p: K->soc2Lχ(Bsoc2L2 is fusible. Hence
by (2.3.1), soc2M is decomposable, thus M is decomposable. Therefore p:
ί Γ - * L 1 0 L 2 is fusible by (1.3). Hence by (1.2.1), r is extendable to a homo-
morphism q: Lι->L2 since \Lλ\ < \L2\ where q is monic since soch x is simple. //

2.4. Throughout the rest of this section, A is a ring with selfduality which
is of right 2nd local type. Here, we examine indecomposable projective left
A -modules of height > 4.

Proposition 2.4.1. Let e and f be in pi(,4) and fJejfβeΦO. Then Af is
uniserial if h(Ae) > 4.

Proof. Take some u in fje\fj2e and define^): Af-*Je by the right multi-
plication by u. Then K e r / > < / 2 / or K e r / > > / 2 / since J2f is a waist in Af
( i f / 2 / φ 0 ) . Assume that Kerp>J2f Then /*(Im£)<2 since Imp^Af/Kerp
is an epimorph of Af/J2f Hence I m ^ ) < s o c 2 ( ^ ) < / 2 e for h (Ae) > 4 and soc2

(Ae)=Jh(Ae)~2e. But by the definition of /> we have Imp<ij2e, a contradiction.
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Accordingly, Ker^></2/. Then Kerp=J'f for some t>2 and Af/J'f is em-
bedded into Je. Therefore | Jf/J2f \ = 1 since JflJ*f is embedded into J2e which
is uniserial. Hence Af is uniserial. //

Proposition 2.4.2. Assume that e is in pi(^4), h{Ae)^\ and Ae is not uni-
seriaί. Then

(1) all simple submodules of Jejj2e are pairwise isomorphic, and
(2) Fe\Jh^Pe\Fe.

Proof. Let u: θAf-^Je/βe be a projective cover of Je/J4e. Then

since Ae is not uniserial. Putting Li:=(Afi)u> we have LiΓ\Lj=J2elJ% L^
J2e/J4e for each iΦj in {1, •••, n). By (2.4.1), each L, is uniserial and h(Lt)=Z.
Further soc Li=J3ejJAe is simple and soc2!,—J2e/J4e for each / = 1 , •••,».

(1) For any z'Φj in {1, •••, w}, the identity map p: soc L, ->soc Lj is ex-
tendable to a homomorphism soc2Lt -> soc2iy since LiΓ\Lj=J2elJ4e=soc2Li=
soc2Lj. Hence by (2.3.2), p is extendable to an isomorphism Li->Lj. Thus all
simple submodules of Je/J2e are pairwise isomorphic.

(2) Putting p{\ J2elJ4e->Li and qt: Lξ-^L^Lz to be inclusion maps
for z"=l, 2, we have an exact sequence

>0

where Lλ-{-L2 is colocal. Hence the identity map r: soc 2^ -»soc2L2 is not
extendable to any isomorphism LX-^>L2. On the other hand, the identity map
p: socZq->socL2 is extendable to an isomorphism s: LX->L2 since rKsocLj)
=p. As a consequence, s\(soc2L1)4zr. But if ]2e\pe^.]ze\]4e, then the re-
striction map

[q, soc2Z,2) -> Homi4(soc Lly soc L2)

is an injection. This implies that s\(soc2L1)=r since both ^(soc 2^) and r are
extensions of p. This is a contradiction. //

Proposition 2.4.3. Assume that e, f and g are in pi(^4), h(Ae)^5, Ae is
not uniserial, fβlfJ2e=t0 and fejβe^AgjJg. Then fAftfJf^gAgjgJg as rings.

Proof. There exists a submodule L of Je/J4e such that L is uniserial of
height 3 and top L^Af/Jf, top JL^Ag/Jg. We identify these isomorphic
modules. Further Af and Ag are both uniserial by (2.4.1) and the fact that

and also h(Af)^4. Then we can define a homomorphism t: ΈndA(Afl

Jf)^EndA(AglJg) by t(p):=(q\Jflβf) for each p in ΈndA(Af/Jf) where j> is
induced by some q in EndA(Af/J3f) and F is the map in ΈndA(Jf/J2f) induced
by r for every r in EndA(Jf/βf). (We identified EndA(JflJ2f)=EndA(AglJg).)



ALGEBRAS OF SECOND LOCAL TYPE, I 335

Then t is well-defined and injective since for each q in EndA(AfjJ3f), (AflJ3f)q
<JflJ*f iff UflJ3f)q<J2flJ3f (See [10, section 3]). Further by (2.3.2), every
automorphism p of soc L is extendable to an automorphism of L if p is extend-
able to an automorphism of soc2L. Thus t is surjective. (Note that both
Afjβf and Jf/J3f are quasi-projective since we have ]f\Pf^Ag\J2g from the
fact that Ag is uniserial.) Hence fAflfff^ΈndA(AflJf)^EndA(AglJg)^gAglgJg
as rings.

REMARK. In the above, if A is a ^-algebra, then the isomorphism defined
as above is a ^-algebra isomorphism.

2.4.4. Proof of Theorem 1 (4) and (5). Assume that A is an algebra
n

and suppose that Ae is not uniserial, and h(Ae)^4. Let p: ®Pr>JelJ3e be

a projective cover of Jejβe where each AP{ is indecomposable. Then w>2.
By (2.4.2), there is a n / in ρi(^4) such that every P, is isomorphic to Af. And,
J2e/J3e^AglJg for some g in pi^4). If we put L, : = ( P f )p for ί=l, 2, then
L^Af/βf βe/βe^L^Jelβe, Lλr\L2=]2e\f3e and top L^Af/Jf for each
ί = l , 2. Since we have an exact sequence

0 -> βejpe -> la φ L2 -> L x +L 2 -» 0

where ]2e\J3e^Ag\Jgy L^L^AfjJ2)^ and Li+L 2 is colocal, there exists an
infusible homomorphism Ag\Jg-+{Af\]2ff\ by (1.3; 1). Therefore (fA/fJ)™
is isomorphic to a direct summand of gj/gj2 by (1.4.2). Hence dim (gjfj
gJ2f)fAf/fjf>Ί. If /zO4e)>5 or k is algebraically closed, then by (2.4.3), d:=*
d i m ^ ^ 7 , ( ^ / / ^ 7 ) = d i m ( ^ / / ^ 7 ) / y l / / / / / > 2 . Hence (AglJg)^ is isomorphic
to a direct summand of Jf/J2f and d > 2. Thus | ////2/1 > 2. This contradicts
the uniseriality of Af. Hence Ae must be uniserial. //

3. Structure of an indecomposable projective right module

P QLemma 3.1. Let 0->K->L->M-^Q be an exact sequence of left A-modules

such that K is simple, D: L=®L{ is a decomposition of L (n^2) and for each

ι = l , •••, n, L—Aei/Iffor some e{ in pi(^ί) and Jm+ιei</,-$/% {m>\). Then
JM=socmM if (p> D) is infusible.

Proof. Put li:=ei-]-Ii, Ίi=li-\-JL9 mi:=liq> fni:=mi-\-JM and m/

i:==

mi+socmM. Then we have βAli=L/JL^MIJM=®Afni where each im,-

is simple. It follows from /z(M)<m+l that JM<soc w M. Assume that JM
^ΞsocwM. Then we show that (p> D) is fusible. (Clearly, we may assume
that each ^ , 4 0 i.e. each p{ is a monomorphism where {py D)={pi)i

vLι.) By
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n

assumption the sum MlsocmM==y]Am/i is redundant i.e. Amj<^ΣjAm'i for

some /, say j=l. So mί=^—aim
/

i for some a{ in A. By putting a1=ly

we have Σ ^ , e s o c w M andy*(Λl7ί)f Ii g'=0. Thus7*(αf / f .) ί Ii<Imί. Further

putting ^ : = ^ 2 we may assume that a~£tf, for each z'Φl. Put /:=(tf, /, )iφi
Then we have / ^ L j , / G 0 L , , /i=e/i, /=rf and /"(/i, /)<Im />. On the other

hand, it holds that Jm(lly /) Φ 0 since we have /7 i 'φ0 by the assumption 7^/**,..

Accordingly, Jm(lι, l)=lm p since Im p is simple. Define a map r: 7q-> ©L,

by xljr-^xl for each xl^L^ Then r is well-defined. In fact, if ^ = 0 , then

xe&I^J* and then xe(lly Γ)^Iτnp. Thus xe(lly l)=sp for some s in i£.

Therefore sp1=xel1^xl1=0 and s(pi)i^1=xeL But since ^ is a monomor-

phism, we have ί = 0 and χl=χel=0. Further by the similar argument as

in (2.3.1), pιr={pi)m i.e. (p, 2)) is fusible. //

Proposition 3.2. Let A be a ring with selfduality which is of right 2nd

local type, m>2y eyfly —,/,(»> 2) in pi(iί) and p\@ ffi-* eJm\e]mJtλ be a protective

cover of ejm/ejm+1. Then p*: Aejje -> ®JfilJu+*fi is infusible.

A * «
Proof. Let 0 -+AefJe-> 0 4/i//w+1/ί->M-» 0 be an exact sequence. Then

M is indecomposable by (1.4.3). By (3.1), JM=socmM. Accordingly, JM is

indecomposable since JM^soc2M and soc2M is indecomposable. Then from
p* n

the exact sequence 0-*AelJe-+βJfiIJm+1fi-*JM-*0, we obtain that p*: Ae/Je

-* ®JfilJm+1fi is infusible by (1.3)! //
M

3.3. Proof of Theorem 1 (2). Let p : ζBfiA-+eJm be a projective cover of
mejm and/,- in ρi(^4) for each i=ίy •••, w. If w=l, then the assertion is trivial.

So we may assume that rc>2. There is some u{ in ejmf\ejm*ιfi such that

the ί-th coordinate map of/) is the right multiplication by u{ for each z=l ,

—,Λ. Put tti:=ui+ejm+1

y u'r^Ui+J-^fi and e':=e+Je. Then β f = Σ M

where each Mt ̂ ί is local. Suppose that ejm is not a direct sum of local modules.
n

Then ^uiai=0 for some αf in A and M; α; Φθ for some / — I , •••, w. We may

assume that there is some g in pi(^4) such that UjajgΦO and «f-=/^i^ for each

i = l , •••, «. Then it holds that a{ is infjg for each /. In fact, i f/ t Φ^, then

ai^fiAg=fiJg. And, in case f{=g, we have fiAg\fi]g=fiAfi\fi]fi is a divi-

sion ring. Furthermore, X3wiβί=0 implies ^2ΰiai=0 and hence each ΰiai=0y
i = 1 ί = 1

since ϊZ, i4 are independent. Then putting ^i''=ai+fijgy we have that ϊZ, af- is

defined and is zero. Hence if a{ is not in f{jg9 then ui=(ΰiai)aj1=0y a con-
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tradiction. Further Aui=Jmfi since Jmf{ is uniserial for τrc>2. Therefore we
may assume that Auiai^Aunan for each i and Aunan—Jsg for some s > m + l > 3 .
Define a homomorphism q{: AfijJ

m+1fi->AglJs+1gby xv-^xai for each z=l , •••,//.
Then qn is a monomorphism since soc(Afn/Jm+1fn)==JmfnIJm+1fn is simple and is
mapped by qn onto the simple module JsglJs+1g Further putting qί:=qi\
(JfilJm+1fi)> we have Im q^aoc'UglJ'^^J^^glJ'^g^ra q'n for each
i = l , ••.,». Hence if weput ?Γ:-?ί :// t // Λ ί + 1 / ί ->/ s + 1 -^/7 s + 1 ^and ? :=(^ / )Lϊ ,

then />*: Aejje-*® JfilJm+ιfi is fusible since e'p*q=0 and <?" is an isomor-

phism. This contradicts (3.2). Hence ς/m must be a direct sum of local modules.

3.4. Proof of Theorem 1 (3) and (6). Suppose that \LJS/LJS+1\>2 for
some s^ί. LJS is a direct sum of local modules for LJS is a direct summand
of ς/2+*. Further L=vA for some z; in ej2g\ej3g and for some g in pi(-4).
Hence LJs=vJs=uιA@u2A® ••• for some wt in ej2+sfi\ej3+sfi where / t are
in ρi(A). Then for each ί = l , 2, there is some α, in gjsf{ such that nl =oβ f .
Define a map ^>r: AglJzg-^AfijJ

sJrZfi by x\-*xai for each / = 1 , 2. Then ^ and
^)2 are both monomorphisms since putting v':=v+J3g and Wί:=wί +/s+3/»>
soc(Aglβg)=βglJ>g=Av' and eoc{ffilJMfd=J^2f;IJ***fi=^i are simple
modules and (Avf)pi=Aui for each ί = l , 2. In particular, ^ is uniserial by
Theorem 1 (1).

i) In case ί > 2. By the above,

is fusible. Also, soc3(4/;/7s+3/,)=7s/;//s+3/,- is uniserial. Hence

Av' ^M (4/i/7 s + 3/i)θ(^/2// s + 3/2)

is fusible by (2.3.2), say 2-fusible. Then for some a in fιAf2> the diagram

fιljfi

right multiplication by a

AΊiAfΓ3f

is commutative. Therefore uf2=u{a. Putting Uii—Ui+eJ3*3 for each i=l, 2,
we have i^=σ1α since w2 is ίn ^i β+^/ s + 3/2 Thus ^A^U^A. This contradicts
the linear independency of #^4 and # 2A

ii) In case the base field k is algebraically closed. It remains only the
case s=ί. Similarly, it holds that
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is fusible. But since OΦu^eβf^βfi for each ι = l , 2, h(Afi)^4 and then
Afilβfi is uniserial of length 4 and // t //7,= soc3^/,//4/,) by Theorem 1 (5).
Then

is fusible by (2.3.2). Hence by the same argument as in i) we have a contradic-
tion. //

4. QF rings of right 2nd local type

Lemma 4.1. Let A be a QF ring and e and f be in ρi(^4) such that fje/fj2e
ΦO. Then

(a) IfJelJ2e is simple, then h(Af) > h(Ae) and
(b) /////// w jwiipfe, then h(eA) > h{fA).

Proof, (a). It follows from the fact that Je/J2e is simple and fje/fj2eφθ
that there is an epimorphism p: Af-^Je. If p is a monomorphism, then Je is
injective and is a direct summand of Ae. Thus Je=0 for /e is small in -<4e.
But this is impossible since ]e\]2e is simple. Therefore Ker^>>soc Af=Jh{Af)~ιf
since 4 / is colocal. Hence h(Af) >h(Je)+1 =h(Ae).

(b) Similar. //

4.2. Proof of Theorem 2. Let (#)' be the left side version of (x) for each
Λ7=l, 3. We show the following implications: (1) =Φ(3)'<^(3) =#>(6) ==>(4) =#(5)==>
(1). Note that (2)<=>(1)' is clear since A has a selfduality. Denote by D the
selfduality Hom^( ?, A) of A

(1)=>(3)'. Let e be in pi(^4) and h:=h(Ae)^4. Then /2έ? is a uniserial
waist in ^£. Hence soc2eA=D(Ae/J2e) is a waist in eA=D(Ae) and s o c 2 ^
=zejh~2 is a direct sum of local modules for h—2>2. But since eJh~2<ieA
and ê 4 is colocal, ^/A~2 is local. Hence \Je/J2e\ = |soc 2 (^)/soc(^) | = 1 and
4̂̂  is uniserial.

(3)'<=>(3). Clear from the fact that both height and uniseriality are pre-
served by D.

(3)=#>(6). By the equivalence (3)<^>(3)/ and left-right symmetry, it is
sufficient to prove that under the assumption (3)', if A is an indecomposable
ring and/ 3 φ0, then A is a left serial ring. Let Q be the left quiver of A, namely
the oriented graph with vertex set {1, •••,/>} where ρi(^4)={^, •••, ep} and
with nμ arrows i->j iff dim ( e y j 4 , y / g y 7 e y )(^/^/^J 2 ^ i )=^ ί . Note that A is an
indecomposable ring iff O is connected. It follows from J 3 φ 0 that h{Ae^)^\
for some i—\y •••, p and then Ae{ is uniserial by (3)'. By 4.1 and the self-
duality D, we haveh(Aej)>h(Aei) (>4) if either

(a) there is an arrow i-*j; or



ALGEBRAS OF SECOND LOCAL TYPE, I 339

(b) there is an arrowy-*/.

Hence Aβj is uniserial of height>4 for anyy=l, « ,̂ > by (4.1), (3)' and the
fact that Q is connected. Thus A is a left serial ring.

(6) =#(4). Clear from the fact that for a serial ring A, A is QF iff the ad-
missible sequence of A is constant.

(4)^(5). Let MA be indecomposable of height A>3. Then A\]h is QF
m

by (4). Let 0->K<^ Θ P -^M-^0 be a projective cover of M over A/Jh with
i = 1 w

each P f indecomposable. Then soc (®P,)^i£ implies that soc Pi^K for some
i = l

ί = l , •••, m and then Pf.ΠϋΓ=0 since P, is colocal. Hence P, is embedded
into M. But since P, is injective, P t is isomorphic to a direct summand of M.
Hence P^M for M is indecomposable. Further P^eA\e]h for some e in

). Clear. //

5. Examples

In this section, we give some examples using bounden quiver algebras
over an algebraically closed field k. (See Gabriel [8] for details concerning
bounden quiver algebras.)

EXAMPLE 1. Let A be the algebra defined by the following bounden
quiver:

a
β

1 ^ 2 ; βa =
7

0, α 2 =

namely, the algebra having fo, e2, a> β, 7, 7/3, β7} as &-basis and with multi-
plication given by the following table:

""\right
left\̂

eι

e2

a

β

7

7β

β7

ex e2

e2

a

β

7

7β

β7

a β 7 7β β7

a 7 7/3

7/3

β7

7/3

(each blank is zero).
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Then A is weakly symmetric and hence QF. Further as easily seen, A
has cube-zero radical. Therefore A is of right (and left) 2nd local type by
Theorem 2. But since A is not a serial ring, A is neither of right (1st) local
type nor of left (1st) local type.

EXAMPLE 2. Let A be the algebra defined by the following quiver Q:

5

namely, the algebra having {elf e2, e3y e4, e5, α, β, 7, δ, aβ} as β-basis with multi-
plication given by the following table:

I
a

β

7

δ

aβ

&1 €2 Θ3 64 β§

a

β

Ύ

δ

aβ

a β 7 δ aβ

a 7 δ aβ

β

aβ

(each blank is zero).

Then as easily verified, A satisfies all the conditions stated in Theorem 1.
But it is not of right 2nd local type. For instance, let M be the right A -module
corresponding to the following /^-representation of Qop (the opposite quiver of
Q> with all arrows reversed)

k

(0,1)
k

*. /I 0

namely, the module having {mly m{, m2,

^4-action given by the following table:

(1,1)

m3, m4, m^ as &-basis and with right
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mx

ml

m2

m'2

m3

m4

m5

m[

e2

m2

mf

2

e3 e

m3

nh

m5

a

m2

mr2

β

m3

m3

7 δ

m4

m4

aβ

m3

m3

(each blank is #ero).

Then M is indecomposable but top2M is decomposable:

top2Λf =

0

<k^

1

>

Hence the conditions stated in Theorem 1 are not sufficient for algebras
(even if k is algebraically closed) to be of right 2nd local type.

EXAMPLE 3. Let A be the algebra defined by the following bounded
quiver:

1 2

/

β/
/

• = δγ = 0 .

Then we can see that A has just 13 indecomposable left modules (up to
isomorphism), all of which have indecomposable second tops and second socles
since the indecomposable left A -modules of height > 3 are both protective and
injective. Hence A is of right and left 2nd local tyρe.1} But it is neither of
right (1st) local type nor of left (1st) local type. For instance, let Mλ and M2

be the left ^4-modules corresponding to the following ^-representations of the
bounden quiver:

1) In Part II of this series of papers, we shall give some necessary and sufficient conditions
for artinian rings to be of right and left n-th local type for any natural number n. Using
this result, it is clear that the algebra defined in Example 3 is of right and left 2nd local
type.
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0 0 k k
\ / \ /

\ / 1\ /I
k and k , respectively.

1/ \1 / \
/ \ / \

ft A 0 0

Then M1 and M2 are indecomposable but Mλ is not colocal and M2 is not
local.

References

[1] H. Asashiba and T. Sumioka: On Krull-Schmidt's theorem and the indecom-
posability of amalgamated sums, Osaka J. Math. 20 (1983), 321-329.

[2] H. Asashiba: On the indecomposability of amalgamated sums, Osaka J. Math.
20(1983), 701-711.

[3] M. Auslander: Representation theory of artin algebras II, Comm. Algebra 1
(1974), 269-310.

[4] M. Auslander, E.L. Green and I. Reiten: Modules with waists, Illinois J. Math.
19 (1975), 467-478.

[5] V. Dlab and C M . Ringel: On algebras of finite representation type, J. Algebra
33 (1975), 306-394.

[6] V. Dlab and C M . Ringel: Indecomposable representations of graphs and algebras,
Mem. Amer. Math. Soc. 173 (1976).

[7] P. Gabriel: Unzerlegbare Darstellungen I, Manuscripta Math. 6 (1972), 71-103.
[8] P. Gabriel: Auslander-Reiten sequences and representation-finite algebras, Proc.

ICRA II Springer Lecture Notes 831 (1980), 1-71.
[9] W. Mϋller: Unzerlegbare Moduln u'ber artinschen Ringen, Math. Z. 137 (1974),

197-226.
[10] T. Sumioka: Tachikawa's theorem on algebras of left co-local type, Osaka J. Math.

21 (1984), to appear.
[11] H. Tachikawa: On rings for which every indecomposable right module has a unique

maximal submodule, Math. Z. 71 (1959), 200-222.

Department of Mathematics
Osaka City University
Osaka 558, Japan.




