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Introduction

In this paper we discuss nonlinear evolution operators associated with
the system of nonlinear evolution equations in a real Banach space X

(DE), u'(t)sAu(t), s<t<T,
with initial conditions
IC), us)==x, x&D(4,).

In the above system, 0=s<T; u(-) stands for an X-valued unknown function
on the interval [s, T]; u’(+) represents a derivative (perhaps in a generalized
sense) of u; and {4,: t<[0, T} is a given family of nonlinear, possibly multi-
valued operators in X.

Suppose for the moment that there is a family {C,: s€[0, TT} of subsets
of X, and that for every s&[0, T') and every x&C, the initial-value problem
(hereafter called IVP) for (DE), with (IC), has a unique exact solution u(-; s, x)
on [s, T] such that u(¢; s, x)=C, for s<¢t<7T. Then one can define operators
U(t,s) (0=s=t=<T)in X by

Uz, s)x = u(t; s, x) for x€C, and t€[s, T].
The operator U(t, s) maps C, into C, and has the following properties:
(E1) U(s, s) =1I/C, and U(t, s)U(s,r) = U(t, r) on C,
for 0=r=s=<t=<T, where I/C, denotes the identity operator on C,; and
(E2) fors€][0, T)and xC,, U(-, s)x is strongly continuous on [s, T].

In the case where C; is independent of s and C,=C, a stronger continuity of
U(t, s) with respect to the parameters s and # may be obtained, namely:

(E2)’ for x€C, U(t, s)x is strongly continuous over the triangle 0=s=
t<T with respect to (s, t).
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Moreover, if the solution U(-; s, x) depends continuously upon initial data
x&C, one will have that each U(t, s) is continuous on C,.

In this paper a family U of continuous operators U(%, s) having properties
(E1) and (E2) is called an evolution operator constrained in {C;}. If in particular
C; is constant and C,=C, the family U of continuous operators with properties
(E1) and (E2)’ is called an evolution operator on C. In what follows, we are
mainly concerned with evolution equations in nonreflexive Banach spaces;
and in this case, it should be noted that a nonlinear equation (DE), does not
necessarily have exact solutions even if the #-dependence of A, is smooth and
initial-data are nice. However, if U arises in such a way that U(t, s)x gives
a solution (in a generalized sense) to the IVP for (DE), and U has properties
(E1) and (E2), such a family €U is called an evolution operator associated with
the system {(DE)}.

The present paper is devoted to the studies of two problems below. The
first aim of this paper is to introduce two notions of generalized solutions to
(DE), such that the associated solution operators form an evolution operator
as mentioned above. Firstly we consider the case in which approximate differ-
ential or difference equations for (DE), can be derived and there exist limits
of solutions of those approximate equations. In this case it is relevant to re-
gard the limits as solutions in a generalized sense and we treat generalized solu-
tions of this kind (called herein weak solutions to (DE),).

On the other hand, Ph. Bénilan introduced in [1] a notion of integral solu-
tion which is given in terms of specific integral inequalities. His notion plays
an important role both in giving the framework of the theory of nonlinear con-
traction semigroups and in establishing the uniqueness theorem of such non-
linear semigroups generated by dissipative operators. In view of this, we
employ a certain type of z-dependence of the operator 4, in order to extend
the notion of Bénilan’s integral solution to the time-dependent case under
consideration, and then show that given an initial-value x& D(4,), the associated
weak solution is uniquely determined in the class of such extended integral
solutions.

The next problem is to discuss the generation of an evolution operator
that provides generalized solutions of the IVP. In 1967 Kato gave in [10]
a general theory of nonlinear evolution operators in Banach spaces with uni-
formly convex duals and, in 1972, Crandall and Pazy [4] established a genera-
tion theory in general Banach spaces. Since that time many works concerning this
problem have been published. See Crandall and Evans [5], Evans [8], Koba-
yashi [14], Pavel [25], and Kobayasi and Oharu [15]. Our second purpose
of this paper is to discuss the construction of evolution operators which furnish
the integral solutions of (DE), mentioned as in the preceding paragraph and
extend the results quoted above.
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0. Outline. Our argument contains three features. Firstly, we think
of a proper lower semicontinuous functional p: X—[0, -] to specify the
t-dependence of A4,, the boundedness of solutions, etc.. Hence the z-depend-
ence in our argument depends upon the choice of a functional . In Section 1
we shall introduce a class of operators 4, by means of a functional p as above
and discuss the 7-dependence of 4,. In Section 2 we shall introduce a notion
of integral solution for the time-dependent case in terms of the functional p
and establish a uniqueness theorem of Bénilan’s type. Some of interesting
examples of the functionals as mentioned above are found in [9], [15], [22]
and [23].

Secondly, we discuss the construction of evolution operators through
the following type of discrete approximation of (DE),: Let s€[0, T'), x&X the
initial-value given in (IC),, and suppose that there is a system ({A,}, {(u, v§)},
{f#}) of sequences with the following properties:

(i) {A,} is a sequence of partitions of [s, T] of the form

.= {s=t<ti<e <ty =T} (@®=1) and lim|A,[=0.

i) {uf}, {vi} and {f7} are sequences in X and satisfy the difference
equation

((DE)) (h) i —ui-] = vi+fE, (ui, vi)EAy

h=#—t', 1<k<N,

for n=1 as well as the following condition

N'l
© }li_’rp”u8=x and 1i_r£ljé‘lh2'||f7a'|l =0.

The system of difference equations {((DE)),: #=1} together with condi-
tion (C) is regarded as an approximate discrete scheme for (DE), with (IC),;
and condition (C) is understood to mean that the scheme is consistent with
IVP for (DE) with (IC). In what follows, we denote such scheme by ((DS)),
and we say that ((DS)); is a consistent discrete scheme for (DE),, Now defining
step functions u,(t)=u,(t; s, x) by u,(s)=ul and wu,(f)=u; for t&(t;_,, t}], the
evolution operator U is obtained as U(t, s)x=Ilim u,(¢; s, x). In Section 3 we
shall employ a modified version of estimation due to Kobayashi [13] in order
to obtain the convergence of u,.

Thirdly, we shall construct evolution operators U such that U{(z, s) is locally
Lipschitz continuous on its domain. Employing a proper, lower semicon-
tinuous functional p on X, we consider the class of initial-data x with p(x)<<oco
and discuss in Section 4 the construction of the evolution operators on each
of the closed sets X,={x: p(x)=a} (¢>0); hence the evolution operator U
is constructed on the effective domain X,;=D(p) of p in such a way that each
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U(t, s) satisfies
UG, s)x—U(t, s)yll= exp [wa(t—s)]llx—yl

for x,ye X,ND(4,), t E[s, T], and some constant w, depending upon a>>0.

Assumption of such a functional p does not impose restrictions to the
generation theory, but rather makes it possible to treat the evolution governed
by more general operators than dissipative (or accretive) operators.

In fact, if we want to get a generation theorem (especially time-independent
case) without such functionals, it is acquired by putting p(x)=0 on X in our
argument. The generation theorems established by Crandall and Pazy [4],
Evans [8] and Pavel [25] are obtained by taking appropriate functionals .
For the time-independent case there are the recent works of Pierre [26, 27]
in our direction; and our results extend his generation theorems to the time-
dependent case. Utility of making use of such functionals p will also be il-
lustrated in various applications of our results to concrete partial differential
equations, which we shall treat in [15] and in the forthcoming papers [9] and
[23].

The relations of our results to the other works quoted above will be dis-
cussed in Remarks contained in each section. There are two types of general
hypotheses for the family of operators {4,} and both types of assumptions
together extend most of the conditions treated in the works cited above. Here
we treat the generation problem for evolution operators under the first type
of hypotheses for {4,}. The second type of assumption will be discussed
in the forthcoming paper of the authors [18].

1. Basic hypotheses

In this section we make basic hypotheses on the family of operators {4,:
te[0, T]} for which equations (DE), are formulated and then discuss the #-
dependence of 4,.

Let X be a real Banach space with norm [|-]||. By an operator 4 in X we
mean a (possibly multi-valued) operator with domain D(4) and range R(A)
in X; D(A) is the set {x&X: Ax=+ 0} and R(4) is the union U {dx: xD(A4)}.
In this paper operators in X are identified with their graphs in XX X; hence
we sometimes write (¥, y)€A when yeAx. For xD(A) we write |||Ax|||
for the value inf {||y||: yeAx}. Following Takahashi [30], we define an ex-
tended real-valued functional |4-|: X—[0, co] by

(1.1) | Ax|=inf {sup |||4x,|||: x,=D(A) and x,—x} for x=D(4)

and | Ax| =+ oo for x¢D(A4). We permit ourselves the common abbreviation,
an Ls.c. functional on X, in referring to a lower semicontinuous functional on X.
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The functional |A4-| is ls.c. on X and its effective domain D,(4) =
{xeX: |Ax| <} satisfies D(4)CD,(A)CD(A). The set D,(A) is closely
related to the notion of generalized domain introduced by Crandall [7]. We shall
use the following fact: Given an x& D,(4), there exists a sequence {x;} in D(A)
such that x,—x in X and |||4x)]|||<|Ax|+1/l for [=1. The closure of the
operator A means the operator defined by the closure in XX X of the graph
of 4 and is denoted by 4. The restriction of 4 to a set C is denoted by A4/C.

Firstly, in order to specify the class of nonlinear operators with which
we are concerned in this paper, we employ two sorts of tangent functionals of
the unit ball of X, 7, and 7_ on X X X defined respectively by

(o, 4) = lim - (lu-+toll—[ul);  and
(1.2)
(o, 4) = lim ;—(Ilull——llu——tvll) for u,ve X.
t40

Notice that the values 7.(v, #) are sometimes denoted by 7.(u, v), respectively.
Since the norm ||+|| is convex on X, both 7, and 7_ are well-defined on X X X.
Basic properties of these functionals are mentioned in [8], [19] and [20]. In
particular, we shall use the following facts in later arguments:

19 7_(v, u) = —74(—v, u) for u, veX.
(2°) The duality mapping F of X is the subdifferential of the convex

functional u—)%llull2 on X and we have

(0, wllull = sup {Co, f>: fEFW)}
(0, w)llul] = inf {Co, f>: f€ Fw)} .

where (v, f)> denotes the value of f& X* at v.

(1.3)

(3°) The functional (u,v)—>7.(v, ) is upper semicontinuous on all of
X X X with respect to the strong topology.

We shall also use tangent functionals on X** x X**; but we denote them
by the same symbols 7, and 7_ since XX X can be regarded as a closed sub-
space of X*¥ x X**,

Secondly we use an ls.c. functional (denoted herein p) to classify the class
of initial-data for the system of evolution equations {(DE),}. Let p: X—
[0, o] be an ls.c. functional on X such that the effective domain D(p) inter-
sects D(4,) for t<[0, T]. We define

(1.4) Xo={r€X:p(x)<a} and X,,=X,ND(4,)
for >0 and s€[0, T, and set X,= U {X,: a>0}. The set X,is closed in X
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and monotone increasing as & { +oco; and we have X,=D(p). We sometimes
write X., for the whole space X for convenience of notation. It turns out that
we treat the evolution equations in the system (X, [|+||, §), where the norm is
for the convergence of elements of X and the functional specifies the bounded-
ness of elements under consideration.

Thirdly, in order to specify the t-dependence of 4, we introduce two
classes of functions on [0, 71X [0, T]. A nonnegative bounded function €
defined on all of [0, T]x [0, 7] is said to belong to the class & if it satisfies
the following two conditions:

(i) @ is upper semicontinuous on all of [0, '] X [0, T]; and

(if) @ is symmetric with respect to (s, t), 0(s, s)=0 for s€[0, T'], and

li:n sup {0(t,s): |t—s| <8} =0.
540

Note that if 8, 8,9 then 0,+6,9. If 6 is continuous on [0, T] %[0, T7,
then € J iff 6 is symmetric and (s, s)=0 for s<[0, T7].
Given a §€ Y, we define p: [0, T1—[0, p(T)] by

(1.5) p(r) = sup {0(¢, 5): s, t<[0, T] and |t—s|=<r} for re&[0, T7].

The function p is bounded, nonnegative and nondecreasing on [0, T,
and lim p(r)=0. Hence we may assume that p is right-continuous on [0, T).
730

If 0 is continuous on [0, T']1X [0, 7], then p is upper semicontinuous on [0, T']

and right-continuous on [0, T). Conversely, if p: [0, T]—R is any bounded,

nonnegative, nondecreasing and right-continuous function with lim p(r)=p(0)
ry0

=0, then the function @ defined by (¢, s)=p(|t—s|) for (¢, 5)[0, T1x [0, T]
belong to the class 9.

A function @ defined on all of [0, T]x [0, T is said to belong to the class
Yy, if =9 and the following additional condition holds:

(iii) there exists a constant M >0 such that

(1.6) Y00t ) <M

for all partitions A= {0=t,<t,<<--+<ty=T} of [0, T].

We now make basic hypotheses on the family of operators {4,} by using
the above terminology. First the following condition is always assumed when-
ever a functional p as mentioned above is considered:

(P) For every 8>0 thereis an =g such that XzND(4,)C X, , for s&[0, T].

Practically, the functional p represents various kinds of stability for the
operators and is suitably chosen so that condition (P) holds. See for instance
[9], [15], [22] and [23]. Condition (P) yields the relation
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(L.7) C.=X,NDA,)= UX,s, for s€[0,T].
B>0
Under condition (P) we assume throughout this paper that the domain
of A, depends upon ¢ in the following sense:

(Tr) If 8>0,t,1¢in (0, T], u,eXp,, and u,—u in X, then uEX,,, for some
a which is = and depends only upon g.

Next, using the class 9 and taking a subset C of X, we consider the follow-
ing condition:

(H; C) There exists a number »=0 and a function # Y such that
7_(v, —x)+7_(—y, u—x) < ol|lu—x||+9(¢, s)

holds for s, t<[0, T, (4, v)E A4, and (», y)= 4, with u, x<C.

In this condition » and ¢ may depend upon the choice of C. Since
(¢, t)=0, condition (H; C) implies that each 4, is w-quasi-dissipative on C in
the sense of Kobayashi [13].

In this paper we specify the subset C that appears in condition (H;C)
by means of an Ls.c. functional p on X and employ conditions (H; X,), a>0.
(It turns out that p specifies the class of operators 4, as well as the ¢-depend-
ence of 4,.)

We have thus introduced three types of conditions (P), (T') and (H; X,)-
We are mainly concerned with solutions of evolution equations (DE), with
initial-data belonging to the sets X, (8>0), and we shall put the following
condition as our basic hypothesis on the family of operators {4,}:

Hyporuesis (H). There is an lLs.c. functional p: X—[0, co] satisfying
(P) and (T); and for every a>0, the family {4,} satisfies (H; X,) for some
we=0and 6,=9.

Remarks on the basic hypothesis (H).

The t-dependence is usually discussed in connection with initial-data
though we shall treat initial-data belonging to XzND(4,) and construct the
associated solutions of (DE), in some X, (depending possibly upon the choice
of B). It seems to be too restricted to assume the existence of the function
0 mentioned as in (H; X,) since it asserts the uniform #-dependence of 4, on
the closed set X,, though this assumption is fairly general. To see this, we
here state the relation of hypothesis (H) to the conditions that were treated in
earlier works quoted in the Introduction.

RemMARk 1.1. In many cases (and for all the applications of our results
mentioned as in [9], [15], [16] and [23]) the following stronger condition is
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employed, instead of (H; C).
(H; C)' There exist =0 and #= Y such that

T_(v—y, u—x)Zol|lu—x||+0(2, s)

for 5,t<[0, T, (v, v)€ A,/C and (x, y)€ A,/C. Here A/C denotes the restric-
tion of 4 to a set C. Condition (H; C)’ states that A,— is dissipative on
C for each t [0, T]. Hence I—\(4,/C) is injective for A € (0, 1/w) and
(I—n(4,/C))™! is Lipschitz continuous with Lipschitz constant (1—w\)™!. See
[2] and [7]. Hereafter we say that 4, is w-dissipative on C if A,—w is dissipative
on C; if in particular C=X, we say simply that 4, is w-dissipative. Condition
(H; X,)' implies (H; X,). But it is not hard to find examples of quasi-dissipa-
tive operators which are not dissipative.

Remark 1.2. If p(x)=0 on X (hence X,=X for @>0) and »=0 in
(H; X), then each of A4, is quasi-dissipative in the sense of Takahashi [30].
Suppose P(+) is defined to be the norm [|+|| of X. Then (H;X,) states that
there is a number w,=0 and A4, is w,-quasi-dissipative on the closed ball X,
with center 0 and radius @. This is the same setting as in Chambers-Oharu
[3] and it turns out that our argument treats the evolution governed by more
general operators than dissipative operators. From the viewpoint of the theory
of ordinary differential equations, it is more adequate to assume that the inequality
T_(v—y, u—x) < (|l — x|]) + 0,(¢, s) holds for (u, v)e4,, (%, y)€A4, with
u, € X, and some function ©: [0, ©0)—[0, o) with »(0)=0. But this condi-
tion is a special case of Hypothesis (H) provided that p(<)=||+|]| on X and
w0, o).

ReEMARK 1.3. As mentioned in Section 0, our hypothesis (H) does not
necessarily extend all of the conditions treated by Crandall-Pazy [4] and Evans
[8]. In order to cover them we need another type of hypothesis. Taking
two subset C and C’ of X, we consider the following condition:

(H*; C, C") There exist ©=0, A,>0 and 6= 9 such that 4, is w-dissipative
on C for t€[0, T]; and if (4, v)E4,, (x,y)E4,, u, xC, w=u—AvEC" and
z=x—AyEC" for 5, t[0, T], then we have

(I—oN)|lu—x||=|lw—z2||+N10(t, s) for O<A<N (=1/w).

In this condition » depends possibly on the choice of C, while A, and @
may depend upon the choice of C’ as well as C. It should be noted that
(H*; C, C") does not make sense unless R(/—\A4,/C) intersects C’ for &[0, T]
and A € (0, Ay). Condition (H,; C, X) always makes sense and is stronger
than (H,; C, C’) provided that R(I —\A,/C) intersects C’ for t€ [0, T] and
AE(0,ny). No general relationships between conditions (H; C) and (H*; C, C")
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can be obtained since these conditions are quite involved. Now Conditions
(H*; X,, Xp) are related to the #-dependence of A, discussed in [4], [5] and
[8]. For the detailed argument, see the forthcoming paper [18].

Remark 1.4. After we had obtained some of the main results (that are
announced in Kobayashi [14]), we received a preprint of the recent work of
Pavel [25]. His work is closely related to our paper since he discussed the
construction of evolution operators associated with the system {(DE)} for
w-quasi-dissipative operators through the same type of discrete approximation
as mentioned in Section 0. The #-dependence of the operator 4, with which
he is concerned is that of the form (H; X,). More precisely, if p is the norm
of X, » a nonnegative constant, and if 6,(¢, s)=||a(¢)—a(s)||L(a) for >0 and
some a(-) LY0, T; X), then the family {4,} is a(-)-o-quasi-dissipative in
the sense of Definition 2.1 of [25] iff {4,} satisfies condition (H; X,) for the
P, o, 04 and a@>0. Therefore, his convergence argument for the discrete
approximation may be treated within the framework of our discussion through
an suitable approximation for the Bochner integrable function a(+). In fact,
it is possible to extend our results below to more general ones so that the above
cases can be directly treated, though we do not go into such generalizations
in this paper because of considerable complexity.

2. Generalized solutions

In this section we introduce two notions of generalized solutions to the
IVP for (DE), and discuss basic properties of the generalized solutions as well
as the relationships between them. As the main result of this section, a unique-
ness theorem for the weak solution is established.

Throughout this section we put Hypothesis (H). Since the parameter
s in equation (DE), plays no essential role in this section, we restrict ourselves
to the single equation (DE), (hereafter denoted (DE)) with initial-condition
(IC), (likewise, denoted (IC)).

We use five spaces of vector-valued functions: Given a bounded half-open
interval J=[a, b), B(J; X) denotes the space of X-valued, uniformly bounded
functions on J endowed with the systems of countable seminorms defined by

[lleelll, = sup {llu(t)l|: a=t=<b—1/n}, n>[b—a];

and C(J; X) denotes the subspace of H(J; X) equipped with the same seminorm
system. While, given a compact interval K=/[a, 4], B(K; X) denotes the Banach
space of X-valued, uniformly bounded functions on J endowed with the usual
supremum norm; C(K; X) denotes the closed subspace of B(K; X) consisting
of strongly continuous functions; and L'(K; X) denotes the usual Lebesgue
space of X-valued, Bochner integrable functions on K endowed with the norm
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el e s =S« llu(?)||dpe.

2.1. Weak solutions.

We begin by introducing a notion of approximate solution to equation
(DE). Let £€>0. An X-valued function, say u,, in C([0, T]; X) is called an
E-approximate solution to (DE) if there exists a partition A,= {0=17,<<t,<<--:
<ty<tyy =T} of [0, T] and an X-valued step function f5=2%=1f§x(,k_l, ]
in L0, T'; X) satisfying two conditions below:

(31) | Ae| = max {ltk_tk—ll: 1§k§N+1}<E and ”fe”Ll(o,T:X)<8'
(a,) For each k={l1,2, .-+, N}, ut,)€D(4,,) and

(%) M —ft)e At,,ue(tk) .

tL—t-y

ty

The system of equations (%) displayed above is regarded as an approximate
scheme for (DE) and f, is understood to mean an error function. Accordingly,
if there exists a sequence {u,} of &,-approximate solutions and a function u
in C([0, T); X) such that u, converges in C([0, T'); X) to u as n—>oo, it is ex-
pected that u is a solution of (DE) (perhaps in a generalized sense). We then
give a notion of weak solution through the &-approximate solutions.

DerFINITION 2.1. Let @¢>0. An X-valued function # in C([0, T7; X)
is said to be a weak solution of (DE) constrained in X,, if there exists a sequence
{u,} of &,-approximate solutions satisfying:

(w,) For every n=1, let A,= {0=t3<ti<<---<ty <t} .1 =T}

and f,eLY(0, T'; X) be respectively the partition of [0, 7] and the error function
associated with the &,-approximate solution u,. Let hj=t;—t;_, for 1<k<N,.
Then for every ke {l, 2, ---, N,}, u,(ti)y € D(A;z) N X, and (h})~ [u,(t) —
(i) —Su(th) € Ay, (25).

(w) limé, =0, lim|A,|=0, and lim [|f,ll;%07r;0=0.
(w;) u, converges in C([0, T); X) to u as n—>oco.

(Therefore, the range of u is contained in the closed set X,).

Interpretations of the above definition from the point of view of the differ-
ence approximation for (DE) as well as that of the strong solution to (DE) are
in order.

Given >0 and xEX ,=X3 N D(4,), suppose that there exists a number
a=f and a system ({A,}, {(wi i)}, {fi}) of a number and sequences with
the properties (i), (ii) as mentioned in Section 0 and

(iti)  {(u}, vF)} is a sequence of elements in X, x X.
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In what follows, we denote such scheme by ((DS)) which, in Section 0,
we called a consistent discrete scheme for (DE). We then define step functions
u": [0, T]->X(n=1) by the equations #"(0)=u§ and

u'(t) = SWk uiXep_, m(t) for (0, T7.

The sequence {u"} of step functions may also be regarded as a sequence of
approximate solutions to (DE). Hence, if there is an X-valued function u
in C([0, T'], X) and the convergence

2.1) w(t)= lim #(2)

holds in B([0, T), X), it is also expected that u is a solution (in a generalized
sense) of (DE). Following Kobayashi [13], the limit function » may be called
a DS-limit solution with initial-value x of (DE) constrained in X,. Now the
relation of the DS-limit solution of (DE) to the weak solution can be stated
as follows.

Proposition 2.1. A function u in C([0, T]; X) with u(0)=x& X, is a weak
solution of (DE) constrained in X, iff it is a DS-limit solution with initial-value
x of (DE) constrained in X,.

Proof. First suppose that (2.1) holds for # and a consistent discrete scheme
({A}, {(ur, v5)}, {f#}) with the properties (i), (ii) and (iii) as mentioned above.
Then a sequence {u,} of piecewise linear functions in C([0, T']; X) can be con-
structed by connecting the points u}(0<A=<N,) with line sequents successive-
ly. The sequence {u,} gives a sequence of |A,|-approximate solutions with
properties (w;)—(w;) as mentioned in Definition 2.1 and the strong continuity
on [0, T] of u (which follows from (2.1) and will be shown in Theorem 2.4
below) implies that #,—u in C([0, T'); X). Conversely, let # be a weak solution
of (DE) constrained in X, and {u,} a sequence of &,-approximate solutions
satisfying (w,)—(ws). If we define uf=u,(t}), fi=f,(t}) and v}=(h%) [ui—ui_.]—
fi for n=1 and 1<k=N,, then the system ({A,}, {(®}, v})}, {f3}) forms a
consistent descrete scheme for (DE), in X,. Moreover, (2.1) holds for u since
ueC([0, T]; X). q.e.d.

Moreover, the class of all weak solutions is a family in C([0, T]; X) such
that no strong solutions of (DE) can exist outside the family, as'mentioned
below.

Proposition 2.2. Suppose that there is a function u: [0, T1—X such that
u([0, T)) c X, for some a>0, and that u is Lipschitz continuous on [0, T'], strongly
differentiable at a.e. t<[0, T, and satisfies (DE) for a.e. 1[0, T). Then, there
is a system ({A,}, {(w}, o))}, {f3}) satisfying (i), (i) and (iii); and the convergence
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(2.1) holds in B([0, T]; X).

Proof. We mimic the proof of Kenmochi-Oharu [12], Theorem 4.12.
Let v(t)=u'(¢) and let N be a Lebesgue null set such that v(t)eAu(t) for ¢
te[0, T]—N. Let {8,} be any null sequence in (0, T) and set w,(t)=
87 [u(t)—u(t—3,)] if tE[8,, T] and w,(t)=0 if ¢<]0, 5,). Since w,,()—v(2)
for t€[0, T]— N, Egoroff’s theorem yields that for each =1 there is a
closed subset E, of (0,T) such that ([0, T]—E,)<l1/n, E,NN=@, and
sup {||lw,(t)—v(t)l|: t€E,}—0 as m— oo, where u denotes the Lebesgue measure
restricted on [0, T']. Fix any n=1 and let m be such that

(2.2) 0<6,<1/n and |lw,(t)—o@)||<1/n for t€E,.

Now set ui=u(0) and t4=0. We shall construct finite sequences {r}}is1,
{34 and {(u}, v¥)}i2 with the properties as mentioned in (2.3) below. In
what follows, we eliminate for simplicity in notation the suffix # from the
symbols v, N, t, , v and E since it will cause no confusion:

tk == tk_l"l—am—l—VkEE y Vk_Z_O ) 22;1 Vkélln y u,,EX,

2.3
23) (25 Uk)EAt,, and Iluk_(8m+yk)vk_uk—1”ésm/n+2kay

where 1<EZN, }'im ty=T and L denotes the smallest Lipschitz constant for

the solution u. First define »,=dist(3,,, E—[0, 8,)). Since E—[0,8,,) is closed,
we infer that £,=%,4-6,,+v,€E and (8, 8,+v,)NE=@. We then set u;=u(t,)
and o,=9(4). By (2.2) and the Lipschitz continuity of u(:) we have
lty— (82101 — ]| < 1 t2) — 8,02 — o+ )|+ mallo ()| lltot-91)— o) | =
Ou/n+2Lv,. Moreover, it is clear that u;EX, and (4, v,)€4,. This com-
pletes the first stage of our construction. Next, suppose that the k-th step
of the construction has been completed: hence we have finite sequences v,=
dist (¢);+ 06,4 E—[0,8-,+3,)), ti=t.,+8,+v, wy=u(t), and v,=v(t),
[=1,2, -,k with the property that t,€E, (¢,.,+95,,t)NE=0, u, € X,,
(u, v)E A, and |lu;—(8p+v))v,—u;-||<8,,/n+2Lv, We perform the (t4-1)*™
step in the following way: If (£,46,, TINE =@, we set k=N and finish
our construction since T'—¢,<1/n. If (¢,+98,, TINE =@, then set v, =
dist (¢, + 6,, E—[0, t,+38,)) and define #,,;=~=8,+3, + V411, #pr1=1u(ty+1) and
Ups1=0(t}+;). Then ., EE by the closedness of E—[0,#,+3,,), so that u,,, = X,,
(%15 71k+1)EAt,,+1 and we have ||ty — (8 4V 11) Vs — el | = [0t 1) — S m0(trr1) —
u(t, + Vi)l + Vel lo(t)l 4 ”u(tk 4 vp) —u(tp)ll = 8,/n+ 2Lvy.,.  Moreover,
(ts48m ti) NE=0, u, €X,, and (w441, V441) E4,,,, by the same reason as above.
Repeating this argument, we obtain finite sequences {v,}, {f,} and {(u;, v;)}
satisfying (2.3).

Now let 2,=38,+v, and fy= (b) [ —ty_,] — v, for 1<E<N. Then
h=t,—t,—, and hl|fil|=lu,—hw,—uy_|| <38, /n+2Lv, for 1<Ek<N, so that if
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we define A= {0=t,<t,<<- <ty <ty,,=T} then |A|l=max {§,+v;: 1<k<N}
<2/n, 21 Bl fll ETn+2L 330 v, <(T+2L)/n and T—ty<1/n. Denoting
N, A, v, b, w, and v, constructed in the above manner, respectively, by N,,
A,, vi, ti, v and o}, we obtain the desired system ({A,}, {(u}, ©})}, {fi})-
q.e.d.

The function # mentioned as in Proposition 2.2 is called a strong solution
of (DE). In view of Lemma 1.1 of Kato [11], such a solution is unique if each
A, is w,-dissipative on X, for some w,=0. Moreover the proof of Proposi-
tion 2.2 shows that a strong solution itself is an &-approximate solution for
every €0 and a fortiori a weak solution.

2.2 Integral solutions.

The notion of weak solution to (DE) is defined under the assumption that
a sequence of &,-approximate solutions or else a consistent discrete scheme
((DS)) for (DE) exists. Here we introduce another notion of generalized solu-
tion.

Suppose for the moment that a function u: [0, T]—X, is a strong solution
of (DE). Let y=a. Since u(t)eX,y for t<[0, T] and u'(t)cAu(t) for a.e.
t [0, T], the application of Lemma 1.1 of Kato [11] and condition (H; X,)
yields (dJde)|u(e)—ll =7_(u'(t), w(t)—x)= 2y, wt)—2) + ollu(t) —l|+6(t, 7)
for a.e. t, where r&[0, T], (x, y)E 4y, xXy; and o,  are specified by condi-
tion (H; Xy). Notice that the right side of the above inequality is bounded
and summable over [0, T']. Integrating both sides over any subinterval [¢,2']
of [0, T yields

(24) 1)l =)= [ (3, uE)—)-+oll®)—-+0(8, e

The above observation was motivated by Bénilan’s idea. Although (2.4)
does not seem to give a generalized form of equation (DE), the integral in-
equality (2.4) plays an important role in the discussion of generalized solutions
to (DE). Let uC([0, T]; X,) and suppose that u(f)EX,, for t&[0, Tl and
(2.4) (with y=q) holds for 0=<t<t'<T, r&[0, T] and (x, )4, with x&X,.
If u is weakly right-differentiable at #,&(0, T) and A, —e is maximal dis-
sipative on X4, then u(t)eD(A4,) and (w—d*/dtyu(t,)E A, u(t,), where
(w—d*[dt)u(t,) denotes the weak right-derivative of u at #,. In fact, given
(%, y)E4,/X, and hE(0, T—1,), we have

T (B o+ Ry —ulte)] s u(te) —x) S (Ml tg+) — el — (o) — i)
<i [ (3, w(E)— %)+ wlI(E)—al| +O(E, t)]dE .

Letting % | 0 and applying the relation 7_(v—wm, ) <7,(v, u)—7.(w, u), we get
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T_((w—d*/dt)u(t))—y, u(ty)—x) = ol|lu(t))—x||. The maximal dissipativity of
A;,—o on X, then implies that (u(t,), (w— d*/dt)u(t,)) € A, In particular,
we have:

Proposition 2.3. Suppose that A,—w is maximal dissipative on X, , for
te[0, T]. Let u: [0, T]—X, be specified as above. If u is weakly differentiable
a.e. on [0, T), then u satisfies the equation

(w—d[dtyu(tyc Aut)  for a.e. tc0,T).
Now the above observations lead us to the:

DeFiNiTION 2.2, Let >0 and s€[0, T). An X-valued, strongly con-
tinuous function % on [s, T] is said to be an integral solution of (DE), constrained
in {Xa,: t€ls, T} if w(t)EX,, for tE[s, T] and there exist =0 and §€T
for which the integral inequality (2.4) holds for &[0, T], (», y)€ 4, with x X,
and 0=<¢=<t'<T. (Note that the function 7,(y, u(+)—x) is bounded and upper
simicontinuous on [0, T.)

Hereafter we denote by J,[0, T'] the class of all integral solutions of (DE)
constrained in {X,,}. When we are concerned with equation (DE), (s€(0, T)),
the class of all integral solutions of (DE), constrained in {X,,: s<t=<T} is
denoted by J,[s, T

The class of Bénilan’s integral solutions introduced in [1] does not neces-
sarily specify a proper class of solutions (since the class is in gen