ON THE SET OF REGULAR BOUNDARY POINTS

KIRSTI OJA

(Received February 3, 1983)

Introduction

Let X be a \mathcal{P} -harmonic space with a countable base in the sense of the axiomatics of Constantinescu and Cornea [3], *U* an open set of *X* and *Ureg* the set of regular boundary points of *U.* If *X* is a connected Brelot space, it is known that U_{reg} is dense on $\partial \overline{U}$ (see e.g. Hervé [4], Ikegami [6]). This is not valid for more general hamonic spaces. We prove two results related to this question. Assuming that the space has a base of regular sets, we ob tain a necessary condition (by means of absorbent sets) for the case that *Ureg* is not dense on $\partial \bar{U}$.

1. Preliminaries

Let X be a \mathcal{P} -harmonic space with a countable base in the sense of Constantinescu and Cornea [3] and *U* an open set of *X.* We denote the set of regular (resp. irregular) points of ∂U by U_{reg} (resp. U_{ir}). If U is relatively compact and $M \subset \partial U$ with $\mu_*^U(M)=0$ for all $x \in U$, M is called *negligible*. Since *X* has a countable base, if *M* is negligible, $H_{\mathbf{x},\mathbf{x}}^U(x) = \mu_x^U(M) = 0$ for all $x \in U$ (cf. [2, Satz 4.1.7]).

REMARK 1.1. Let $y \in \partial U$. A strictly positive hyperharmonic function u defined on the intersection of *U* and an open neighbourhood *V* of *y* is called a barrier at *y* if

$$
\lim_{\sigma\, \cap\, \nu \,\ni z \to y} u(z) = 0.
$$

Then $y \in U_{reg}$ if and only if there exists a barrier at y. This follows from [3, Proposition 2.4.7], [3, Theorem 6.3.3] and [3, Proposition 7.2.2]. Thus $y \in U_{reg}$ implies that for every open subset *U'* of *U* with $y \in \partial U'$, we have $y \in U'_{reg}$.

A relatively compact open set *U* is called a *Keldys set,* if *Uir* is negligible [8, Proposition 2].

The following result was proved by Lukes and Netuka [9, Theorem 3]: Let U be an open set of X . If K is an arbitrary compact set of U , there is a Keldys set *V* with $K\subset V\subset \bar{V}\subset U$.

Lemma 1.2. Let U be an open set of X and $M \subset \partial U$ with $H_{\mathbf{x}\mathbf{y}}^{\mathbf{y}} = 0$. Let *U* be an open subset of U. Then $\bar{H}^{U'}_{\mathbf{x}_\mathbf{M} \cap \partial U'} = 0$.

Proof. Cf. [3, Proposition 2.4.4].

In the sequel we shall need the following two well-known minimum prin ciples.

Theorem 1.3. Let U be relatively compact. Let $M \subset \partial U$ be a negligible *set. For every lower bounded hyperharmonίc function u on U, if*

$$
\liminf_{x\to x} u(x) \ge 0
$$

for all $z \in \partial U \setminus M$, then $u \geq 0$.

Proof. This has been proved in [2, Satz 4.4.6]. The same proof carries over into the present situation.

Let *U* be relatively compact and \mathcal{F}_U the set of finite, continuous functions on \bar{U} whose restrictions to U are hyperharmonic. A point $x \in \bar{U}$ is called ex*tremal* if $\varepsilon_{\mathbf{x}}$ is the only measure μ on \bar{U} such that

$$
\int u\,d\mu\!\leq\!u(x)
$$

for all $u \in \mathcal{F}_U$. Then any extremal point is a regular point of ∂U (cf. [2, Satz 4.4.1], [3, Exercise 2.4.7]).

Theorem 1.4. Let U be relatively compact. Any $u \in \mathcal{F}_U$ is positive if it *is positive at any extremal point.*

Proof. The proof is a modification of $[1, Satz 33]$. We have to use $[3, S]$ Lemma 2, p. 26].

In the following lemma we denote by $S(p)$ the smallest closed set outside which a potential *p* is harmonic. Let *G* be a relatively compact open set. The set of potentials p on X, for which $\emptyset + S(p) \subset \overline{G}$, is denoted by \mathscr{L}_G ; \mathscr{L}_G \neq \emptyset by [3, Proposition 2.3.1].

Lemma 1.5. Let W and G be open relatively compact sets of X with $G \subset$ \bar{G} \subset *W.* For every potential p \in \mathcal{P}_G we denote

$$
A_{\rho} = \{ z \! \in \! W \! \mid \! \hat{R}_{\rho}^{\scriptscriptstyle X \setminus W}\!(z) = p(z) \} \; .
$$

Then there exists a p \in $\mathcal{P}_\mathcal{G}$ such that G \subset $W\backslash A_p$.

Proof. Let p_0 be a finite strict potential on X. Then $W\subset\{z\in X\,|\,$ $\hat{R}_{p_0}^{X \setminus W}(z) < p_0(z)$ by [3, Proposition 7.2.2]. Let $p = \hat{R}_{p_0}^{\overline{G}}$; p is a potential and Since $\hat{R}^{X \setminus W}_{p} \!\leq\! \hat{R}^{X \setminus W}_{p_{0}},$ for every *x*

$$
\hat{R}_{p}^{X\setminus W}(x) \leq \hat{R}_{p_0}^{X\setminus W}(x) \lt p_0(x) = p(x) ,
$$

and $x \in W \backslash A_p$.

2. On the set of regular points

Let *U* be an open set of *X.* We shall investigate the conditions under which the set $\partial\bar U\backslash\overline{U_{reg}}$ may be nonempty.

Theorem 2.1. Let U be a Keldys set. Every $x \in \partial \bar{U} \setminus \overline{U_{reg}}$ has an open n eighbourhood V with $\partial U \cap \bar V \subset \partial U \backslash \overline{U_{reg}}$ such that $\bar U \cap V$ is a nontrivial absorbent set of V. Moreover, $\bar{U}\backslash \overline{U_{reg}}$ is an absorbent set of $X\backslash \overline{U_{reg}}$.

Proof. Let *V* be a Keldys set, $V \in x$ such that $\partial U \cap \bar{V} \subset \partial U \setminus \overline{U_{reg}}$. Ob viously we can assume that *V* is connected (Lemma 1.2).

We have $V\setminus\bar{U}\neq\emptyset$ by the assumption $x\in\partial\bar{U}$. Let G be an open set with $G \subset \overline{G} \subset V \setminus \overline{U}$ We consider the set of potentials \mathcal{P}_G (see p. 276).

First, let there exist a $G,$ \bar{G} \subset $V\backslash\bar{U},$ and a p \in \mathscr{L}_{G} with

$$
(2.1) \qquad \qquad (\rho - \hat{R}_{\rho}^{X \setminus V}) \, | \, \bar{U} \cap V \equiv 0 \, .
$$

The function $u: =p-\hat{R}^{X\setminus V}$ is positive and harmonic on $U\cap V$, continuous on $\partial U \cap V$ and bounded on $\overline{U \cap V}$. Also, *u* does not vanish identically on $U \cap V$ and has the limit zero at every regular boundary point of *V.* Further,

$$
\bar{H}_{x_{\mathcal{U}_{i_r}\cap\partial(\mathcal{U}\cap\mathcal{V})}}^{v\cap v}=0\,,\ \ \, \bar{H}_{x_{\mathcal{V}_{i_r}\cap\partial(\mathcal{U}\cap\mathcal{V})}}^{v\cap v}=0\,,
$$

by Lemma 1.2. Thus the set $U_{ir} \cup V_{ir}$ is negligible on $\partial(U \cap V)$. Since $\partial U \cap \bar{V} \subset \partial U \setminus \overline{U_{reg}},$ everywhere else on $\partial (U \cap V)$ *, u* has the limit zero. Then Theorem 1.3 gives $u=0$ on $U \cap V$, a contradiction.

Thus, for every G such that $\bar{G} \subset V \setminus \bar{U}$, and every $p \in \mathcal{P}_G$, the function $p\!-\!\hat{R}_{\it p}^{\rm\scriptscriptstyle X \backslash V}$ equals zero on $\bar{U}\!\cap V.$

Let $y \in V \setminus \overline{U}$ be arbitrary and *G* an open set with $y \in G \subset \overline{G} \subset V \setminus \overline{U}$. Then by Lemma 1.5 there is a potential p_y such that $\hat{R}_{p_{\nu}}^{X \setminus V} < p_{\nu}(z)$. Thus

$$
\mathop{\cap}\limits_{\mathbf{y}\in\mathit{V}\setminus\overline{\mathit{U}}}A_{\mathit{p}_{\mathbf{y}}}=\bar{U}\cap V
$$

is an absorbent set of *V.*

Hence for every $x{\in}\partial\bar U{\setminus}\overline{U_{reg}}$ there is an open neighbourhood $V{\subset}X{\setminus}\overline{U_{reg}}$ such that $\overline{U} \cap V$ is an absorbent set of V. By the sheaf property of hyperharmonic functions, the function v which is 0 on $\bar{U}\backslash\overline{U_{reg}}$ and ∞ on $(X\backslash\overline{U_{reg}})\backslash\bar{U}$ is hyperharmonic on $X\setminus\overline{U_{reg}}$. Thus $\overline{U}\setminus\overline{U_{reg}}$ is an absorbent set of $X\setminus\overline{U_{reg}}$. This still holds if $\partial \overline{U} \setminus U_{ref} = \emptyset$.

278 K. OJA

REMARK 2.2. If $\partial \bar{U} \setminus \overline{U_{reg}} = \emptyset$, then $\bar{U} \setminus \overline{U_{reg}}$ is a union of some components of $X\backslash U_{reg}$.

Theorem 2,3. *Let X have a base of regular sets and U an open set of X. Then all the assertions of Theorem* 2.1 *are valid.*

Proof. Let $x \in \partial \bar{U} \setminus \overline{U_{reg}}$ be arbitrary and the connected set *V* in the proof of Theorem 2.1 be regular [2, Satz 4.3.5].

We assume that there exist the set G and the potential p such that (2.1) holds. Then, the function *u* has the same properties as previously. More over, *u* is continuous on $U \cap V$ and equals 0 at every point of ∂V . Since $\partial U \cap V \subset U_i$, by the barrier criterion also $\partial U \cap V \subset (U \cap V)$ *ir*. Thus the set of regular, and hence of extremal boundary points is contained in ∂V . From Theorem 1.4 we obtain $u=0$ on $U\cap V$, a contradiction.

Everything else needed for the conclusion may be proved exactly as for Theorem 2.1.

The following result was obtained for Brelot spaces (cf. [4, Théorème 8.2], [6, Theorem 7]).

Corollary 2.4. Let X be elliptic and U an open set of X. Then $\partial \overline{U} \setminus \overline{U_{reg}}$ **= 0.**

Proof. *X* has a base of regular sets.

EXAMPLE 2.5. It is known that for the heat equation $\partial \bar{U} \setminus \overline{U_{reg}}$ may be nonempty. Let $X = \mathbb{R}^2$ and

$$
U=(0,1)\times(0,1).
$$

Then $U_{reg} = ([0,1] \times \{0\}) \cup (\{0\} \times [0, 1]) \cup (\{1\} \times [0, 1])$, and $U \setminus U_{reg}$ is ab sorbent on $X\backslash\overline{U_{reg}},$ which may be seen directly. The same observation fol lows immediately by Theorem 2.3, and since U is a Keldys set [7, p. 1501], also by Theorem 2.1.

EXAMPLE 2.6. Let *X* be the space of [3, Example 3.2.13] and

$$
U = \{(x, y, 0) \in X \mid 0 < x^2 + y^2 < 1\}.
$$

Then $X\setminus U$ is thin at $(0, 0, 0)$, and $\{(0, 0, 0)\} = \partial \overline{U} = U_i$, Now $\overline{U} = \overline{U}\setminus \overline{U_{reg}}$ is an absorbent set of $X\!\!=\!X\backslash\overline{U_{reg}},$ which can be seen directly and by Theorem 2.3.

REMARK 2.7. If U is a Keldys set, then for every $x {\in} U$, $\text{supp}(\mu^U_x) {\subset} \overline{U_{reg}}$. Denoting

$$
T: = \overline{\bigcup_{x \in U} \operatorname{supp}(\mu_x^U)},
$$

 $T \subset \overline{U_{reg}}$. As $\overline{U_{reg}} \subset T$ always, $T = \overline{U_{reg}}$. It was proved in [5, Lemma 1.4] that $\overline{U}\setminus T$ is an absorbent set of $X\setminus T$. Writing $T=\overline{U_{reg}}$, this gives the assertion of Theorem 2.1. However, Theorem 2.3 cannot be obtained in this way, since $T{=}\,\widetilde{U_{reg}}$ does not always hold.

References

- [1] H. Bauer: *Axiomatische Behandlung des Dirichletschen problems fur eΐliptische und parabolische Differentialgleichungen,* Math. Ann. **146** (1962), 1-59.
- [2] H. Bauer: Harmonische Raume und ihre Potentialtheorie, Lecture Notes in Mathematics 22, Springer-Verlag, Berlin-Heidelberg-New York, 1966.
- [3] C. Constantinescu-A. Cornea: Potential theory on harmonic spaces, Springer Verlag, Berlin-Heidelberg-New York, 1972.
- [4] R.-M. Herve: *Recherches axiomatiques sur la thέorie des functions surharmoniques et dupotentiel,* Ann. Inst. Fourier 12 (1962), 415-571.
- [5] J. Hyvδnen: *On the harmonic continuation of bounded harmonic functions,* Math. Ann. **245** (1979), 151-157.
- [6] T. Ikegami: *Remarks on the regularity of boundary points in a resolutive compactification,* Osaka J. Math. 17 (1980), 177-186.
- [7] J. Kohn-M. Sieveking: *Regulare und extremale Randpunkte in der Potentialtheorie,* Rev. Roumaine Math. Pures Appl. 10 (1967), 1489-1502.
- [8] J. Lukes: *Functional approach to the Brelot-Keldych theorem^y* Czechoslovak. Math. J. 27 (1977), 609-616.
- [9] J. LukeS-I. Netuka: *The Wiener type solution of the Dirichlet problem in potential theory,* Math. Ann. **224** (1976), 173-178.

Helsinki University of Technology Institute of Mathematics SF-02150 Espoo 15 Finland