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ON THE SET OF REGULAR BOUNDARY POINTS
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Introduction

Let X be a ίP-harmonic space with a countable base in the sense of the
axiomatics of Constantinescu and Cornea [3], U an open set of X and Ureg

the set of regular boundary points of U. If X is a connected Brelot space,
it is known that Ureg is dense on dU (see e.g. Herve [4], Ikegami [6]). This
is not valid for more general hamonic spaces. We prove two results related
to this question. Assuming that the space has a base of regular sets, we ob-
tain a necessary condition (by means of absorbent sets) for the case that Ureg

is not dense on dU.

1. Preliminaries

Let X be a ίP-harmonic space with a countable base in the sense of Con-
stantinescu and Cornea [3] and U an open set of X. We denote the set of
regular (resp. irregular) points of dU by Ureg (resp. Uir). If U is relatively
compact and M ddU with μ^(M)=0 for all #<Ξ U9 M is called negligible. Since
X has a countable base, if M is negligible, HξM(x)=μ^(M)=0 for all x^U
(cf. [2, Satz 4.1.7]).

REMARK 1.1. Let yddU. A strictly positive hyperharmonic function u
defined on the intersection of U and an open neighbourhood V of y is called
a barrier at y if

lim u(z) = 0 .
\vz>z+y

Then j/G Ureg if and only if there exists a barrier at y. This follows from [3,
Proposition 2.4.7], [3, Theorem 6.3.3] and [3, Proposition 7.2.2]. Thus y^Ureg

implies that for every open subset U' of U with y^dU', we have j>e U'reg.
A relatively compact open set U is called a Keldys set, if Uir is negligible

[8, Proposition 2].
The following result was proved by Lukes and Netuka [9, Theorem 3]:

Let U be an open set of X. If K is an arbitrary compact set of 17, there is a
Keldys set V with Kc: Vd F c U.
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Lemma 1.2. Let U be an open set of X and MddU with H%M=Q. Let
Uf be an open subset of U. Then S£nw,=0.

Proof. Cf. [3, Proposition 2.4.4].
In the sequel we shall need the following two well-known minimum prin-

ciples.

Theorem 1.3. Let U be relatively compact. Let MddU be a negligible
set. For every lower bounded hyperharmonίc function u on U, if

lim inf u(x) > 0

for all z<=dU\M, then u>0.

Proof. This has been proved in [2, Satz 4.4.6]. The same proof carries
over into the present situation.

Let U be relatively compact and SίΌ the set of finite, continuous functions
on Ό whose restrictions to U are hyperharmonic. A point x^O is called ex-
tremal if Sx is the only measure μ on Ό such that

\ udμ<u(x)

for all weΞFtf. Then any extremal point is a regular point of dU (cf. [2, Satz
4.4.1], [3, Exercise 2.4.7]).

Theorem 1.4. Let U be relatively compact. Any u^^Fσ is positive if it
is positive at any extremal point.

Proof. The proof is a modification of [1, Satz 33]. We have to use [3,
Lemma 2, p. 26].

In the following lemma we denote by S(p) the smallest closed set outside
which a potential p is harmonic. Let G be a relatively compact open set. The
set of potentials p on X, for which 0ΦS(^>)c:G, is denoted by £PC; i?GΦ0 by
[3, Proposition 2.3.1].

Lemma 1.5. Let W and G be open relatively compact sets of X with Gd
GaW. For every potential p ^ j?G we denote

Then there exists ap^3>G such that Gd W\Ap.

Proof. Let p0 be a finite strict potential on X. Then Wd{z^X\

RpoW(z)<Po(z)} b y P> Proposition 7.2.2]. Let p = RpQ] p is a potential and
Since R^w<R^w

y for every X
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*)<ςφ r (*)< A(*) = #(*) >

and x&W\Ap.

2. On the set of regular points

Let U be an open set of X. We shall investigate the conditions under

which the set dO\Ureg may be nonempty.

Theorem 2.1. Let U be a Keldys set. Every x^.QU\Ureg has an open

neighbourhood V with dU f)VczdU\U^g such that UΠ V is a nontrivial ab-

sorbent set of V. Moreover, U\Ureg is an absorbent set of X\Ureg.

Proof. Let V be a Keldys set, V<=x such that dU Π VczdU\U^g. Ob-
viously we can assume that V is connected (Lemma 1.2).

We have F\£/Φ0 by the assumption x^dU. Let G be an open set
with GdGc:V\U' We consider the set of potentials <PC (see p. 276).

First, let there exist a G, G c V\U, and zp^^G with

(2.1) (p-ή^

The function u: =p—Rpχv is positive and harmonic on U Π Vy continuous on

dU Π V and bounded on Uf)V. Also, u does not vanish identically on U Γi V

and has the limit zero at every regular boundary point of V. Further,

= A τjunv _ A

by Lemma 1.2. Thus the set Uir{jVir is negligible on d(UΓiV). Since
dU f)VcdU\Ureg1 everywhere else on d(Uf] V)y u has the limit zero. Then
Theorem 1.3 gives w=0on U f]V, a contradiction.

Thus, for every G such that GdV\U, and every £GίP G , the function
p—ήpχv equals zero on f/fl V.

Let 3>eF\ί7 be arbitrary and G an open set with y<=GdGc.V\U.
Then by Lemma 1.5 there is a potential py such that
Φ * ) } Thus

Π i4>,

is an absorbent set of V.

Hence for every x^dU\Ureg there is an open neighbourhood VdX\Ureg

such that J7Π F is an absorbent set of V. By the sheaf property of hyperhar-

monic functions, the function v which is 0 on U\Ureg and oo on (X\Ureg)\O

is hyperharmonic on X\Ureg. Thus U\Ureg is an absorbent set of X\Ureg.

This still holds if U
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REMARK 2.2. If dU\Ureg=0, then U\Ureg is a union of some components

Theorem 2,3. Let X have a base of regular sets and U an open set of X.

Then all the assertions of Theorem 2.1 are valid.

Proof. Let x^dU\Ureg be arbitrary and the connected set V in the
proof of Theorem 2.1 be regular [2, Satz 4.3.5].

We assume that there exist the set G and the potential p such that (2.1)
holds. Then, the function u has the same properties as previously. More-
over, u is continuous on U Π V and equals 0 at every point of dV. Since
dU Π VdUir9 by the barrier criterion also dU Π Vcz(U Π V)ir. Thus the set
of regular, and hence of extremal boundary points is contained in dV. From
Theorem 1.4 we obtain u=0 on U (Ί V9 a contradiction.

Everything else needed for the conclusion may be proved exactly as for
Theorem 2.1.

The following result was obtained for Brelot spaces (cf. [4, Thόoreme
8.2], [6, Theorem 7]).

Corollary 2.4. Let X be elliptic and U an open set of X. Then dU\Ureg

= 0.

Proof. X has a base of regular sets.

EXAMPLE 2.5. It is known that for the heat equation dU\Ureg may be
nonempty. Let X=R2 and

Then C7 r v=([0,J]x{0})U({0}x[0, l])U({l}x[0, 1]), and Ό\U^g is ab-
sorbent on X\Uregy which may be seen directly. The same observation fol-
lows immediately by Theorem 2.3, and since U is a Keldys set [7, p. 1501],
also by Theorem 2.1.

EXAMPLE 2.6. Let X be the space of [3, Example 3.2.13] and

U= {(x,

Then X\U is thin at (0, 0, 0), and {(0, 0, 0)}=dO=Uir. Now U=U\U^g is

an absorbent set of X=X\Uregy which can be seen directly and by Theorem 2.3.

REMARK 2.7. If U is a Keldys set, then for every x<= JJy supp(/^)c Ureg.
Denoting
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TCUreg. As Ureg(ZT always, T= Ureg. It was proved in [5, Lemma 1.4] that

U\T is an absorbent set of X\T. Writing T=Uregf this gives the assertion of

Theorem 2.1. However, Theorem 2.3 cannot be obtained in this way, since

T= Ureg does not always hold.
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