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0. Introduction

In this paper we let G be a finite group. A. Assadi [2] and R. Oliver-
T. Petrie [6] treated the following question. What is a necessary and sufficient
condition, for given finite G-CW-complexes X and Y and a G-map f: X—Y,
to extend f to a quasi-equivalence f': X'—Y (with some reservations)? Here
a G-map is called a quasi-equivalence if it induces isomorphisms of funda-
mental groups and of integral homology groups. We apply the Oliver-Petrie
theory to covering spaces to give a necessary and sufficient condition so that
we may extend above f to a pseudo-equivalence f”: X”’—Y (with some reser-
vations), when 7,(Y) is finite.

We take Oliver-Petrie [6] as our general reference and use their terms and
notations.

Let Y be a finite connected G-complex. Then G=z,(EGx;Y) acts on
the universal covering space ¥ of Y as is shown in section 1 (compare the ac-
tion with that of D. Anderson [1]). Assume 7,(Y) is finite. Then G is finite,
so we have a G-poset [1=II(¥) and a G-poset II=II (Y). In section 3 we
give a one to one correspondence 7 from the set of G-families in /7 to the
set of G-families in /7, and an isomorphism » from 2(G, IT) to (G, II). A
subgroup 4,(G, Y, &) of 4G, F) is defined by 4,(G, Y, F)=v(4(G, T(F))).
Under certain conditions 4,(G, Y, &F) agrees with the set

{IM/]1e(G, II)| f: X—Y is a pseudo-equivalence such that
X+ is an F-complex}
(see Proposition 4.1), where M, is the mapping cone of f.
Our main results are:

Theorem 1. Let X be a finite G-complex, Y a finite connected G-complex
with finite 7 (Y), f: X =Y a skeletal G-map, and FCII any connected G-
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Sfamily containing F,. Let F'CF be any subfamily containing . Assume
T(F) is simply generated. Then there exist a finite G-complex X' DX and a
pseudo-equivalence f': X'—Y extending f with X'|X an F'-complex, if and only if

[M,)€4,G, Y, F)+2G, F') in G, I).

Corollary 2. Assume G is not of prime power order. Let Y be a finite
connected G-complex with finite n(Y), and F,, +--, F, the connected components
of F=Y¢. Then there is a subgroup Ny C Z* such that given any finite G-complex
F’ and a map f: F'—F, there exist a finite G-complex X with X¢=F' and a pseu-
do-equivalence f: X —Y with f¢= f if and only if

(X(Fr)—X(F]), -+, X(Fy)—X(F})) €Ny,
(Fi =fY(F)).

Above Ny is the image of 4,(G, Y, II) by the homomorphism ¢: 2(G, II)—
Z* defined in section 3 of [6]. Thus Ny is included in 7y.

Corollary 3. Let G and Y be as above. Moreover we assume F is connected
and G belongs to G, i.e. G|P is cyclic for some normal subgroup P of G of prime
power order. Given any finite G-complex F' and any map f: F'—F, there exist
a finite G-complex X with X°=F' and a pseudo-equivalence f: X —Y extending
1, if and only if X(F)=X(F").

The proofs of Theorem 1 and Corollaries 2 and 3 are given in section 4.

In a subsequent paper we will calculate Ny in several cases.

In this paper we often omit the adjective skeletal from a skeletal G-map,
however, a G-map should be understood to be a skeletal G-map when its map-

ping cone appeares.

1. A standard action of #,(EGX¢Y) on the universal covering
space of Y

Let Y be a connected G-complex, p: Y—Y the universal covering, EG
the universal principal G-bundle. Arbitrarily choose and fix base points a, of
Y, b, of Y with p(b,)=a,, and ¢, of EG. Let ¢: EGX Y—=EGX Y be the
canonical projection. We use uy=(c,, a,) and v,=gq(u,) as the base points of
EGXY and EGX ;Y respectively. We put z=m,(Y) and G=n(EG X ;Y) in
this section.

We define a map k: Y—=EG XY by k(y)=q(c,, y) for yeY. The covering
q: EGX Y—EG X ;Y induces the exact sequence

W-z56%6- {1}
where j is the induced map by &, and & is the map obtained by identifying zy(G)
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with G. We regard = as a subgroup of G through j.
In the following we illustrate a standard action of G on ¥ such that

(1) p is o-equivariant, i.e. for g€G and be Y p(gh)=a(g)p(d),

(2) the induced CW-complex structure on ¥ by p and the G-action make
Y a G-complex,

(3) the restriction of the G-action to = agrees with the action given by
M. Cohen [3; p. 12].

We denote by r the projection from EGX Y to the second factor Y. Im-
mediately 7(u)=a, follows. We are going to give gb for g€CG and beY. An
element g of G is represented by a path a: [0, 1]=>EG X ;Y with a(0)=a(1)=1,.
There is a unique lift L (a): [0,1]>EG X Y of a (i.e. goL,(a)=cr) with L (c)(0)
=u,. The homomorphism o: G—G is given by the relation o(g)uy=L(cr)(1).
The path a gives two paths a’=roL,(a): [0, 1]=Y and its lift L (a"): [0, 1]
—Y (ie. poL(a’)=a) with L(a’)(0)=b, We have a’(0)=a, and a'(1)=
o(8)a,.

LQ(a) ’
(@ \’wg
Uy b,
EGxY Y
s/ \ z/
o
a(g)a a'
'Uo a,
EGx.Y Y

For given b€ Y, choose arbitrarily a path @: [0, 11— with 8(0)=b, and B(1)
=b. B gives two paths poB: [0, 1]—Y and B': [0, 1]—=Y defined by B'(t)=
a(2)p(B(?)) for t[0, 1]. We have B'(0)=0(g)a,=a’(1) and

(1.1) B'(1) = o(g)p(®) -
There is a unique lift L,(8"): [0, 1] Y of B’ with L,(8") (0)=L,(a') (1). We
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define gb to be the point L,(B")(1).
By (1.1) we have p(gb)=o(g)p(b). Thatis, p is o-equivariant. The pro-
perties (2) and (3) follow immediately.

2. Remarks on ¥-complexes

For a finite group G, a G-poset is axiomatically defined as follows. Let
(G) be the set of subgroups of G. By conjugation G acts on 4(G): (g, H)—
gHg™ for g G, He 4(G).

2.1. A parcially ordered G-set II equipped with a G-map p: II-4(G)
is called a G-poset if the following four conditions are satisfied: for acll,
Bell (i) p(a)cG,, (ii) if <R then ga=<gp for geGC, (iii) if a5/ then
p(a)2p(B), and (iv) for a subgroup H of p(a) there exists a unique element
7 of IT such that Y=« and p(v)=H.

Typical examples of G-posets are JI(X) for G-spaces X (see [4] and [6]).
A G-subset of a G-poset II is called a G-family (in II). A II-complex Z for
a G-poset II is a finite G-complex with base point * and subcomplexes Z,C Z,
(x€4,), for all €l such that Z,,=gZ, for g=G, Z,CZy for a </, and
Z8= \/ Z, for HZG.

p(ad=H
For a G-family & in II a II-complex Z is called an F-complex if
Zy= {x}UU{Zs|BEY, B=a}
for any a1l
2.2. Let II be a G-poset, F a G-family in II, and Z an F-complex.

For acll, Bll and x(Z,NZg)\{#}, there is a unique element v of &F
such that Y=a, Y=8, p(v)=G, and xEZ,.

2.3. Let II be a G-poset, Z a II-complex. For each (non-equivariant)
cell ¢ in Z\ {x}, there exists a unique element a(c)eIl such that p(a(c))=
G,, x€¢c, and ¢cCZy,y. If ZzDc for Bll, then a(c)<B. So we call ¢ of

type a(c).
24. Let & be a G-family in II. A Il-complex Z is an F-complex if
and only if F contains a(c) for any cell ¢ in Z\ {*}.
Let II be a G-poset. For each a&ll, the II-complexes («) is the G-
space {*} || G/p(ar) with
(@)s = {*} 1L U {gp() 126G, ga =6}

for pell.
In the rest of this section we let ¥ be a finite connected G-complex and
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m=I(Y).

Let X be another finite G-complex, and f a G-map from X to Y. For
acll X,=X"Nf(lal). X*=X]| {+} (disjoint union) has a [I-complex
structure given by (X*),=X,|l {*}. We call this /7-complex structure the
II-complex structure induced by f.

2.5. Let a be an element of /7. For an arbitrary G-map f from X=
G/p(a) to Y with f(p(a))< ||, the induced II-complex X* by f agrees with
(@) as II-complex.

2.6. Let F be a finite CW-complex, and « an element of /7. For a G-
map f from X=(G/p(a))XF to Y with flp(a)x F)C |a|, [X]=X(F)[«] in
2G, T(Y)).

Proposition 2.7. Let F be a G-family in II=II(Y) containing F(Y).
Then

G, F)= {[MJeQG, II)| f: X—Y is a G-map such that
X+ is an F-complex}.

Proof. Choose integers 2(ar), a €<, such that [Y*]=31z(a)[a], where
a runsover F. For any £€2(G, F), there are integers 2'(a), a =, such that

=2 a)[a]— 2 2'(a)[a].
acd acd
Take finite CW-complexes F(at) with X(F(a))==z'(e), and put X= ]| {(G/p(a))
XF(a)lasF}. There is a G-map f: X—Y with f(p(a)x F(a))<|a|. We
have [M ]=[Y*]—[X*]=E by 2.6.
According to Proposition 1.6 of [6],
4G, F)= {[Z]€5(G, II)| Z is a contractible F-complex}.

Moreover we have the following.

Proposition 2.8. Let & be a connected G-family in [I=II(Y) such that
G contains F(Y) and S is simply generated. Then

AG, F)= {[M]e2G, I)| f: X =Y is a quasi-equivalence such that
Xt is an F-complex}.

Proof. We prove that for given £€4(G, F) there exist a finite G-complex
X and a (skeletal) G-map f: X—Y with [M =& For £€4(G, &) there are
a finite G-complex X, and a G-map f;: X;—Y with [M;]=& by Proposition
2.7. By the same argument as Oliver-Petrie used at Steps 2 and 3 of the proof
of [6; Proposition 2.9], we get a finite G-complex X, DX, and a G-map f;:
X,—Y extending f, such that X,/X, is an g -complex, My, is an F-resolution
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and {M;}=E. Adding free cells to X appropriately if necessary, we may
assume dim X;=3. We use the same argument as was used in the proof (1)
of [6; Theorem 3.2], and obtain a finite G-complex XD X, and a G-map f:
X—Y extending f; such that X/X, is a S-complex and f is a quasi-equivalence.
We have to check [M,=&. Both [M,] and [M/,] belong to 4G, ), and
[X/Xo)=[M;]—[M,]. We have X((X/Xy)s)=1 for acd by Proposition
2.6 of [6]. Since X/X, is an f}’-complex, we have [X/X]=0. That is [M/]
=[M;]=&

3. Correspondences between the posets of a finite covering space
and a base space

In this section we let G and G be finite groups, o: G—G a epimorphism,
Y a finite connected G-complex, ¥ a finite connected G-complex, and p: ¥—
Y a o-equivariant covering. We put z=ker s. Moreover we assume "that
m acts freely and transitively on each fiber.

The G-action on ¥ gives a G-poset II=1I1(¥) and a G-map p: Il — J(G).
The set of G-families in /7 is denoted by F and that of G-families in 17 is
denoted by F.

For arbitrarily given a&Il, there is a unique element 8<II such that
p(B)=o(p(er)) and |B| D p(la|). This correspondence defines a map p: IT—1II.

For a¢1l, we denote the connected components of p~Y(|a|) by 4, -, 4,.
We have p(4;)=|al| for any =1, .-, k. Each A4; is fixed by a subgroup H;
of G with o(H;)=p(a), since = preserves each fiber. As z acts freely on
each fiber, o: H;— p(a) is bijective. Each 4, is contained in a connected com-
ponent B; of the H-fixed point set of ¥. The projection p is o-equivariant,
so p(B;)=|a|. We have 4;=B;. There is a unique element B,II such
that p(B;)=H; and |B;|=A4;. We define a map 7: I[I-S(ll) by 7(a)= {8,
-+, B}, where 343(17 ) denotes the set of subsets of I7.

Immediately we have p(r(a))={a} for acIl. The above argument
implies | ()| =p(||) for a€ll. The following two diagrams are commuta-
tive:

a —ts /LN

Il e [ [

3(6) —Z> H(G) and H(¥) -2 H(V),

where S(¥) and 4(Y) are the sets of subspaces of ¥ and Y respectively. For
a€ll, @ is an element of 7(u()).

Proposition and definition 3.1. The following two equations define maps
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M: F—F and T: F—F,

MT) = {u(a)|lacF} for FEF,
T(F)= U{r(@)|lasF} for FF.

We have Mo T= idy and ToM=idy.
We omit the proof.

Lemma 3.2. (i) If $EF is connected, then M(9~7) is connected, and
A ~
M(F)=M).

(il) If FEF is connected and contains F(Y), then T(F) is connected, and
A
T(F)=T(@).

Proof. We prove (ii), and let (i) remain to be proved by the reader. We
denote the maximal element of 7 by #, so we have 7(»)={%}. Since v %,
meT(F). Assume a is an element of 7 such that p(a) is of prime power
order and {BeT(¥)|B=a} is not empty. Since MoT=id and p preserves
the order, {B€T|B=pu(a)} is not empty. There is the unique maximal ele-

ment v of {BeF|B=p(a)}, (v=p(a)). Since Y* is a F-complex, we have
|7|=|p(a)| by Proposition 1.2 of [6]. There uniquely exists §&7(v) with
8=a. Forany B€T(¥) with B=<a, we have |B|C|a|=|8| and u(B)=v.
Thus o(p(B))=p(r(B))Dp(Y)=0c(p(8)). Since m=ker o acts freely on each
fiber, we see p(B)Dp(8). Therefore B8, that is, & is the unique maximal
element of {BET(F)|B<=a}. T(F) is connected. This argument implies

A N
T(&F)=T(F).

Let X be another finite G-complex, and f: X —Y a skeletal G-map. Then
f induces the covering f*p: X=f*¥Y—X,

X = {x b)eXx Y| f(x) = p(b)},

(f*p) (x, b)y=x for (x,5)eX. G acts on X by g(x, b)=(o(g)x, gb) for g=G,
(v, ))eX. X has the CW-complex structure induced by f*p, and becomes a
G-complex. A G-map f: X—7¥ is given by f(x, b)=b for (x,b)€X, and f is
skeletal.

Lemma 3.3. In the above situation, Fy="T(F ;) and F ,=M(F5).

Proof. Firstly we show M(F7)cSF,;. For acFz, (i) pla)elso(lal)
or (ii) p(a)EIso (X,). Assume the case (i). There exists a point b€ || with
Gy=p(a). Wehave Gyim—=a(Gy)=o(p(a)=p(u(a)), and p(u(a)) E1so (| u(e)]).
Thus u(e)eF,. Assume the case (ii). There exists a point (¥, b)EX, with
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Geon=p(a). By definition X,=X*( Fi(|a])= {(+', ) € X x T flx")=p(b),
x'€X°F® p'e|al}. We have G y=0"G,)NG,, and p(u(a))=0c(p(ax))=
o(Cerm)=G,. Since £(| u(@))=f~Hp(| ), xEX** N f(p(| x| ))=Xucar
Thus p(a)eF,;. We have M(F7)CS,.

Secondly we show T(F,)CF7. For aeF,, (i) p(a)EIso (|a|) or (iv)
pla)EIso(X,). Assume the case (iii). There exists a point a€ |a| with p(x)
=@,. Fix Ber(a)and be|B| Np~Ya). G, contains p(B). Since o: G—G,
is bijective, o(3(8))=p(a)=G, implies G,=p(B). Thus p(B)EIso(|A|), and
BeT7. We have t(a)CF7. Assume the case (iv). There exists a point
xeX, with G,=p(a). Fix fe7(a)and b |B| with f(x)=p(b). Then (x, b)
eX,. The isomorphism ¢: G,— G ;) maps both (8) and G(,',,)=o'—l(G,) NG,
to G,. We get p(B)=G, s, and BEF7. Thus 7(a)CF7. We have T(Z;)
cY;.

By Proposition and definition 3.1, we have F7=T(F;) and F,=M(Z75).

Let & be a G-family in /7, Z an F-complex. The quotient space Z=
Z|z has a II-complex structure given by

Zm :( U Zm)/”9 acll.
BET(a)

Moreover Z becomes a M(F)-complex. For a& Il we have
(3.4) X(Za)—1 = (X(Zp)—1)/ |7 ,

where 3 is an arbitrary element of 7(a).

The correspondence Z— Z defines a homomorphism »: G, F)—2(G,
M(F)). By (3.4) v is injective. If G'CSF then the following diagram is
commutative:

G, F") ——> 2(G, 5})

AG, M(F")) — UG M),
where the horizontal arrows are the canonical maps.

Proposition 3.5. Let & be a G-family in 11, and put F=T(F). Then
v: UG, F)— AG, F) is an isomorphism.

Procf. It is sufficient to show that » is surjective. Arbitrarily fix a€ <.
Put X=G/H, H=p(a). There is a G-map f: X—Y with f(1-H)eY,. Let
f: X=f*¥Y—7¥ be the induced G-map. (X)* has a IT-complex structure in-
duced by f. Take a point (1-H, b)€ X, so f(1-H)=p(b), and put B=min. {yE
111X,>(1-H, b)}, (that is, (1-H, b) is a point of a cell of type B). Since G
acts transitively on X, (X)* is a {gB3|g&G}-complex. Since u(B)=a, (X)*
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is an F-complex. An easy calculation shows ((X)*/z)yC(X*)y for any vell.
Observing ((X)*/z)¥ for K <G, we have ((X)*/x)y=(X*)y for any y&II. Since
X*+=(a) by 2.5, we have (X)*/z=(a) as a II-complex. Since (G, F) is
generated by (a)’s, v is surjective.

Proposition 3.6. Let F be a G-family in II, and F=T(F). Then we
have v(4(G, F))C 4G, F).

Proof. Let Z be a contractible &-complex. Then (Z, %) is a z-co-
fibering pair and Z\{*} is a numerable z-space. Z is z-contractible, and Z/=
is contractible. By Proposition 1.6 of [6] we have »(4(G, F))C 4G, F).

4. Proofs of the main results

In this section we let Y be a finite connected G-complex with finite 7,(Y),
p: Y—Y the universal covering, and put G=n(EGX;Y) and z=m(Y).
As was described in section 1, ¥ has the standard action of G. We use the
notations in section 3 for this situation.

For a G-family & in II=II(Y), we define a subgroup 4,(G, Y, &) of
G, I) by
4(G, Y, F) = v(AG, T(F))).
By Proposition 3.6 4,(G, Y, &) is a subgroup of 4(G, F).
Proposition 4.1. Let & be a connected G-family in I containing F(Y).
Assume T(E?" ) is stmply generated, then
4G, Y, F) = {[M/]€G, I)| f: X—Y is a pseudo-equivalence such that
X+ is an F-complex} .
Proof. By Lemma 3.3 we have F(Y)=T(4(Y))c T(Z). By Lemma 3.2
(i1) and Proposition 2.8 we have
4G, T(F)) = {{M7]e2(G, )| f: X— ¥ is a quasi-equivalence such that
(X)* is a T(F)-complex}.
Since Y is a numerable z-space, f is a m-homotopy equivalence. Thus the
induced map f: X=X/z—Y is a homotopy equivalence. On the other hand

v([My])=[M,]. Through the map » we have the consequence of the above
proposition.

For a moment we assume Theorem 1 and prove the corollaries.

Proof of Corollary 2. We may assume F is not empty. In this case G
is a semi-direct product of G by = as is well known. Let a,, --*, a; be the
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elements of /7 such that |a;|=F; and p(a;)=G, i=1, --+, k. Oliver-Petrie
defined a homomorphism ¢: 2(G, II)— Z* by

St'([ZD = (X(Z,l)—l, Tty X(Zdlc)———l)

for a Il-complex Z. The image of 4(G, II) by ¢ is denoted by ny. We define
Ny as the image of 4,(G, Y, II) by ¢. Thus Ny is a subgroup of 7ny. Put
F=II and F'= {aEHlp(a)#:G} Then for a€F p(a) is of prime power
order. For ae T(EF ) A(ex) is 1som0rph1c to p(p(a)), so p(a) is of prime power
order. By Corollary 4.14 of [6] T(ﬂ’) is simply generated. Put f'=inclof:
F'—Y. Since ker ¢ is (G, F'), we have [M]€4,(G, Y, F)+2G, F') if
and only if y([M])ENy. On the other hand ¢([M])=(X(F,)—X(F7), -+,
X(Fy)—X(F#)). Thus we have the conclusion of Corollary 2.

Proof of Corollary 3. Since F is connected, n,=n;Z. By the assumption
Ge g, ny={0} (see [5; p. 171]). We obtain Ny={0}. Corollary 2 yields
Corollary 3.

Proof of Theorem 1. Let g=f#p: X=f+Y— X be the induced covering
and f: X—Y the induced map by f. Since FOF,DF(Y), T(F) is con-
nected.

Firstly we assume f is extendible to f': X'—Y as was mentioned in Theo-
rem 1, (we may assume f’ is skeletal without loss of generality). Let f': X’
—f"Y— Y be the induced map by f’. Since f’ is a homotopy equivalence, f
is a m-homotopy equivalence. If we show X'/X is a T(ZF')-complex, we
have [M7]€4(G, T(F))+2G, T(ZF')) by Theorem 3.2 of [6]. Through
the map » we have [M/]€4,(G, Y, F)+2(G, F'). So we prove X'/X is a
T(Z')-complex. For a cell ¢ in X'\X, let T be the type of ¢. The
isotropy group on ¢ is f(a) and that on ¢’(c) is o(p(x)), where ¢’'=f"*p: X'—=X".
Since f(c)< |et|,f'(g'(c)) < |u(e)|. The type of ¢’(c) is u(er). By the assump-
tion X'/X is a F'-complex, and so u(a)eF’. Thus acT(4’). This means
that X'\ X is a T(F’)-complex.

Secondly we assume [M/]€4,(G, Y, F)+2(G, F’). Since v: G, T(F))
— (G, F) is injective and v(2(G, T(F")))=2(G, F') by Proposition 3.5, we
have [M7]€4(G, T(F))+2G, T(F')). By Theorem 3.2 of [6] there exist
a finite G-complex X’DX and a (skeletal) pseudo-equivalence f': X—¥ ex-
tending f such that X'/X is a T(F')-complex. Since ¥ is a numerable z-space,
f' is a z-homotopy equivalence. Put X'=X’/z. Then X'DX and the in-
duced map f': X'—Y by f' is a homotopy equivalence. Moreover X'/X is
an &'-complex by the similar argument used in the first part. This completes
the proof.
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