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0. Introduction

In this paper we let G be a finite group. A. Assadi [2] and R. Oliver-
T. Petrie [6] treated the following question. What is a necessary and sufficient
condition, for given finite G-CW-complexes X and Y and a G-map /: X-+ Yy

to extend / to a quasi-equivalence / ' : X'-> Y (with some reservations) ? Here
a G-map is called a quasi-equivalence if it induces isomorphisms of funda-
mental groups and of integral homology groups. We apply the Oliver-Petrie
theory to covering spaces to give a necessary and sufficient condition so that
we may extend above / to a pseudo-equivalence / " : X"-> Y (with some reser-
vations), when πλ(Y) is finite.

We take Oliver-Petrie [6] as our general reference and use their terms and
notations.

Let 7 be a finite connected G-complex. Then G=πι(EGxGY) acts on
the universal covering space YΌf Y as is shown in section 1 (compare the ac-
tion with that of D. Anderson [1]). Assume nχ{Y) is finite. Then G is finite,
so we have a (?-poset Π=Π(Ϋ) and a G-poset Π=Π(Y). In section 3 we
give a one to one correspondence T from the set of G-families in Π to the
set of (5-families in Π, and an isomorphism v from Ω(G, Π) to Ω(G, Π). A
subgroup 4(G, Y, 3) of J(G, 3) is defined by 4(G, Y, 3)=v(A(G, T(3))).
Under certain conditions Ah(G9 F, 3) agrees with the set

{[Mf]^Ω(G, Π) I/: X-*Y is a pseudo-equivalence such that

X+ is an ΞF-complex}

(see Proposition 4.1), where Mf is the mapping cone of/.
Our main results are:

Theorem 1. Let X be a finite G-complex, Y a finite connected G-complex
with finite ττi(Y), /: X-+Y a skeletal G-map, and 3dΠ any connected G-
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family containing 3f. Let ff'cΞF be any subfamily containing 3. Assume
T(3) is simply generated. Then there exist a finite G-complex X'Z)X and a

pseudo-equivalence f: X'-> Y extending f with X'jX an 3'-complex, if and only if

[Mf]<ΞAh{G9 Y, 3)+Ω(Gy 3') in Ω(G, Π).

Corollary 2 Assume G is not of prime power order. Let Y be a finite
connected G-complex with finite πx(Y), and Fly •••, Fk the connected components
of F— YG. Then there is a subgroup NγdZk such that given any finite G-complex
F1 and a map f: F'-^F, there exist a finite G-complex X with XG=Ff and a pseu-
do-equivalence f:X->Y with fG=f if and only if

(F't=f-\Ft)).

Above Nγ is the image of Δh{G> Y> Π) by the homomorphism ψ: Ω(G> /7)-»
Zk defined in section 3 of [6]. Thus Nγ is included in nγ.

Corollary 3. Let G and Y be as above. Moreover we assume F is connected
and G belongs to j?1, i.e. GjP is cyclic for some normal subgroup P of G of prime
power order. Given any finite G-complex Ff and any map f: F'-*F, there exist
a finite G-complex X with XG~F' and a pseudo-equivalence f: X-^-Y extending
/ if and only if X(F)=X(Ff).

The proofs of Theorem 1 and Corollaries 2 and 3 are given in section 4.
In a subsequent paper we will calculate Nγ in several cases.
In this paper we often omit the adjective skeletal from a skeletal G-map,

however, a G-map should be understood to be a skeletal G-map when its map-
ping cone appeares.

1. A standard action of irr(EGxGY) on the universal covering
space of Y

Let Y be a connected G-complex, p: Ϋ-*Y the universal covering, EG
the universal principal G-bundle. Arbitrarily choose and fix base points a0 of
y, b0 of Ϋ with p(bo)=ao, and c0 of EG. Let q: EGx Y->EGxGY be the
canonical projection. We use uo=(cO9 aQ) and vo=q(uo) as the base points of
EGx Y and EGxGY respectively. We put 7t=πι{Y) and G=πλ(EGxGY) in
this section.

We define a map k: Y->EGxGY by k(y)=q(c0, y) fory^ Y. The covering
q: EGx Y-+EGxGY induces the exact sequence

where j is the induced map by k> and σ is the map obtained by identifying πQ(G)
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with G. We regard π as a subgroup of G through j .
In the following we illustrate a standard action of G on Ϋ such that

(1) p is σ-equivariant, i.e. for g^G and b^Y p(gb)=σ(g)p(b)y

(2) the induced CW-complex structure on Ϋ by p and the (?-action make

Y* a (?-complex,

(3) the restriction of the (?-action to zr agrees with the action given by

M.Cohen [3; p. 12].

We denote by r the projection from EGx Y to the second factor Y. Im-
mediately r(uo)=ao follows. We are going to give gb for g^G and J G ? . An
element g of G is represented by a path α: [0, 1] -+EGx GY with α(O)=α(l)=«;o
There is a unique lift Lff(α): [0, l] (->£6x Y of α (i.e. qoLq(a)=a) with Lff(α)(0)
=«o. The homomorphism σ: (?-*G is given by the relation <τ(g)uo=Lg(a)(l).
The path a gives two paths a'=roLq{μ)\ [0, 1]->F and its lift Lp(a'): [0, 1]
->F(i.e. poLp(a')=a) with L ί (α / )(0)=i 0

 W e h a v e oc\0)=a0 and α ' ( l ) =

For given i e F, choose arbitrarily a path /3: [0, 1]-*-^ with β(0)=bo and /3(l)
=A. /8 gives two paths poβ: [0, ί]^Y and /S': [0, 1]-*Y denned by β'(t)=
σ(g)ρ(β(t)) for te [0, 1]. We have £ ' ( 0 ) = σ t e K = α ' ( l ) and

(1.1) /?'(!) = ^ ) ^ )

There is a unique lift Lt(β'): [0, 1]-*F of /8' with Lt(β') (0)=Lp{a') (1). We
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define gb to be the point Lp(β')(l).
By (1.1) we have p(gb)=σ(g)p(b). That is, p is cr-equivariant. The pro-

perties (2) and (3) follow immediately.

2. Remarks on SF-corαplexes

For a finite group G, a G-poset is axiomatically defined as follows. Let
si(G) be the set of subgroups of G. By conjugation G acts on sΔ(G): (g, H)\->

, H<=ΞS&(G).

2.1. A parcially ordered G-set 77 equipped with a G-map p: Π->sλ(G)
is called a G-poset if the following four conditions are satisfied: for αE/7,
β£ΞΠ (i) p(a)czGa> (ii) if a^β then ga^gβ for £<ΞG, (iii) if α$/3 then
p(α)ϋp(/3), and (iv) for a subgroup AT of p(α) there exists a unique element
γ of 77 such that 7 ^ α and p(γ)=7iΓ.

Typical examples of G-posets are Π(X) for G-spaces X (see [4] and [6]).
A G-subset of a G-poset 77 is called a G-family (in /7). A Π-complex Z for
a G-poset 77 is a finite G-complex with base point * and subcomplexes Z^czZ.
(*GZΛ), for all a^Π such that Zg<A=gZΛ for g^G, ZaaZβ for α^/3, and

ZH= \J ZΛ for

For a G-family £F in 77 a 77-complex Z is called an ΞF-complex if

for any

2.2. Let 77 be a G-poset, £F a G-family in 77, and Z an £F-complex.
For αe77, /3e77 and ^^(Z^nZ^Xί*}, there is a unique element 7 of £F
such that Ύ^a,Ύ^βy ρ(7)-=Gx and

2.3. Let 77 be a G-poset, Z a 77-comρlex. For each (non-equivariant)
cell c in Z\{*}, there exists a unique element a{c)^Π such that ^ ( α ^ ) ) ^
Gx, x^c, and ί C Z ^ ) . If ZβZDc for /3e77, then a(c)^β. So we call c o/

2.4. Let £F be a G-family in 77. A 77-comρlex Z is an £F-comρlex if
and only if £F contains a(c) for any cell c in Z\ {*}.

Let 77 be a G-poset. For each a^Π, the 77-complexes (a) is the G-
space {*} J l Gjp(a) with

(*)* == WiLU {gpiμ)\g*ΞG,ga^β}

for /3e77.
In the rest of this section we let Y be a finite connected G-complex and
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Π=Π(Y).
Let X be another finite G-complex, and / a G-map from X to Y. For

aeΞΠ Xa=XpWΓif-\\a\). X+=X]L{*} (disjoint union) has a 77-complex
structure given by (X+)a=X<»lL{*} We call this 77-comρlex structure the
77-complex structure induced by f.

2.5. Let a be an element of Π. For an arbitrary G-map / from X=
G/ρ(a) to Y with f(p(a)) e | a |, the induced 77-complex X+ by / agrees with
(a) as i7-comρlex.

2.6. Let F be a finite CW-complex, and a an element of Π. For a G-
map / from I = ( G / p ( α ) ) x F to Y with f(p(a)xF)a | α | , [X+]=X(F)[α] in

Proposition 2.7. Let 3 be a G-famίly in Π=Π(Y) containing £F(Y).
Then

β(G, £F) - {[M/] ei3(G, ZΓ) I /: X-> Y is a G-map such that
X+ is an 3-complex}.

Proof. Choose integers z(a), a&3?, such that [Y+]=Σz(a) M> where
a runs over £F. For any ξ^Ω(G} ΞF), there are integers z\ά)> α^£F, such that

f = Σ *(«) [«]- Σ *'(«) [«]

Take finite CW-complexes F(a) with %(ί l(α))=^'(α), and put X= Ji{ίG/p(α))
X F(α) I α e £F}. There is a G-map f:X-»Y with /(p(α) X F(a)) c | a \. We
have [Mf]=[Y+]-[X+]=ξ by 2.6.

According to Proposition 1.6 of [6],

J(G, EF) = {[Z]eβ(G, 77) | Z is a contractible £F-complex}.

Moreover we have the following.

Proposition 2.8. Let 3 be a connected G-famίly in Π=Π(Y) such that

£F contains £?( Y) and £? is simply generated. Then

J(G, 3) = {[Mf]eΩ(G, Π)\f: X-*Yis a quasi-equivalence such that
X+ is an 3'-complex}.

Proof. We prove that for given ξ eJ(G, 3) there exist a finite G-complex
X and a (skeletal) G-map /: X->Y with [Mf]=ξ. For f eJ(G, ff) there are
a finite G-complex Xo and a G-map /0: ^?0->y with [Mfo]=ξ by Proposition
2.7. By the same argument as Oliver-Petrie used at Steps 2 and 3 of the proof
of [6; Proposition 2.9], we get a finite G-complex X{Z>XQ and a G-map fλ:
Xx-> Y extending /0 such that XJXQ is an £F-comρlex, Mfχ is an £F-resolution
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and {Mf^=ξ. Adding free cells to X appropriately if necessary, we may
assume dim J?i^3. We use the same argument as was used in the proof (1)
of [6; Theorem 3.2], and obtain a finite G-complex XZ)XX and a G-map /:
X->Y extending fx such that X\Xλ is a £?-complex and / is a quasi-equivalence.
We have to check [Mf]=ξ. Both [Mf] and [Mfo] belong to J(G, £?), and
[XIXo]=[Mfo]-[Mf]. We have %((X/XO)Λ)-1 for α E 5 by Proposition
2.6 of [6]. Since X/Xo is an ^-complex, we have [X/X0]=0. That is [Mf]

3. Correspondences between the posets of a finite covering space
and a base space

In this section we let G and G be finite groups, σ\ G—>G a epimorphism,
y a finite connected G-complex, F a finite connected (5-comρlex, and >̂: Y"-*
y a σ-equivariant covering. We put 7r=kerσ. Moreover we assume that
7Γ acts freely and transitively on each fiber.

The (?-action on Ϋgives a (?-poset Π=Π(Ϋ) and a (?-maρ p: Π-> s£(G).
The set of G-families in 77 is denoted by JP and that of (r-families in 77 is
denoted by JF.

For arbitrarily given a^Π, there is a unique element β^Π such that
p(β)=<r(p{a)) and |/3| ID/>(|α:|). This correspondence definesamap μ: Π->Π.

For α e i 7 , we denote the connected components of ^ " ^ | a \) by Aly "-,Ak.
We have p(Ai)= \a\ for any i=ly •••, ft. Each A{ is fixed by a subgroup H{

of (? with σ(Hi)=p(a), since 7Γ preserves each fiber. As π acts freely on
each fiber, σ\ Hi->p(a) is bijective. Each A{ is contained in a connected com-
ponent Bi of the i/rfixed point set of Ϋ. The projection p is cr-equivariant,
so p(Bi)=\a\. We have A—B^ There is a unique element βi^Π such
that p(βi)=Hi and 1/9,1=^. We define a map r : Π->s&(Π) by τ(α)={A,
"*> A}? where s&(Π) denotes the set of subsets of 77.

Immediately we have μ(r(a))= {a) for α^77. The above argument
implies |μ(a)\ =p(\a\) for a^Π. The following two diagrams are commuta-
tive:

where sλ{ Ϋ) and Ĵ 5( Y) are the sets of subspaces of Ϋ and y respectively. For
, α is an element of τ(μ,(α)).

Proposition and definition 3.1. The following two equations define maps
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M: F-+F and T: F-+F,

M(£F)= {μ §

We have M<>T= idF and ToM=idF.

We omit the proof.

Lemma 3.2. (i) If 3 Έ F is connected, then M(£F) is connected, and

O

(ii) If £ F e F is connected and contains 3?(Y), then T(£F) is connected, and

T(9)=T(9).

Proof. We prove (ii), and let (i) remain to be proved by the reader. We

denote the maximal element of Π by my so we have τ(^) ={<<**}. Since « £ ? ,

^eT(£F). Assume a is an element of Π such that ρ(μ) is of prime power

order and {βGT(3Ϊ)\β^a) is not empty. Since MoT=id and ^preserves

the order, {β^£F\βt=*μ(ά)} is not empty. There is the unique maximal ele-

ment 7 of {β^EF\β^μ(a)}, (Ύ=μ(a)). Since Y+ is a fΞF-complex, we have

| 7 | = |/x(α)| by Proposition 1.2 of [6]. There uniquely exists δGτ(γ) with

δ ^ α . For any/3eT(£F) with β^ay we have | / 9 | c | α | = | 8 | and μ(β)^y.

Thus σ{ρ{β))=ρ{μ(β))^ρ{y)=σ{ρ{8)). Since τr=ker σ acts freely on each

fiber, we see ρ(β)ZDp(S). Therefore β^δ, that is, δ is the unique maximal

element of {β^T(3?)\β^a}. T(3?) is connected. This argument implies

T(9)=T(&).

Let X be another finite G-complex, and/: I - > Y a skeletal G-map. Then

/induces the coveringf*p: X=f*Ϋ->X,

1= {(x, i ) G l x ΫI f(x) =p(b)},

(f*P)(x> b)=x f o r (χ> b)^X. G acts on X by #(*, b)=(σ(g)x, gb) for ^ G G ,

(Λ?, 5)GJ?". J? has the CίF-complex structure induced by /*/>, and becomes a

(5-comρlex. A (?-map / : X-> Y" is given by J{x> b)=b for (Λ;, b)^X, and / is

skeletal.

Lemma 3.3. In the above situation, 3γ=T{βf) and 3f=M{βγ).

Proof. Firstly we show M(£F/)CΪ ; . For ae£F/, (i) /3(α)eIso (| α |)

or (ii) /9(α)Glso (-X*). Assume the case (i). There exists a point i e |.α| with

Gb=P(a). Wehave G^)=σ(<?*)=σ(j5(α))=p(/Λ(α)), and p(μ(α))eIso(|Mα)l).

Thus μ{ά)^.3f. Assume the case (ii). There exists a point (x, b)^XΛ with
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G(Xfb)=P(a). By deίiniύonXΛ=rwnf-\\cc\)={(x',b')(ΞXχ Ϋ\ f(x')=p(br),

x><=X*w*)\b't=\a\}. We have Gisb)=σ'\Gx)ΓiGh9 and p(μ(a))=σ(p(a))=
σ(G<,t§))=Gt. Since f \ \ μ(a) \ )=f-1{p( \a |)), . E Γ « n Γ\P{ I a \ ))=XM.
Thus μ(a) e 3f. We have M ( 3 » C 2*,.

Secondly we show T(^Ff)cz^f. For a^^F/y (iii) ρ(α)elso ( | α | ) or (iv)
p(α)eIso(XΛ). Assume the case (iii). There exists a point αG | α | with p(α)
= Ga. Fix β^τ(a) and i<ΞΞ | £ | Π ί " 1 ^) . <?* contains /o(/3). Since σ: (5^-^Ga

is bijective, σ(ρ(β))=p(a)=Ga implies Gb=p(β). Thus ρ(/3)€Ξlso(|/3|), and
We have τ(α)c2 Γ / . Assume the case (iv). There exists a point

with Gx=ρ(a). Fix β<Ξτ(a) and Ae | β | with f(x)=p(b). Then (#,
The isomorphism σ: Gb-^Gp(b) maps both p(/3) and <5(iCii)=(r"1(G

to Gx. We get p(β)=G(x bh and £ e 3 > . Thus T(a)c£F/. We have

7

By Proposition and definition 3.1, we have 3ίf = T(βf) and 2 r

/ =M(2 r /) .

Let 9* be a (?-family in i7, Z an £F-comρlex. The quotient space Z=
Zjπ has a i7-complex structure given by

Zu = { U l

Moreover Z becomes a M(£F)-complex. For αG/Z we have

(3.4)

where /3 is an arbitrary element of τ(α).

The correspondence Z-+Z defines a homomorphism v: Ω(Gy

M(3ί)). By (3.4) v is injective. If £F'c£F then the following diagram is
commutative:

Ω(G,3')

where the horizontal arrows are the canonical maps.

Proposition 3.5. Let ΞF be a G-family in Π, and put £F=T(£F).
z;: Ω(G9 ^)-^Ω(G, EF) is an isomorphism.

Proof. It is sufficient to show that v is surjective. Arbitrarily fix
Put X=G/Hy H=p(a). There is a G-map / : X-> Y with /(I i / ) e yΛ. Let
/: ^==/* ?—> JP" be the induced (?-map. (J?)+ has a J7-complex structure in-
duced by/. Take a point (1 *H, J ) G 1 , SO /(I *H)=p(b)y and put /3=min. {γG
771Xy3(1 H,b)}, (that is, (l H,b) is a point of a cell of type β). Since (5
acts transitively on X, (-X)+ is a {g/3|£^(?}-complex. Since μ(β)=a,
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is an S'-complex An easy calculation shows ((-S)+/π ) 7 c ( X + ) v for any γG/7.
Observing ((Z)+jπ)κ for K^ G, we have ((X)+fc)y=(X+)y for any 7 e 77. Since
Jf + =(α) by 2.5, we have (Z)+/τr=(α) as a /7-complex. Since fl(G, 3") is
generated by (α)'s, z> is surjective.

Proposition 3.6. Let 3 be a G-family in Π, and 3= Γ(3). ΓΛerc we

have v(Δ(G, 3))aΔ(G, 3).

Proof. Let Z be a contractible £F-complex. Then (Z, *) is a zr-co-
ίibering pair and Z\{*} is a numerable jr-space. Z is τr-contractible, and Z\n
is contractible. By Proposition 1.6 of [6] we have v(Δ(G, 3))dΔ(G, 3).

4. Proofs of the main results

In this section we let Y be a finite connected G-complex with finite π^Y),
p: Ϋ-+Y the universal covering, and put G=πι(EGxGY) and π==π1(Y).
As was described in section 1, Ϋ has the standard action of G. We use the
notations in section 3 for this situation.

For a G-family ΞF in Π=Π(Y)y we define a subgroup 4(G, Y, ff) of
Ω(G, 3) by

4(G, Y, £F) = ιr(j(G, Γ(ff))).

By Proposition 3.6 Δh(G, Y, S') is a subgroup of Δ(G, 3).

Proposition 4.1. Let 3 be a connected G-family in Π containing £F(Y).
Λ

Assume T(SF) is simply generated, then

Ah(G, Y, £F) = {[Mf]^Ω(Gi Π)\f: X-*Y is a pseudo-equivalence such that

X+ is an 3-complex}.

Proof. By Lemma 3.3 we have 3( Ϋ)= T(3( Y))C T(3). By Lemma 3.2
(ii) and Proposition 2.8 we have

Δ(G9 T{3)) = {[M7](=ΞΩ(G, Π) I / : jf-> Y" is a quasi-equivalence such that

(J?)+ is a T(2Γ)-complex}.

Since Ϋ is a numerable zr-space, / is a zr-homotopy equivalence. Thus the
induced map/: X=^/π—>Y is a homotopy equivalence. On the other hand
v([Mf])=[Mf]. Through the map v we have the consequence of the above
proposition.

For a moment we assume Theorem 1 and prove the corollaries.

Proof of Corollary 2. We may assume F is not empty. In this case G
is a semi-direct product of G by n as is well known. Let aλ9 •••, ak be the
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elements of Π such that \ai\=Fi and p(α, )=G, i = l , •••, k. Oliver-Petrie
defined a homomorphism ψ: Ω(G> Π)->Zk by

for a i7-complex Z. The image of J(G, i7) by ψ is denoted by %. We define
iVy as the image of Δh{Gy F, Π) by ψ. Thus iVr is a subgroup of wr. Put
Ξί=Π and 3 ' / ={αe/7 |p(α)ΦG}. Then for α E Ϊ p(α) is of prime power
order. For α e T ( S ) ρ(a) is isomorphic to ρ(μ(cή), so β(α) is of prime power

Λ Λ

order. By Corollary 4.14 of [6] T(ΞF) is simply generated. Put f'='mcloj:
F'-^Y. Since ker φ is β(G, 3"'), we have [M>]e4(G, F, £F)+£(G, 3') if
and only if ψ([Mf,])^Nγ. On the other hand φ{[Mr])^{X{Fλ)-X{F[\ —,
X(Fk)—X(F'k)). Thus we have the conclusion of Corollary 2.

Proof of Corollary 3. Since F is connected, nγ=nGZ. By the assumption
G G ί 1 , nγ={0} (see [5; p. 171]). We obtain Nγ={0}. Corollary 2 yields
Corollary 3.

Proof of Theorem 1. Let q=f*p: X—f*Ϋ->X be the induced covering
and / : X^Ϋ the induced map by /. Since 3^3fz>3(Y)9 T(3) is con-
nected.

Firstly we assume / is extendible to / ' : X'—> Y as was mentioned in Theo-
rem 1, (we may assume/' is skeletal without loss of generality). Let / ' : X1

=f'Ϋ-+Ϋ be the induced map by/'. Since/' is a homotopy equivalence, / '
is a r-homotopy equivalence. If we show X'jX is a T^ίF^-complex, we
have [Mr](ΞJ{Gy T(EF))+Ω(G, T(3')) by Theorem 3.2 of [6]. Through
the map v we have [Mf]eJh(G, Y, £F)+£(G, 3'). So we prove X'\X is a
T(£F')-complex. For a cell c in X'\g, let a<ΞΠ be the type of c. The
isotropy group on c is p{a) and that on q\c) is σ(ρ(o:)), where q'=f'*p: Xf-*Xr.
Since /'(<:) C | a | J\q\c)) C | ̂ (α) | . The type of q'(c) is μ(α). By the assump-
tion X'\X is a ΞF'-complex, and so μ(α)e£F'. Thus αG Γ(£F'). This means
that ^ \ J ? is a TίSΌ-complex.

Secondly we assume [Mf]eΞJh(G, F, 2Γ)+i3(G, 3'). Since v: Ω(<?, T(ff))
-*Ω(G,3) is injective and i;(fl((?, T(3')))=Ω(G,3') by Proposition 3.5, we
have [M/]eJ((?, Γ(3))+ί?((?, T(£F')). By Theorem 3.2 of [6] there exist
a finite (^-complex X'ZDX and a (skeletal) pseudo-equivalence / ' : X->Y ex-
tending / such that X'jX is a ^^^-complex. Since Ϋ is a numerable τr-space,
/ ' is a TΓ-homotopy equivalence. Put X'^X'/π. Then X'Z)X and the in-
duced map / ' : X1—> F by / ' is a homotopy equivalence. Moreover X'jX is
an £F'-complex by the similar argument used in the first part. This completes
the proof.
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