Kutami, M. Osaka J. Math. 21 (1984), 31-38

%-CONTINUOUS MODULES

MAMORU KUTAMI

(Received June 8, 1982)

Generalizing the notion of right \aleph_0 -continuous regular rings (see [2], [3]) we define that of quasi- \aleph_0 - and \aleph_0 -continuous modules and mainly study the directly finiteness of nonsingular \aleph_0 -continuous modules over (von Neumann) regular rings.

Let R be a regular ring. By \mathcal{F} we denote the family of all essentially \aleph_0 -generated essential right ideals of R. It is shown that \mathcal{F} becomes a right Gabriel topology on R (Proposition 5). From this fact the divisible hull $E_{\mathcal{F}}(M)$ of a given right R-module M is considered. Our main purpose of this note is to prove that a nonsingular \aleph_0 -continuous R-module M is directly finite if and only if so is $E_{\mathcal{F}}(M)$. This is a generalization of a result due to Goodearl [3].

Throughout this paper R is a ring with identity and all R-modules considered are unitary right R-modules.

For a given R-module M, we denote its injective hull by E(M) and the family of all submodules of M by $\mathcal{L}(M)$.

For $N \in \mathcal{L}(M)$ $N \leq M$ means that N is an essential submodule of M and (N: x), for $x \in M$, denotes the right ideal $\{r \in R | xr \in N\}$.

Let M be an R-module. An S-closed submodule of M is a submodule B such that M/B is nonsingular. For any submodule A of M there exists the smallest S-closed submodule C of M containing A, which is called the S-closure of A in M (see [1]). We note that, when M is nonsingular, the S-closure C of A in M is uniquely determined as a submodule C such that $A \leq_{e} C$ and C is S-closed in M.

Lemma 1. Let M be an R-module, and let A and B be submodules of M such that $A \leq_{e} B$. Then B is contained in the S-closure of A in M. In addition if M is nonsingular and B is a direct summand of M, then B coincides with the S-closure of A in M.

Proof. Let C be the S-closure of A in M. Since (B+C)/C is an epimorphic image of a singular module B/A, we see that (B+C)/C is singular. On the other hand, (B+C)/C is a submodule of a nonsingular module M/C, whence (B+C)/C is nonsingular. As a result, we have that (B+C)/C=0, and so $B \leq C$ as desired.

Let M be an R-module. We consider a subfamily \mathcal{A} of $\mathcal{L}(M)$ which is closed under isomorphic images and essential extensions. For such an \mathcal{A} the following conditions are studied in [5]:

(C₁) For any $A \in \mathcal{A}$ there exists a direct summand A^* of M such that $A \leq_{e} A^*$.

(C₂) If $A \in \mathcal{A}$ is a direct summand of M, then any exact sequence $0 \rightarrow A \rightarrow M$ splits.

(C₃) If $A \in \mathcal{A}$, $N \in \mathcal{L}(M)$ and both of them are direct summands of M with $A \cap N = 0$, then $A \oplus N$ is also a direct summand of M.

Note that if M is nonsingular and \mathcal{A} satisfies the condition (C₁), then, for each $A \in \mathcal{A}$, A^* coincides with the S-closure of A in M.

Following [5] we call \mathcal{M} \mathcal{A} -continuous (resp. \mathcal{A} -quasi-continuous) if \mathcal{M} satisfies the conditions (C₁) and (C₂) (resp. (C₁) and (C₃)). Especially if \mathcal{M} is $\mathcal{L}(\mathcal{M})$ -continuous (resp. $\mathcal{L}(\mathcal{M})$ -quasi-continuous) we simply call \mathcal{M} continuous (resp. quasi-continuous). It follows from [5] that \mathcal{A} -continuous modules are \mathcal{A} -quasi-continuous, quasi-injective modules are continuous and that \mathcal{M} is \mathcal{A} -quasi-continuous if and only if \mathcal{M} satisfies (C₁) and the condition:

(*) For any $A \in \mathcal{A}$ and $N \in \mathcal{L}(M)$ such that N is a direct summand of M and $A \cap N = 0$, every homomorphism from A to N can be extended to a homomorphism from M to N.

We now introduce the notion of quasi- \aleph_0 -continuous modules and \aleph_0 continuous modules. Let M be an R-module and consider the family $\mathcal{A}(M)$ of all submodules A of M such that A contains a countably generated essential submodule. Then $\mathcal{A}(M)$ is closed under isomorphic images and essential extensions. We say that M is \aleph_0 -continuous (resp. quasi- \aleph_0 -continuous) if M is $\mathcal{A}(M)$ -continuous (resp. $\mathcal{A}(M)$ -quasi-continuous).

An *R*-module *M* is directly finite provided that *M* is not isomorphic to any proper direct summand of itself. If *M* is not directly finite, then *M* is said to be directly infinite. It is well-known that *M* is directly finite if and only if for all $f, g \in End_R(M), fg=1$ implies gf=1.

Theorem 2. For a given nonsingular \aleph_0 -continuous R-module M, the following conditions are equivalent:

(a) *M* is directly finite.

(b) M contains no infinite direct sums of nonzero pairwise isomorphic submodules.

(c) Any submodule of M is directly finite.

Proof. (a) \Rightarrow (b): Assume that M is directly finite. It suffices to show

that if $\{A_1, A_2, \dots\}$ is an independent sequence of pairwise isomorphic cyclic submodules of M, then $A_1=0$. Set $B_i = \bigoplus_{n=0}^{\infty} A_{3n+i}$ for i=1, 2, 3. Then $\bigoplus_{n=1}^{\infty} A_n = B_1 \oplus B_2 \oplus B_3$ and $B_2 \cong B_3$, and $B_1 \oplus B_2 \cong B_3$. By the condition (C₁), there exists a direct summand B_i^* of M such that $B_i \leq B_i^*$ for each i. Using the condition (*) we have a homomorphism $f: B_2^* \to B_3^*$ which is an extension of the isomorphism $B_2 \cong B_3$. Then f is a monomorphism, because $B_2 \leq B_2^*$. Also, using the condition (C₂) we see that $f(B_2^*)$ is a direct summand of Mcontaining B_3 ; hence by the uniqueness of the S-closure $f(B_2^*)=B_3^*$. Thus B_2^* is isomorphic to B_3^* . Similarly, $(B_1 \oplus B_2)^*$ is isomorphic to B_3^* . By the condition (C₃), $B_1^* \oplus B_2^*$ is the S-closure of $B_1 \oplus B_2$ in M. Therefore $(B_1 \oplus B_2)^* = B_1^* \oplus B_2^*$, and so $B_1^* \oplus B_2^* \cong B_2^*$. As M is directly finite, $B_1^* \oplus B_2^*$ is also directly finite, from which $B_1^* = 0$. Thus we see that $A_1 = 0$ as desired.

(b) \Rightarrow (c): Let N be a submodule of M, and let $N=N_1\oplus N_2$ with an isomorphism $f: N \cong N_1$. Then,

$$N = N_1 \oplus N_2$$

= $f(N_1) \oplus f(N_2) \oplus N_2$
= $f^2(N_1) \oplus f^2(N_2) \oplus f(N_2) \oplus N_2$
= ...

It follows that $\{N_2, f(N_2), f^2(N_2), \dots\}$ is an independent sequence of pairwise isomorphic submodules of M. By assumption $N_2=0$ and so N is directly finite.

 $(c) \Rightarrow (a)$ is clear.

The following lemma is well-known and, as is easily seen, the same conclusion is valid for sums of infinite many submodules.

Lemma 3. Let A, B, C and D be submodules of a nonsingular module M such that $A \leq B$ and $C \leq D$. Then $(A+C) \leq (B+D)$.

Lemma 4 ([2, Lemma 14.10]). Let M be a projective module over a regular ring R, and let \mathcal{L} denote the collection of all countably generated submodules of M.

- (a) If $J, K \in \mathcal{L}$, then $J \cap K \in \mathcal{L}$.
- (b) If $J, K \in \mathcal{L}$ and $f \in Hom_{\mathbb{R}}(J, M)$, then $f^{-1}(K) = \{x \in J \mid f(x) \in K\} \in \mathcal{L}$.

Now, let \mathcal{E} be the collection of all countably generated essential right ideals of a ring R and let \mathcal{F} be the collection of all right ideals which contain a member of \mathcal{E} . Then we have the following proposition.

Proposition 5. If R is a regular ring, then \mathcal{F} is a right Gabriel topology, *i.e.*, \mathcal{F} is not empty and satisfies the following conditions:

M. KUTAMI

(T₁) If $I \in \mathcal{F}$ and $a \in R$, then $(I: a) \in \mathcal{F}$.

(T₂) If I is a right ideal and there exists $J \in \mathcal{F}$ such that (I: a) $\in \mathcal{F}$ for every $a \in J$, then $I \in \mathcal{F}$.

Proof. Suppose that $I \in \mathcal{F}$ and $a \in R$. Then there exists $J \in \mathcal{E}$ such that $J \leq I$. Noting that $(I: a) \geq (J: a)$, we may show that $(J: a) \in \mathcal{E}$. $J \leq R$ implies that $(J: a) \leq R$ and by Lemma 4 (J: a) is countably generated. Therefore $(J: a) \in \mathcal{E}$. Now suppose that I is a right ideal and that there exists $J \in \mathcal{F}$ such that $(I: a) \in \mathcal{F}$ for each $a \in J$. Then there exists $K \in \mathcal{E}$ with $K \leq J$. Put $K = \sum_{n=1}^{\infty} a_n R$. Then by the assumption, there exists $I_n \in \mathcal{E}$ with $(I: a_n) \geq I_n$ for each n. The mapping $f: \bigoplus_{n=1}^{\infty} R \to K$ given by $f((r_n)) = \sum a_n r_n$ is an epimorphism. Note that $f(\bigoplus_{n=1}^{\infty} I_n) \leq K \cap I$ and $f(\bigoplus_{n=1}^{\infty} I_n)$ is countably generated. Since f induces an epimorphism $\bigoplus_{n=1}^{\infty} R / \bigoplus_{n=1}^{\infty} I_n \to K / f(\bigoplus_{n=1}^{\infty} I_n) \leq R \leq R$ and so f $(\bigoplus_{n=1}^{\infty} I_n) \in \mathcal{E}$. Thus $I \in \mathcal{F}$ as desired.

For a given module M over a regular ring R, we put

$$E_{\mathcal{F}}(M) = \{x \in E(M) | (M: x) \in \mathcal{F}\} \\ = \{x \in E(M) | xI \leq M \text{ for some } I \in \mathcal{E}\}.$$

 $E_{\mathcal{F}}(M)$ is called the \mathcal{F} -injective hull or \mathcal{F} -divisible hull of M (cf. [7, p. 30]).

Lemma 6. Let R be a regular ring and let M be an R-module.

(a) If $M=A\oplus B$ for some submodules A and B, then $E_{\mathcal{F}}(M)=E_{\mathcal{F}}(A)$ $\oplus E_{\mathcal{F}}(B)$.

(b) Any R-homomorphism from M to an R-module N can be extended to an R-homomorphism from $E_{\mathcal{F}}(M)$ to $E_{\mathcal{F}}(N)$.

Proof. (a) It is clear that $E(M) = E(A) \oplus E(B)$. Let $m \in E_{\mathcal{F}}(M)$. Then m = a + b for some $a \in E(A)$ and $b \in E(B)$. Since $(M: m) \in \mathcal{F}$ and $(M: m) = (A:a) \cap (B:b), (A:a) \in \mathcal{F}$ and $a \in E_{\mathcal{F}}(A)$. Likewise we have $b \in E_{\mathcal{F}}(B)$. Therefore $m \in E_{\mathcal{F}}(A) \oplus E_{\mathcal{F}}(B)$ and hence $E_{\mathcal{F}}(M) = E_{\mathcal{F}}(A) \oplus E_{\mathcal{F}}(B)$.

(b) Let $f: M \to N$ be a homomorphism. Then f can be extended to an R-homomorphism $\overline{f}: E(M) \to E(N)$. Let $m \in E_{\mathcal{F}}(M)$. Then $(M:m) \leq (N:\overline{f}(m)) \in \mathcal{F}$. Hence $\overline{f}(m)$ lies in $E_{\mathcal{F}}(N)$. Thus the restriction map $\overline{f}|_{E_{\mathcal{F}}(M)}$ of \overline{f} is the desired one.

Proposition 7. Let R be a regular ring. If M is a non-singular quasi- \aleph_0 -continuous R-module, then so is $E_{\mathcal{F}}(M)$.

Proof. First we show that the condition (C_1) holds for $\mathcal{A}(E_{\mathcal{F}}(M))$. Let

 $L \in \mathcal{A}(E_{\mathcal{F}}(M))$. There exists a countably generated essential submodule N of L; say $N = \sum_{n=1}^{\infty} x_n R$. We can take $I_n \in \mathcal{E}$ such that $x_n I_n \leq M$ for each n. Since $K = \sum_{n=1}^{\infty} x_n I_n$ is countably generated, there exists a direct summand K^* of M with $K \leq_e K^*$. It follows that K is an essential submodule of $E_{\mathcal{F}}(K^*)$ and $E_{\mathcal{F}}(K^*)$ is a direct summand of $E_{\mathcal{F}}(M)$ by Lemma 6 (a). On the other hand, K is an essential submodule of N by Lemma 3 and hence is that of L. Therefore from Lemma 1 we see that $L \leq_e E_{\mathcal{F}}(K^*)$.

Next, we prove that the condition (*) for $\mathcal{A}(E_{\mathcal{F}}(M))$ holds. Let $A \in \mathcal{A}(E_{\mathcal{F}}(M))$ and $N \in \mathcal{L}(E_{\mathcal{F}}(M))$ such that N is a direct summand of $E_{\mathcal{F}}(M)$ and $A \cap N=0$, and let $f: A \to N$ be a homomorphism. Now there exists a countably generated essential submodule B of A; say $B = \sum_{n=1}^{\infty} x_n R$. Then $f(B) = \sum_{n=1}^{\infty} f(x_n) R$ $\leq_e f(A) \leq N$. Since both x_n and $f(x_n)$ are in $E_{\mathcal{F}}(M)$ for each n, there exist I_n ' and I_n'' in \mathcal{E} such that $x_n I_n' \leq M$ and $f(x_n) I_n'' \leq M$. Then $I_n = I_n' \cap I_n''$ lies in \mathcal{E} by Lemma 4 (a), and $x_n I_n \leq M$ and $f(x_n) I_n \leq M$. Putting $C = \sum_{n=1}^{\infty} x_n I_n$ and $D = \sum_{n=1}^{\infty} f(x_n) I_n$, we see that C and D are countably generated submodules of M with $C \leq_e B$ and $D \leq_e f(B)$. There exists a direct summand D^* of M such that $D \leq_e D^*$. Using the condition (*) for $\mathcal{A}(M)$, the restriction $f|_C: C \to D$ of f can be extended to a homomorphism $M \to D^*$. This also can be extended to a homomorphism $M \to D^*$. Therefore h is a homomorphism from $E_{\mathcal{F}}(M)$ to N. Since $f|_c = h|_c$ and $C \leq_e B$, h=f.

At the end of this note we provide an example to show that the converse of Proposition 7 is not true in general.

Now we are in position to prove our main theorem.

Theorem 8. Let R be a regular ring, and let M be a non-singular \aleph_0 continuous R-module. Then M is directly finite if and only if so is $E_{\mathcal{F}}(M)$.

Proof. The "only if" part. Assume that M is directly finite. If $E_{\mathcal{F}}(M)$ is directly infinite, then there exists an independent sequence of nonzero pairwise isomorphic cyclic submodules of $E_{\mathcal{F}}(M)$; say $\{x_nR\}_{n=1}^{\infty}$. Let $f_n: x_nR \to x_{n+1}$ R be an isomorphism with $f_n(x_n) = x_{n+1}$, $n=1, 2, \cdots$. For each n, there exists $I_n \in \mathcal{E}$ such that $x_n I_n \leq M$. Then $A_n = x_n(I_1 \cap \cdots \cap I_n)$ and $B_n = x_n(I_1 \cap \cdots \cap I_{n+1})$ are countably generated submodules of M such that $B_n \leq A_n \leq x_n R$ and the restriction $f_n|_{B_n}$ of f_n to B_n is an isomorphism between B_n and A_{n+1} . By the assumption, there exist direct summands A_n^* and B_n^* of M with $A_n \leq A_n^*$ and $B_n \leq B_n^*$ and further $f_n|_{B_n}$ can be extended to an isomorphism g_n between

 B_n^* and A_{n+1}^* . Hence we have $\bigoplus_{n=1}^{\infty} B_n^* \simeq \bigoplus_{n=1}^{\infty} A_{n+1}^*$. On the other hand, by Lemma 1, for each $n A_n \leq B_n^*$. So $A_n \leq B_n^*$ which implies that $B_n^* = A_n^*$. Therefore $\bigoplus_{n=1}^{\infty} B_n^* = B_1^* \oplus (\bigoplus_{n=1}^{\infty} A_{n+1}^*)$. However, this is a contradiction, because $\bigoplus_{n=1}^{\infty} B_n^*$ is directly finite by Theorem 2. Therefore $E_{\mathcal{F}}(M)$ is directly finite.

The "if" part. Assume that $E_{\mathcal{F}}(M)$ is directly finite, and consider f and g in $End_{\mathbb{R}}(M)$ such that $fg=1_{End_{\mathbb{R}}}(M)$. By Lemma 6 (b), there exist \overline{f} and \overline{g} in $End_{\mathbb{R}}(E_{\mathcal{F}}(M))$ such that \overline{f} and \overline{g} are extensions of f and g respectively. Noting that $M \leq_{e} E_{\mathcal{F}}(M)$ and $E_{\mathcal{F}}(M)$ is nonsingular, we obtain that $\overline{fg}=1_{End_{\mathbb{R}}}(E_{\mathcal{F}}(M))$. By the assumption $\overline{gf}=1_{End_{\mathbb{R}}}(E_{\mathcal{F}}(M))$, from which $gf=1_{End_{\mathbb{R}}}(M)$. Therefore M is directly finite.

Proposition 9. Assume that M is a nonsingular \aleph_0 -continuous R-module with the following condition:

(#) For any submodules A and B of M with $A \cap B=0$, any isomorphism from A to B can be extended to a homomorphism of \overline{A} to \overline{B} , where \overline{A} and \overline{B} are the S-closures of A and B in M respectively. Then, M is directly finite if and only if so is E(M).

Proof. Noting that E(M) is nonsingular \aleph_0 -continuous, the "if" part is clear by Theorem 2.

The "only if" part. Assume that M is directly finite. If E(M) is directly infinite, there exists an infinite and independent sequence of nonzero pairwise isomorphic submodules of E(M); say $\{A_n\}_{n=1}^{\infty}$. Let f_n be the isomorphism between A_n and A_{n+1} for each n. Set $B_1 = A_1 \cap M$ and define inductively B_{n+1} $= f_n(B_n) \cap M$ and $C_n = f_n^{-1}(B_{n+1})$ for $n=1, 2, \cdots$. Then, for each n, B_n and C_n are submodules of $A_n \cap M$ with $C_n \leq B_n$ and the S-closure \overline{B}_n of B_n in Mcoincides with \overline{C}_n , the S-closure of C_n in M, by the similar way in the proof of Theorem 8. The restriction map $f_n|_{C_n}$ is an isomorphism from C_n to B_{n+1} . Using the condition $(\ddagger), f_n|_{C_n}$ can be extended to a monomorphism $\overline{f}_n : \overline{C}_n \rightarrow \overline{B}_{n+1} = \overline{C}_{n+1}$. Consequently $\{\overline{C}_1, \overline{f}_1(\overline{C}_1), \overline{f}_2(\overline{f}_1(\overline{C}_1)), \cdots\}$ is an independent sequence of nonzero pairwise isomorphic submodules of M, which is a contradiction by Theorem 2. Thus the proof is completed.

Corollary 10. Let M be a nonsingular continuous R-module. Then M is directly finite if and only if so is E(M).

Finally we show the following result.

Theorem 11. Let R be a regular ring and M a finitely generated projective \aleph_0 -continuous R-module. If A is a projective maximal submodule of M, then A is a direct summand of M.

Proof. A can be written as a direct sum of cyclic submodules; say $A = \underset{\sigma \in I}{\bigoplus} x_{\sigma} R$ [4]. We claim that I is a finite set. If I is an infinite set, then we have a countable subset J of I such that I - J is an infinite set and so $A = (\underset{\sigma \in J}{\bigoplus} x_{\sigma} R) \oplus (\underset{\beta \in I - J}{\bigoplus} x_{\beta} R)$. Since M is \aleph_0 -continuous, we have a direct summand B^* of M such that $\underset{\sigma \in J}{\bigoplus} x_{\sigma} R \leq B^*$ and $A \leq B^* \oplus (\underset{\beta \in J - J}{\oplus} x_{\beta} R) \leq M$. If $A = B^* \oplus (\underset{\beta \in J - J}{\oplus} x_{\beta} R)$, then $\underset{\sigma \in J}{\bigoplus} x_{\sigma} R$ coincides with B^* and is finitely generated. If $B^* \oplus (\underset{\beta \in I - J}{\oplus} x_{\beta} R) =$ M, then $\underset{\beta \in I - J}{\oplus} x_{\beta} R$ is finitely generated. In any case we have a contradiction. Therefore A is finitely generated and so it is a direct summand of M.

As a consequence of Theorem 11, we obtain the following which is a slight generalization of [6, Corollary].

Corollary 12. If R is a right hereditary, right \aleph_0 -continuous, regular ring, then R is a semi-simple artinian ring.

REMARK. In general, the converse of Proposition 7 is not true. For example, take a field F and set $R_n = M_{2^n}(F)$ for all $n=1, 2, \cdots$. Map each $R_n \rightarrow R_{n+1}$ along the diagonal, i.e., map $x \mapsto \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$, and set $R = \lim_{K \to \infty} R_n$. Then R is a simple, right hereditary, not artinian, regular ring with a unique dimension function (see [2]). Note that for a regular ring R, R_R is quasi- \aleph_0 -continuous if and only if R_R is \aleph_0 -continuous. Therefore we see that $E_{\mathcal{F}}(R) = E_{\mathcal{L}}(R)(R)$ = E(R) is a nonsingular quasi- \aleph_0 -continuous R-module, but R is not quasi- \aleph_0 continuous by Corollary 12.

Acknowledgement. The author would like to express his thanks to Professor Y. Kurata and Professor K. Oshiro for their advice in preparing this paper.

References

- [1] K.R. Goodearl and A.K. Boyle: Dimension theory for nonsingular injective modules, Mem. Amer. Math. Soc. 177 (1976).
- [2] K.R. Goodearl: Von Neumann regular rings, Pitman, London-San Francisco-Melbourne, 1979.
- [3] K.R. Goodearl: Directly finite aleph-nought-continuous regular rings, to appear.
- [4] I. Kaplansky: Projective modules, Ann. of Math. 68 (1958), 372-377.
- [5] K. Oshiro: Continuous modules and quasi-continuous modules, Osaka J. Math. 20 (1983), 681–694.
- [6] B.L. Osofsky: Rings all of whose finitely generated modules are injective, Pacific J. Math. 14 (1964), 645-650.

M. KUTAMI

[7] B. Stenström: Rings and modules of quotients, Lecture Notes in Math. 237, Springer-Verlag, 1971.

> Department of Mathematics Yamaguchi University Yoshida, Yamaguchi 753 Japan

38