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0. Introduction

In this paper we consider the following one- dimensional two-phase Stefan
problem with the unilateral boundary condition on the fixed boundary: Given
the initial data, / and φ, find a critical time ϊ1*, and the two functions s=s(t)
and it=u(x, t) defined on [0, 71*] such that

(0.1)

(0.2) uxx-c0ut = 0

(0.3) u^-wt^ 0
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(a) i/X
(S) (b) ~u,(

(0.5) ^ U^X' ' ^X'V ' (b) u(x,Q) = φ(x) (/<*<!),

(0.6) *(*(*), 0 = 0

1(0.7) M(0 = -u~(s(t\ t)+ui(s(t), t) (0<t<T*)

The critical time T*, 0<3π*<oo, is defined to be the first time that the free
boundary x=s(t) touches the fixed boundary x=Q or x=l. The quantities
c09 Cj and b are positive physical parameters of the problem. The assumption
for the boundary condition (0.4) at the fixed boundary is that γ0 and fγ1 are
maximal monotone graphs in R2 such that both Ύol(0) Π [0, QO[ and 7Γ1(0)Γl
]— oo 9 0] are not empty sets. We put this assumption from the physical reason-
ing, that is, there are a kind of heater at #—0 and a kind of freezer at x=l.
(0.4) are the unilateral boundary conditions. (0.7) is the so-called Stefan's con-
dition. The superscripts + and ~ indicate the limits from right and left re-
spectively for the space variable x.

The system (0.1)-(0,7) is a simple model of a heat-conduction system
consisting of two phases (e.g. liquid and solid) of the same substance which
are in perfect thermal contact at an interfcae. u(x, t) represents the tempera-
ture distribution in the system, and the curve s(i) represents the position of
the intreface which varies with time t as solid melts or liquid freezes. The
unilateral boundary conditions (0.4) model several phyiscal situations, includ-

ing the temperature control through the boundary [9, Ch. 1] and the heat flow

subject to the nonlinear cooling by the radiation on the boundary [14, Ch. 7].

The boundary conditions at the interface ((0.6), (0.7)) reflect respectively the

facts that the temperature at the interface must be equal to the melting tem-

perature (taken to be zero) and that the rate of melting is proportional to the

rate of absorption of the heat energy at the interface. In formulating (0.7),

we have assumed, without loss of generality, that the thermal conductivity in

both phases is 1.

The problem of this type with the linear boundary condition on the fixed
boundary have been considered by many authors (Rubinstein [27], Kameno-
mostskaja [18], Friedman [13, 14], Brezis [2], Cannon & Primicerio [5, 6], Can-
non—Henry—Kotlow [7], Nogi [25], Damlamian [8] e.t.c.). On the other

hand Benilan [1] has treated this type's Stefan problem of n-dimensional case
using the theory of nonlinear contraction semigroups in Banach space ZA He
got an intgeral solution. However we do not know the differentiability of the
Benilan's integral solution. Also Cannon & DiBenedetto [37], Visintin [38], and
Niezgodka—Pawlow—Visintin [39] have considered the different type of weak
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solutions of the similar problems. One-phase problem of this type was recently

studiesd by Yotsutani [34],

The purpose of this paper is to prove the global existence and uniqueness
of the classical solution of the two-phase Stefan problem (S). We put some
assumptions of signs of the data φ from the physical reasoning that it is posi-
tive in the liquid region and negative in the solid region. The following two
points are the main difficulties of this problem (S). One is the fact s(t) is
unknown and the other is how we deal with the unilateral boundary condition.

We establish the existence of a local solution of (S) using the Schauder's

fixed point theorem. For this we employ an approach used by Evans [10] to

treat the flow of two immiscible fluids in one-dimensional porous medium.

Then we show a global a priori estimate on u(x, i), s(t), and we get a global solu-

tion of (S). Uniqueness is based upon the maximum principle, its strong form

[24], a parabolic version of HopFs lemma [14] and the comparison theorem for

the unilateral problem. Here we must note that our proof of the uniqueness is

closely related to the existence of solutions of auxiliary Stefan problems.

The plan of this paper is as follows. In § 1 we state main theorems. § 2

collects some elementary results. § 3 introduces the moving boundary problem

(M) which is auxiliary for the original one and useful in the proof of the main

theorems. §4-§7 are devoted to prove the existence of a solution of (M)

using the finite difference method. In §4 we introduce a difference scheme.

In § 5 and § 6 we derive the estimates for solutions of the difference scheme.

These are used in § 7 to prove the convergence of the difference scheme and

the properties of the solutions of (M). § 8 gives several comparison theorems
concerning the moving boundary problem (M). In § 9 we reform the Stefan's

condition to an integral form. In § 10 we prove the existence of a local solution

of (S) without assuming signs of φ(x). In § 11 we prepare propositions which

we use in the study of the continuation of solutions. In § 12 we give global
a priori estimates. In § 13 we show the global existence of a solution of (S)

under the slightly stringent conditions on the data. In § 14 we prove the ex-
istence of a global solution of (S) for the general data. In § 15 we show a com-
parison theorem and the uniqueness of the solutions of the Stefan problem (S).

We will investigate the behavior of the solution in detail in [36],

The author would like to express his gratitude to Professor H. Tanabe
for his useful suggestions and encouragements.

1. Statements of main results

As for the definition of maximal monotone graphs in Λ2, see Brezis [4] or
Yotsutani [34, § 3]. The assumptions required on the Stefan data {/, φ} are
following (A).
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0</<1. φ

φ(x) is bounded, and continuous for a.e. #e[0, 1] .

REMARK 1.1. We put this assumption of signs for the data φ, because the
interest of ours is in the two-phase problem.

We shall prepare some notations which will be used later.

(1.1) ρr = {(*, ί); 0<*<1, 0<t<T} ,

(1.2) Qτ = {(x, f); O^tf^l, O^ί^T} ,

(1.3) ρσ,Γ - {(*, 0; 05^1, σ^t^T} ,
(1.4) DJ. = {(*, ί)eρr; (-1)<(*-*(*))<0} (i = 0, 1) ,
(1.5) DT = D°T(JD1

T,

(1.6) βj. = {(*, ί)eJ5Γ; (-1)< (*-^))^0} (ί = 0, 1) ,
(1.7) 5^ = {(x, ί)eρr; (-1)^-5(0)^0} (ί = 0, 1) ,

(1.8) Z = {(Λ , 0); Λ;e[0, 1] is a point of discontinuity of φ}.

Let/cΛ2or/cJ?. We denoteby C(/), C° α(/) (0<α^l), Cm(7) (ι»=l, 2, .-)
and C°°(7) the space of continuous, Holder continuous (exponent α), m times
continuously differentiate, and infinitely diίferentiable functions on / respec-
tively. Thus Coa(7) denotes the space of Lipshitz continuous functions on /.
We denote by LP(I) the usual Lebesgue space of measurable functions with the
norm || I l^c/) (1^S^>^°°). HP(I) denotse the usual Sobolev space. Lίoc(I)
(resp. /ffoc(/)) denotes the space of functions which belong to LP(E) (resp. HP(E))
for any compact subset E of /.

DEFINTION 1.1. The pair (s, u) is a solution of the Stefan problem (S) on
[0, T] if

(i) j(0)=/, 0<X*)<1 for O^ί^Γ,

(1.9) ,eC([0, Γ])nC"(]0, Γ]),

(ii) u is bounded on QTy utΞC(Qτ-Z) Π C°°(S0

T) n C00^^),

(1.10) fφ, t)2dxdt<oo
Jτ1 Jo

for each Γj and Γ2 such that 0< Γ^ Γ2^ Γ,
(iii) (0.2), (0.3), (0.5), (0.6) and (0.7) hold on [0, Γ],
(iv) for a.e. *<Ξ]0, T], (̂0, ί) and ux(\, t) exist and satisfy (a), (b) of (0.4)

on [0, T] respectively.
In what follows, for example, when T=°°, [0, T] and O^ΐ^T denote

[0, oo[andO^£<°o respectively.

DEFINITION 1.2. (T1*, s, u) is a solution of the Stefan problem (S) if
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(i) 0<Γ*^ooy a pair of function (s, u) denfied on [0, T1*] is a solution

of (S) on [0, T] for any T with 0<Γ<Γ*,

(ii) if T*<oo, then ί€ΞC([0, Γ*]), «eC(ρτ*-Z), and *(Γ*)=0 or 1.

Let θi (i~ 0, 1) be a lower semicontinuous convex function R into ]— °°, °°]

such that 0,^0, θ (Hi}=Q and 90, =7t . This is well-defined, since γ, (ί=0, 1)
is a maximal monotone graph in R2 with γt (/fx )3θ (see [4, p. 43]). We can

now state the existence and uniqueness theorems.

Theorem 1. Let {I, φ} satisfy (A). Then there exists the unique solution

(T*, sy u) of (S). Further s and u have the following properties.

(i.ii) *ee°'1/3([o, r*])nc°'2/3(]o, r*])nc~(]o,
(1.12) 0^^max(||φ||L~((M), HΌ) on D°τ* ,

(1.13) min(-|lφlL~(/,D, HJ^u^O on Dl

τ* ,

(1.14) sup { Γiφ:, tydx+θ0(u(Q, t)) + 0^(1, t)) \
<r^/^Γ*Uo >

i T* pr*rs(o p r * f i
\t\3dt+\ uJdxdt+\ u

σ Jσ Jθ Jσ Js(ί)

(1.15) |iί(Λ', *')-*(*>

(1.16) fl0

(1.17) ^ - max{#^0;

Cσ is a constant depending on σ^]0, Γ*[ .

We have the following regularity properties, if the data {/, φ} satisfies some

additional conditions.

Theorem 2. Let {/, φ} wifw/y (^4), φe/ί^O, 1), φ(0)eD((90), φ(/)=0

Z)(^1). JΆβw zϋ^ Aα^e ώe following properties in addition to the conclusion

of Theorem 1.

(1.18) *eEC° 2/3([0, Γ*]),

(1.19)
o

+2-1*2 Γ
Jo

^Z-1 Γφ,W2^+^o(Φ(0))+^(φ(l)) for any Γe[0, T*] ,
Jo

|«(*', *')-«(*» 01 ^CdΛ'-Λi

c2=min(cθ! Cj) αw<ί C M a constant.
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Theorem 3. Let {/, φ} satisfy (A). Suppose γ, (f=0, 1) is a single valued
maximal monotone function. Then it follows that u^C(Dτ — \Q, 1] X {fy)for any
T with Q<T<T*> and

(1.21) (-l)'u,(ί, ί) = γ, K*> 0)

We introduce conditions (A.I), (A.2) and (A.3) which will be used in the
proof of the theorems above.

(A.1) 0</<1.

(A.2) φe#>(0, 1), φ(0)eZ)(<90), φ(l)^D(θ1)J φ(/) = 0 .

(A.3) φ(*)^0 (0^#^/), φ(*)^0 (/^*^1) .

For simplicity (A7) denotes the conditions (A.I), (A.2) and (A.3).

2. Preliminaries

In this section we collect some elementary inequalities which will be useful
later in obtaining necessary estimates.

We use the letter C throughuot this paper to denote various constants de-
pending only on known quantities.

Lemma 2.1. Let ]α, β[ be a finite open interval on the real line.
(i) There exists a constant Clt depending on β—a, such that

(2.1) IteJIl-u.fl^l + I M ^

for each u^H2(a, β).
(ii) There exists a constant C[€], depending only on £>0 and β—a, such

that

(2.2) ll«J|i-(^)^e||iίJ|ίVβ)+C'MI|uJ|ivβ),

for each u<=H\a, β).
(iii) There exists a constant Cr depending only on β~a such that

(2.3) \\u,\\l^.#£C\\\u^^

for each uξΞH2(a,β).
The constants in (2.1), (2.2) and (2.3) remain bounded as β—a ranges over

any compact subset of ]0, °o[.

Proof, (i). We see from [10, (2.4)] that

(2.4) lkJli«(Λ^)^C(||W||μ(Λ,β))
2/3|N||i^(Λ,β),

where the constant C depends only on β—a and remains bounded for β—a in

any compact subset of ]0, °o[. By Young's inequality
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Thus we get (2.1) using the interpolation inequality.
(ii) and (iii). We see from [10, (2.5)] that

(2.5) IWL-c^CIM^

Thus we can get (2.2) and (2.3) easily. q.e.d.

Lemma 2.2. Let v(x, f) be a Lίpshitz continuous function on Q— [aly a2] X
[bly b2]. Then we have

(2.6) \v(x',t')-v(x,t)\

£L[ sup |K( , OIlΛ^ + I

where A=a2-aly B=b2-bly L=max(2A1/2B~l'\ 2A~l/2Bl/\ 1).

Proof. See [16, Lemma 3.1] or [34, Lemma 16.4]. q.e.d.

Lemma 2.3. Let {Fn}
N

n,q, {Kn}
N

n,q+ly {Rn}^q

l and {Vn}L<+ι be sequences
of non-negative numbers such that

(2.7)

Then we have

(2.8) max F,+Σ?-,+ι Vt£[Ft+'Σfcϊ Rt] [l+exp(2 2JLf +1 Kp)]
v^P&ir

Moreover, if Rn=Q (q^n^N—l), then

(2.9) Fn-F<£( max Fp)<Σ}m<+l Kp)v^

Proof. We have

(2.10) F.2S(Ff +Σ

by (2.7) and the induction (see [33, Lemma 4.1]). We see

(2.11) Vn£(Fn.l-FΛ)+RΛ-l+Fn-lKH

from (2.7). Hence we get by (2.10) and (2.11)

Therefore we obtain (2.8) easily. We can get (2.9) using (2.11). q.e.d.

3. Moving boundary problem

Consider the following moving boundary problem: Given a time T, a
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data φ(x) and a function j(ί)eC([0, Γ]) n#ίoc(]0, Γ]) satisfying 0<ί(f)<l
find a function u=u(x, t) such that

(3.1) ii,,- ,̂ = 0 (0<x<s(t),

(3.2) U^—CM = 0 (s(t)<x<l, 0<t<T),

(a) wΛ(0, ί)eγ0(«(0, ί))

(M) { (b) —«*(!> O^^iM1! 0)

(3.4) u(s(t), t) = 0 (Q<t^T),

(a) u(*,0) = φ(*) (0<^</Ξ5(0))

Here 70 and rγl are maximal monotone graphs in R2 with 70(Ho) 3 0,
for some ίί0 and ί/i.

REMARK 3.1. We do not need any assumption of signs for φ(x), HQ and Hlt

DEFINITION 3.1. u=u(xy t) is a solution of the moving boundary problem

(M) if
(i) u is bounded on Qr, u<=C°°(DT) Π C(QT—Z),

Jr, /•!
«*(*,Γj Jθ

for each 7^ and Γ2, where Z)Γ, Qτ and Z are sets defined by (1.5) (1.1) and (1.8)
respectively, and Cτ tT2 is a positive constant depending on Tγ and T2

y -<y\

(ϋ) (3.1), (3.2) (3.4), (3.5) hold,
(iii) for a.e. *e]0, Γ], z/Λ(0, ί) and ux(l, t) exist and satisfy (3.3).

Proposition 3.1. If the data φ(x) is bounded, and continuous for a.e.
O, 1], then there exists the unique solution u of the moving boundary problem

(M). Further u has the following properties.

(3.6) |^,Ol^max(||φ||^(M), |#0|, |^|) on Qτ ,

(3.7) \lux(x, t)*dx+θQ(u(0, ί))+<W> t))£MσJo

J T fs(t) fT fl

u,x(X,t)
2dXdt+cT2\ u,g(x,

< r J θ Jσ Js(ί)

(3.9) |«(*', t')-u(x, t)\g&j(\x'-x\*+ \t'-t\^) on Qa>τ ,

for any crEΞ]0, T[, where Mσ is a constant bounded with \\σt Ty ||ί||L2(σ/8,τ)>

HφllL2(o,ι) Here

d* =
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Proposition 3.2. Let s(t) and φ(x) satisfy the assumptions of Proposition
3.1. Suppose that % (z=0, I) is a single valued maximal monotone function. Then
it follows that ux(xy *)eC(/H U {i} x]0, T]) and

(- !)'«,(', t) = 7i(u(i, t)) (Q<t£T) .

Proposition 3.3. Let s(t)^H\Oy T) and φ(x) satisfy (A.I), (A.2). Then u
has the following properties in addition to the conclusion of Proposition 3.1.

(3.10) sup Φ'+c2 (T[lut(x, ίfdxdt
O^t^T Jo Jθ

^Φ°{1+ exp[2(2/d*+c3)(T+\TS(t)2dt)]} ,
Jo

(3.11) Φl«-ΦΊ^./Γ(fa-fl+Γ14(ί)2Λ) (Q^t^t^T),
' _

(3.12) \u(x',t')-u(x,t)\^K{\X'-X\
1'2+\t'-ί\1'i} onQτ>

where K=K(T, \\S\\L^tT), Ijd*, Φ°) w a constant bounded with T, \\S\\L*(0>T), 1/d*,
Φ°. Here

(3.13) Φ' = 2-1 Γ u,(x, tγdx+θΰ(u(0, ί))+^ι(«(l, 0)
Jo

(3.14) Φ° = 2-1 Γ ψ,(*)2ώ:+β0(φ(0))+β1(φ(l)) ,
^0

(3.15) c2 = min(c0ί ^), r3 = max(r0, q) .

REMARK 3.2. 0, (i=0, 1) is a lower semicontinuous convex function ff{

from /? into ]— oo, oo] such that β. ̂ O, Θ^H^Q and 8fl£=7i (see § 1 and [4,
p. 43]).

We shall state the results concerning the continuity of a family of solutions
of the moving boundary problem (M) with respect to the moving boundary and
the initial data.

Proposition 3.4. Let s*(t) &&((), T) and φ(x) satisfy (A.I), (A.2). Sup-
pose that

(3.16)

(3.17)

(3.18) lim/(0 = s(t)
W^.03

where K and d are positive constants independent of n. Then we have

(3.19) lim un(x, t) = u(x, t) in C(QT) ,
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where un (resp. u) is the solution of (M) corresponding to the curve stt (resp. s) and
the initial data φ.

Proposition 3.5. Let s*(t)^Hl(Q, T) and φn(x) satisfy (A.I), (A.2). Let
s(t)GC(0, T])ΓlHloc(]Q, T]) and φ(x) be bounded, continuous for a.e. *e[0, 1].
Suppose that

(3.20)

(3.21)

(3.22) lim sn(t) = s(t)

(3.23) \φn(x)\£K

(3.24) lim \\φ\ )-φ(p)\\MP-h.^*pΊ>=Qf<>r a.e. />e[0, 1]

(Sp is a positive constant depending on p),

where Kv (depending on cre]0, Γ]), d and K are constants. Then we have

(3.25) lim u"(x, t) = u(x, t) in C(Qσ>τ)

for any σ^]0, T[, where un (resp. u) is the solution of (M) corresponding to the

curve s" (resp. s) and the initial data φn (resp. φ).

REMARK 3.3. We can treat the problem (M) in a Hubert space L2 (0, 1)
using the theory of the nonlinear semigroups. The related problems are shown
in Damlamian [8], Kenmochi [20], Yamada [31] and Yotsutani [33].

REMARK 3.4. It is important to construct the solution of (M) by the finite
difference method from the view point of the numerical analysis. A related
work is shown in Jamet [17].

4. Difference scheme

In § 4-§ 7 we shall prove the existence of a solution of (M) introduced in
the previous section using the finite difference method. In this section we

introduce a difference scheme and state some simple lemmas.
First we extend s(ΐ) to the interval [0, Γ+l] by defining s(t)= s(T) for

T^t^T-\-l in order to clarify the following argument.
We use a net of rectangular meshes with uniform space width h and vari-

able time step kn (n= 1, 2, •••). Here h varies in such a way that \/h = M is an
integer. Let us introduce discrete coordinates.

*/=./* O'=0, 1, -,M),

(»=ι,2, ).



STEFAN PROBLEMS ON THE FIXED BOUNDARY II 813

We shall give the definition of kx and /„. We put

Jo = max {j e N; jh<l+h/2} , ί0 = 0 .

For n=\, 2, ••• successively, we define

ίί = min *£/_!; sί = „_!- 1 A or

\ tί if tί-t..1£

~\ i.-j+ft* if ίί-ί._1

f *(ίί)/Λ if ίί-ί.
Λ 1 Λ-i if ίί-ί..1>2A1/» ,

kn = /.-<„_, (>0) .

REMARK 4.1. It follows from the definition above that

(nS:0).

REMARK 4.2. We continue computing until tm^T for some m. We put

Thus we get the following lemmas.

Lemma 4.1. We have

(4.1) 2ί_(+1 Λ'/*,^ Γ" S(t)*dt+tnh (q% 1) -
Jfg

Moreover, tfJQ=l/h and s^Hl(Q, T), then we have

(4.2) ΣSJ

Proof. Let />^2. We shall show that \s(tp)-s(tp.l)\=h if ^<A1/2. If

then we see that t'p-t^Ά*, tp=t'py s(tp)=JJ* (=(Λ-ι-1)* or

(Λ-ι+l)A) by the definition of kp. Thus it must hold that tf

p^-tp.2^2hl/2.
In fact, suppose t'p-1—tp.2>2hl/2, then kp^=h1/2 and t'p-γ=tp (=tp). Hence
ίp^1—tp^2=tp~tp.?=kp+kp.1<2h1/2

9 which is a contradiction. Therefore we
have tp,1=tp-l and 5(ί/>_1)=//)_1A. Hence s(^)— s(fj-ι)=±λ. Consequently we
see

Therefore we obtain (4.1).
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Let J0=l/h. We get | sfa)— s(t0) \ =h if ^<A1/2. Hence we gte (4.2) using
(4.1). q.e.d.

Lemma 4.2. lim sh(t) = s(t) in C([0, Γ]) ,
A->0

zoAertf $A(£) w a pίecewίse linear function such that s(tp)=Jίjh.

Proof. We see that \sk(t)—s(t)\^2h noting Remark 4.1. q.e.d.

Let us introduce a net function «* which corresponds to w(#y, Zn). Further

we use usual divided differences.

/A2 , «jϊ = (βj-nΓ1)/*. . e-t-c-
In our scheme the heat equations are replaced by pure implicit difference

equations,

(4.4) βj. -ίvijϊ = 0 (1 gj^J.- 1) ,

(4.5) njΛ-dβJϊ = 0 (/.+ 1 £j£M- 1) .

The boundary and initial conditions are put in the following forms,

(46Ϊ
( ' ' (b) -

(a) U® = φ/ =

/ι \ 0 i

(4.8) un

Ju - 0 .

Now we state the difference scheme.
0° Determine kn (l^n^N) and/w (O^w^JV).

We determine u" as follows.

For n=l, 2, •••, N successively,
2° solve the system of difference equations (4.4) and (4.5) for {wj}y under

the boundary conditions (4.6) and (4.8) with the initial condition

REMARK 4.3. Step 2° is well-defined by [34, Lemma 4.1].

REMARK 4.4. We define z// o —0 leaving the value of φ(#/0) out of con-

sideration. It holds that Σf^o1 tt?*2A=Σ?Λ1φ(*/)*2* when φ(χ/o)=Q. We use
this fact in the proof of Lemma 6.1.
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5. //-estimates of the solutions

In this section we get the L2-estimates of the differnece solutions. We
employ the idea of the nonlinear semigroups (see Brezis [3,4] and Yotsutani

[33,34] e.t.c.)

The following inequalities are so-called variational inequalities.

Lemma 5.1. Let u] satisfy (4.4)-(4.8). Then we have

(5.1) Σ/io-1 u^n

i,-

S-Σ/2ΓX««

(5.2) 2-1 Σ3/ίiΓ V",2-

£-Σ/aτX,ϊ(wS

(5.3) 22F-/,, ttJ,(»".-

£-Σ?-/1..M«5«

(5.4) 2-> Σf- )„ (w"jx

2

^-Σf-λ+i""*
(5.5) 2-1 Σf Γo

/or ro" wcA that

Proof. We get (5.1), (5.2), (5.3) and (5.4) by the proof analogous to that
of [34, Lemma 7.1]. Adding (5.2) and (5.3), we have (5.5) by (4.4) and (4.5).

q.e.d.

For simplicity we put

We give a simple lemma.

Lemma 5.2. Let u* satisfy (4.4)-(4.8). Then we have

(5.6) Σ?.β Σf.β ufjfhkp^4 2J- ΣfΓ/ M?τ2%+ 12Φra 23?-

/or α«y OT and n with m^n.

Proof. We see that

(5.7) afc2 = (-
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We get also

(5.8) ttίnί^3«ίr_1.7
2+3(βίβϊ+«ίr1;ϊ)*l*72

Hence we have

^3 Σf-i1 utfhkp+12Φm(h/kt)
2kt .

Therefore we obtain (5.6) easily. q.e.d.

In what follows we assume that the uniform space width h is sufficiently small.
We shall give the several estimates for u". We have the following lemma by the

proof of [34, Lemma 5.1].

Lemma 5.3.

(5.9) |«5l^max,(l|φl|I-(0i l) |tf0 |, \H,\) .

Let us fix the auxiliary function v(x).

0 (L
\ - «y

H1(l-(l-x)/(l-D2))

where D1 = d*/2 and D2=l—d*/2. The next lemma is useful for further

estimates.

Lemma 5.4. There exists a constant M— M(1/J*, Γ, ||φlL2(o,ι)) bounded

with 1/rf*, T and ||φ||L*(β.ι) such

(5.10)

Proof. Substitute Vj=v(xj) for w" in (5.5). Now we observe that

(5.11) «Ji(uJ-t;/)*.= [(«;-«y)-(er1-^)](«J-^)

Multiplying (5.5) by kn and noting (5.11), we have

- fa Σ/-T1 («Γ ' - βy
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by 00(^o)=0ι(^M)=0, vjn=Vjn^=unΓn

l_^=Q. Therefore we get

(5.12) Σ?

by summing up. Hence we obtain (5.10) easily. q.e.d.

Now we define a new net function u"~l from Wy" 1. We give the definition
according to the relation between Jn.l and Jn.

Case Λ=Λ-ι-l

where r= !//„_!.
Case /„=/„_!.

ΰΓ = «Γ'

Case Λ=Λ-ι+l

where r^l/CM-/.-!).
We prepare some useful lemmas which are essential in obtaining necessary

estimates.

Lemma 5.5.

(5.13)

(5.14)

(5.15)

Proof. We get (5.13) easily by the definition of Wy" 1 * We shall show (5.14)
and (5.15). If /»=/„-!, they are obvious from the definition of M*""1. Let us
consider the case Jn~Jn-ι~~^ F°r simplicity wy, ujy J denote Wy" 1, Wy"1, /«-ι
respectively. We shall get (5.14). We have
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+(1 -(;

by r=\IJ ^ 1/2. Hence we have

2-1 Σf-o βy.%-2-1 Σf-o «y,2*

We shall get (5.15). It follows from M"/Λ=ί/};^=0 that

Hence we obtain

We can treat the case J»=J»-ι+ 1 in the same way. q.e.d.

Lemma 5.6.

(5.16) Z^ΣfΛ1 (βΓ'^-w

Proof. Taking w""1 as zo" in (5.5), we have

(5.17) 2

i 7-1- V'K-1 u".-2hb —7~lr~r^ ct 2^j~jn+ιUjt nκn Δ cλ

by (5.13). Hence we obtain (5.16) easily. q.e.d.
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We derive the recurrent estimates from Lemma 5.5 and 5.6.

Lemma 5.7.

(5.18) 2-'ί2 Σf Γi1 (f.-ι-ff-ι)(«

where M2=M1

J

Γc3.

Proof. Using (5.14) and (5.15) in (5.16), we have

(5.19) Z-^Σfc

Multiplying (5.19) ?β_1=ίn_1— ί?_1; we have

2-^3 Σf Γi' ?„-!(««%*„+ iUΦ.

by ?B-ι=?B-2+^»-ι We obtain (5.17) using Lemma 4.1. q.e.d.

Now we state the most important L2-estimates.

Lemma. 5.8. Let q^l. Then we have

(5.20) (ί.-!-*, -O

(5.21) ΣJL,+ 1 Σf

M'(ί,)= {2+M2||^||Λ?,Γ)} {1+exp

Proof. We put

^B = M2(kn+h*/kn) , Ra = (2+M2\ \s\ |Λ/f .Γ

We note that ,̂=0,

from Lemma 4.1 and 5.4. Hence we obtain the conclusion by Lemma 5.7 and
2.3. q.e.d.

Lemma 5.9. Assume that \imtm=σ for arbitrary fixed σ with 0<σ<T.
Λ-><»

Then we nave

(5.22) max
™-£»^F

(5.23) Σ -̂
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where Λ^^Λ^l/σ, Γ, IkllrWs.r)* l/d*y ||φ|lι2(0.ι>) is a constant bounded with

I/*-, r, IMlA.*.r), W*,

Proof. We have from (5.20) and (5.21), if m>q+\,

(5.24) &m = max {Φ,;

(5.25) 2?- Σf- i1 «fr2A*,^

Now we take tq=tq(m) such that

(5.26) σ/8^.^/4

Hence we have by (5.24), (5.25) and (5.26)

(2.57) 6.£M'(σ/8)/(σ/4),

(5.28) Σ?- ΣJίΓi1 ^72%^M'(σ/8)/(σ/4) .

Therefore it follows from (5.27), (5.28), Lemma 4.1 and Lemma 5.2 that

*>+ 12Φ. Σ?- ί*2/^)
. q.e.d.

6. Estimates of the solutions under some additional conditions

In this section we give several estimates under some additional conditions in
order to use these results in the proof of Proposition 3.2 and Theorem 2. We

state an L2-estimate.

Lemma 6.1. Let s(t)eHl(Q9 T) and φ(x)^H1(Oy 1) with φ(0)eZ>(00),
φ(l)^D(θl) and φ(xJo)=Q. Then

(6.1) max Φn+c2 ΣίLi Σf^i1 ̂
Oga^jPΓ

(6.2) ΦB-Φ°

^ { max Φ,} {M2[tn+
OgP^N

where

Lx - M2[Γ+Γ |i(ί)
Jo

Proof. It follows from (5.19) that

(6.3) V.+

where

V = 2-
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We see that

(6.4) 25.! Kt ^ M2(tβ+ ί' \έ(t) \*dt+tnh)
Jo

by Lemma 4.1. Hence we obtain the conclusion by Lemma 2.3, (6.3), (6.4)
and the inequality Φ0^Φ°. q.e.d.

We shall use the next result in the proof of Proposition 3.2.

Lemma 6.2. Let φ(Λ?)eC°a([0, 1]) with φ(0)eZ>(γ0), φ(l)^D(fγl)9 then
there exists a constant L2 such that

(6.5) \u»i

(6.5) l u

Proof. We shall show (6.5). It is easily seen from the assumption and
the proof of [34, Lemma 6.1] that

(6.7) l i&I^La,

where L3 is a constant. Hence we get (6.5) by Lemma 5.3, (6.7), φ(x)&
CM([0, 1]) and the proof of [34, Lemma 16.1]. We can get (6.6) in the same
way. q.e.d.

7. Convergence of the difference scheme

In this section we prove the convergence of the difference scheme under
the assumption of Proposition 3.1. Further we give the proof of Proposition
3.1-3.5.

We shall show that the net functions u" can be extended to the region Qτ in
such a way that the family of the extended function {uh(x, t)} h will be uniformly
bounded and equicontinuous on QfftT To begin with, we divide each rectangle
[xjt Xj+ί] x \tn> tn+ι] into triangles by a straight line connecting

(x;, tn) and (#y+1, tn+l) for n s.t. /n+1 = /„ or Jn+ 1 ,

(xj+l9 tn) nd (xj, *„+!) for n s.t. /n+1 = Jn- 1 .

We define uh(x, t) as a piecewise linear function which equals to the value of a
net function u" at the corner of triangles. It is easy to see that the function
uh(x, t) constructed in this way is continuous on QT) and it has the maximum
at a mesh point. Hence we get the following result by Lemma 5.3, 2.2, 5.9 and
the proof of [34, Lemma 8.1].

Lemma 7.1.

(7.1) \uk(x, Ol^maxdlφlL-^), | ff 0 | , I f fJ) on Qτ ,

(7.2) \uh(x', t')-uh(x, t)\^Kσ(\x'-x\^+\t'-t\^) on
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where Kσ is a constant depending on σ.

It follows from Lemma 7.1 and Ascoli-Arzela's theorme that a subsequence
of {uh(x, t)} convergse to a function u(x, f)^C(QσtT) uniformly on QσtT, for
any σ with 0<σ<T. We denote by {sh(i)} and {uh(x, t)} the subsequence of
{sh(t)} and {uh(xy t)} respectively again. We collect some properties of s(t) and
u(x, t) in the next lemma.

Lemma 7.2.
(i) u<=C(QT- {f=0}) Π C~(DT\ u satisfies (3.1) and (3.2).

I tit vr ff\ ί// v» f\ I <C" K^ ( I v' Λ" I V2 I I ̂ ' .* I l/4\ ΛΛ f~\
I Z*^Λ , Γ j—U\X) I j j ^**-σ\ I "̂  —** I "~Γ~ I ̂  —^ I / '̂* ^Γσ,T >

rl«χ*, o2^+^o("(o,ί,0
T PiJ T f l

\ ut(x,
<r Jθ

(iii) For a.e. *e]0, Γ[, w,(0, ί) rarf wΛ(l, ί) βΛ?wίί and ux(0, t), ux(l, t)(Ξ

tfocQO, Γ]).
(iv) z/ satisfies (3.3).
(v) u satisfies (3.4) αwd z/ w continuous at (x, 0) e [0, 1] X {0} — Z.

(vi) w satisfies (3.5).

Proof. We have (i) using the proof of [34, Lemma 8.2 (i)]. We get (ii)
using Lemma 7.1, (5.22) and (5.23) respectively. We get (iii) from (i), (ii) and
the proof of [34, Lemma 8.3]. We have (iv) using the proof of [34, Lemma
8.4]. We have (v) using the Petrovskii's technique [26, p. 357-358]. We
obtain (vi) using uh(sh(t), ΐ)=0. q.e.d.

Now we give the proof of Proposition 3.1-3.5.

Proof of Proposition 3.1. We see the existence of the solution, (3.6), (3.7),
(3.8) and (3.9) by Lemma 7.2. We get the uniqueness by Proposition 8.1 which
we prove later. q.e.d.

REMARK 7.1. The full sequence of {uh(xy t)}h converges to u(x, t) in view
of the uniqueness of the solution of (S).

Proof of Proposition 3.2. We note that u is constructed as the limit of the
sequence {uh}h of the solution of the difference equations. We may assume
that φ satisfies the condition stated in Lemma 6.2, since u satisfies (3.3) and
(3.8).

We shall show ux(Qy t)~Ύ0(u(0, t)). Since γ0 is a single valued maximal
monotone graph in i?2, Z)(70) is an open inver interval and γ0( ) is a continuous



STEFAN PROBLEMS ON THE FIXED BOUNDARY II 823

function on D(γ0) by [34, Lemma 14.1]. Hence for any ίe]0, T] and £>0,
there exists δ>0 and A0>0 such that

(7.3) \ΎQ(uh(Oys))-70(u(0,t))\<6

for \s— 1\ <δ and h^h0 in view of (7.2), and uh->u in C(QT) as A-»0. Set

znj=unjx. It follow follows that zn

jx-x— c0z
nft=Q and #S=7o(wo) More over z" is

uniformly bounded near x=0 by Lemma 6.2. Combining these with (7.3) and
applying the Petrovskii technique [26, p. 364-368] we observe that ux is con-

tinuous to the boundary x=Q and ux(Q, O^^oW^ 0) We can get — ux(l, t) =
7ι(u(l, t)) and the continuity to the boundary x= 1 in the same way. q.e.d.

Proof of Proposition 3.3. Consider the two cases: (i) / is a rational number,
(ii) / is an irrational number.

(i). We can take a subsequence {h} of the space widths such that φ(#/0)— 0
for any h since / is a rational number. We get (3.10) and (3.12) using (6.1),
Lemma 2.2 and the proof of Proposition 3.1. We shall show (3.11). It fol-
folws from (6.1) and (6.2) that

(7.4) Φt-Φ0^Φ°[l+txp(2B)]M2[t+(t\s(t)\2dt] ,
Jo

S T
\s(t)\2dt]. Therefore, taking ίx as the initial time and

o
u( , /x) as the initial data and repeating the same argument in § 5 and § 6, we
obtain

(7.5) Φt2~

^ Φ«[l+exp (2B)]2M2 [t2-tl+ \ έ(t) \ Ά]

by noting (7.4) and (3.10). Thus we get (3.11).
(ii). We may repeat the argmuents used in the case (i) by defining φ~

φh(Xj) in (4.7), where φh(x) is a function introduced in the following lemma.
q.e.d.

Lemma 7.3. Let {/, φ(x)} satisfy (A.I) and (A.2). Then there exists
{l\ φh(x)}h such that {l\ φh} satisfies (A.I), (A.2),

lim lh = I (lh is a rational number) ,
A->0

φ*(0) = φ(0) , φ*(l) = φ(l) ,

lim φh(x) = φ(x) in C([0, 1]) ,

S i ri
φh

x(x)2dx= \ φx(x)2dx
o Jo



824 S. YOTSUTANI

Proof. Let a(x) be a cut-off function such that cφc)eC°°([0, 1]), a=l

x^1 -//2), a = Q (0^*^//4, 1-7/4^*^1), We define {/*, φh} by

φA(*) = a(x)φ(x-6k)+(l-a(x))φ(x) , /A - l+βh ,

where {£/JΛ are numbers such that l-\-Sh is a rational number and £A->0 as
A->0. q.e.d.

Proof of Proposition 3.4. It follows from (3.16) and (3.18) that s*(t)-»s(t)
eC([0, T]) uniformly on [0, T] as n-»oo. On the other hand we see from
(3.10), (3.12), (3.16) and (3.17) that

(7.6) \S(x', t')-ιf(x, t)\£K'(\x'-x

(7.7) sup {ί1 uϊ(x, t)2dx} +c2 (T ί1 ιft(x, ίfdxdt^K' ,
Jo Jo Jo

where Kr is a constant. We get

(7.8) |w*(*,*)|<ίmax(|#0 |, \H,\9 ||φ||^(M)) on

by Proposition 8.2 which we prove later. Therefore it follows from (7.6), (7.8)
and the Ascoli-Arzela's theorem that there exist subsequence of {un} (which
we denote again by the same symbol), and a function u(x, t)^C(QT) such that
un(xy t)-+u(x, t) in C(QT) as w~>oo. We shall examine that u is the solution of
(M) corresponding to the curve s(t) and the data φ(x). We get (3.4) using
u*(s*(t), /)=0 (O^t^T) and s"-+s in C([0, T]) as n-*oo. We note un

xx-c0u
u

t=0
(0<x<s"(t), 0<t^T) and un

xx— Ciun

t = 0 ($*(*)<*< 1, 0<ί^Γ). Thus it is
easily seen that uxx— c0ut=0 in DT and wχjc— ̂ ^=0 in Dl

τ in the distribution
sense. Hence we have u^C°°(Dτ)Γ\C(Qτ) and (3.1), (3.2) by the well-known
result concerning the heat equation. We will show (3.3). It follows from
Lemma 5.1 and the proof of [34, Lemma 8.4] that

ί
tyfSn(t) f/ 2 fty

u",(w-ua)iCdXdt+ e,(ri)dt- Θ0(u"(0, t))dt
^JO J ί j J/ i

S tz rsn(t)
ul%(w-

f j J o

where rj^D(θ0)y d'=d/2,

[ -η(
W(X] = 1 0

-η(l-xldf) for Q^x^d' ,

for

Hence it is easily seen from tfix=cQu*, u"-*u in C(QT) as w->oo, s"-*s in C([0, T])
as w->oo, and (7.7) that
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i * 2 f * W f*2 C*2
u,(w-u}xdXdt+ '*„(,)*- 20o(«(0, f))dt

tίJo Jt1 Jt*

5 t 2 f s w
\ uxx(w—u)dxdt.

/, JO

Therefore we get (3.3) (a) by the arguments used in the last part of the proof
of [34, Lemma 8.4]. We obtain (3.3) (b) in the same way. We get (3.5) using
un(x, Q)=φ(χ) and un-*u in C(QT) as H-»OO. Consequently we obtain (3.19),

since the solution of (M) corresponding to the curve s(ΐ) and the data φ(x) is
unique by Proposition 8.1 which we prove later. q.e.d.

Proof of Proposition 3.5. It follows from (3.20), (3.21), (3.22), (3.23),
Proposition 3.1, Lemma 2.2 and the proof of Proposition 3.4 that there exists
a subsequence of {un} (which we denote again by the same symbol) and a func-
tion u(x, t)^C(QT— {t = 0}) satisfying u"-+u in C(QσtT) as w->oo for any
σe]0, T[. We shall show that

(7.9) u(x,t)-+φ(p) as (*, 0 -» (A 0)

for a.e. />^[0, 1]. We use the tool of barriers (see [14, p. 70]). We introduce
a barrier

w(x, 0 - (x-

at (p, 0). We note that

(7.10) |W>,Ol^max(|#0 |, 1^1,*)==^ on gr

by (3.23) and Proposition 8.2 which we prove later. Let 8 denote any arbitrary
small positive number. We see from (3.24) that

(7.11) \φ"(x)-φ(p)\<€ on[p-St,p+8f]=Ip

for sufficiently large n. Therefore it is easily seen from the maximum principle,
(7.10) and (7.11) that

I un(x, t)-φ(p) I ̂ K2w(x, t)+6 on Ip x [0, T] ,

where K2=28^1K1. Taking w->oo, we have

I φ, i)-φ(p) I ̂ K2w(x, t)+ε on Ip x ]0, Γ] .

Hence we obtain (7.9) easily. Consequently u is a solution of (M) correspond-
ing to the curve s(t) and the data φ(x). Thus we get (3.25) using the uniqueness
of the solution of (M). q.e.d.

8. Comparison theorems for the moving boundary problem

We shall show the comparison theorems for the moving boundary problem
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(M) stated in §3. The following results are obtained using the proof of [34,
Lemma 10.1, Proplsition 10.1 and Proposition 10.2].

Lemma 8.1. For a given function r(ί)e C([0, Γ])Π #ίoc(]0, T]) and
ί e {0, 1}, let p(x, t) and q(x, f) be functions satisfying

(8.1) p,

(8.2) ( ( (pt

2+qt

2)dxdt< oo for each σ e]0, Γ] ,
J J0J,n{f^σ)

(8.3) pχχ-c.pt = Q inD^ qxx-ciqt = Q in Dl

τ ,

(8.4) X*, 0)^j(*, 0) /or α// *e {£e[0, 1]; (-1)<(£-«)^0} ,

(8.5) p(r(f), t)^q(r(t), t) for all *e=]0, T] ,

(8.6) (- l)<(?,(ί, t)-px(i, t))(q(i, t)-p(i, t))+^0 a.e. ί e]0, Γ] ,

Dl

τ> DT are sets defined by (1.5) flwrf (1.6) zϋ^/ί r(t) instead of s(t) respectively,

a+ = max (a, 0) , 0<r(0) = κ< 1 ,

Q ίy ^ ί̂ ί of zero measure in R1. Then we have p(x, t)^q(x> t) on DT.

Proposition 8.1. Let uλ and u2 be solution of (M) under the assumptions of
Proposition 3.1 corresponding, respectively, to the pairs of the moving boundary and

the initial data (s^f), φι(x)} and {s2(t), φ2(x)} Suppose that

Sl(t) ^s2(t) for all t e [0, Γ] ,

Φι(x) ̂  φ2(x) for all x e [0, ̂ (0)] U [J2(0), 1] ,

Ul(s2(t), t)^u2(s2(t\ t) for all f e]0, 71] .

have

(x, t) on {(x, i)<=QT\ x^s^t) or x^

REMARK 8.1. Proposition 8.1 implies the uniqueness of the solution of
the moving boundary problem (M).

Propositoin 8.2. Let u be a solution of (M) under the assumption of Pro-

position 3.1. Then we have

\u(x, ί) |^max(|flβ|, l^l, ||φ||L~(0il)) on Qτ .

Proposition 8.3. Let u be a solution of (M) under the assumption of Pro-
position 3.1. Suppose that
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(/,ι)) on Dl

τ .

9. Reformation of the Stefan's condition

We shall state a useful result concerning the reformation of the Stefan's
condition (0.7) in this section. To begin with, we refer to the following results
concerning the behavior of the derivative of a solution of the heat equation
which vanishes on a non-smooth boundary curve due to Cannon-Henry-Kotlow
[7, Theorem 2.2] (see also [30, p. 10]).

Lemma 9.1. Let s(t) be such that s(t)^8>Q (T^t^T2) and s<=C° *([Tly

Γ2]), where a>l/2. Let v(xt t) be the solution of the moving boundary problem

(0<x<s(t)9 T^t^

v ( s ( t ) , t ) = 0 (T

where /(ί)eC([ΓlfΓJ), ψ(x)€=C* l([0, s^)]) αifrf/(Γ1)=ψ(0), ΨWΓ1))=0. Then
vx(x, t) converges to a limit vx(s(t)—Q, t) uniformly on [r, T2] for any τ>0 as
x-»s(t), andvx(s(t)-0, t)<=L~QTl9 T^nCQT* ΓJ).

REMARK 9.1. If α— 1, Geverey [15] has given this result.

Now we state the proposition.

Proposition 9.1. Let s(t)^C([Q9 T]) Π #ί0c(]°> Γ]) Π C°'Λ(]0, T]) with a>
1/2, andd^(s(t)^l—d (O^t^T)for some rf^O, and u(x. t) be a solution of the
moving boundary problem (M). Then the following two conditions are equivalent.

(i) ί(ί)eC°°([]0, T]) and it satisfies the Stefan's condition

bs(t) - -u~(s(t\ t)+uϊ(s(t), t)

(ii) bs^-bsfa)

!
*2 CS({2>

[-ux(d, ί)+«,(l-4 t)]dt-c0 u(X, t2)dx
t1 Jd

ί
l-d ΓsCίj)

u(x9 t2)dx+cQ \ u(x9 tι)dx
s(t2> Jd

+ cλ u(x, t^dx for any
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Proof. We put

D1 = {(*, ί); 40s£*£l-4 *ι£*^} .

It follows from the definition of the solution of (M) that

Γ2 (S(nuxx

2dxdt+(tz Γ uxx

2dxdt<oo.
J/J/2JO Jf j/aJίO)

Therefore we see that there exists a time t{ satisfying ΐ1/2<t{<t1 and u( y /ί)e
CM([0, 1]). Therefore we get ux(xy ήeΞCφ^nCφ1) by ίSC0-'̂ , ίj) and
Lemma 9.1. Hence we can apply the Green's theorem to uxx—ciut=0 in Dl by

virtue of seH\tl9 t2) (see e.g. [22, p. 144]). We get

(9.1) 0 =

(9.2) 0 =

Hence we obtain by using u(s(t), t)=Q

(9.3) (''[-iGm ί)+«ίWO, 0]*
•"i

5 '2 fs(ί«)

*[-«X</, <)+w,(l-rf, ί)]Λ-ίb «(*, tjdx
/l Jrf

J l-rf fβC/j) fl-d

u(x, tz)dx+cΰ \ u(x, tl)dx+cl \ u(x, t^dx .
s(t2) Jd J sC/ j)

Now it is obvious from (9.3) that (i) implies (ii). We shall show that (ii)
implies (i). We have

b[s(t2)-s(tl)] = Γ* [-««w). o+«ίwo,
J/l

by (ii) and (9.3). Hence we get

= -u7(*(t), t)+uί(s(t)9

using Lemma 9.1 and arbitrariness of tl9 t2. Moreover it can be shown that
]0, Γ]) by virtue of Schaeffer [28]. q.e.d.

10. Existence of a local solution of (S)

In this section we show the existence of a local solution of (S) under the
conditions of (A.I) and (A.2).

Proposition 10.1. Let {I, φ} satisfy (A.I) and (A.2). Then there exists a
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solution (s, u) of (S) on [0, T] such that s(ί)eL4(0, T), where

(10.1) 0< T = min(S2, 16-IAiC[Co]-1C?1) ,

8 = 2- lmin(/, 1-1),

C[6] is is the function of S from Lemma 2.1 (ii) (with δ^/3—

£„ = 4-162c2(c0

2+c1

2)-1Ci-1,

REMARK 10.1. T is restricted to be small from the following two reasons.
For one, we assure that the curve s(t) starting at / does not hit the side x=0
or x= 1 for 0^*^ T. For the other, we guarantee that the mapping H (de-

fined below) preserves the unit ball in L2(0, T).

We shall prove the proposition above using several lemmas. We employ
the method which is analogous to that of Evans [10, § 3]. We discover a curve
s(f) for which the function u(x, i) provided by Proposition 3.3 satisfies not only
(O.l)-(O.ό) but also (0.7).

Let us denote by B the closed unit ball in the space L2(0, T). Notice that
if ί(0)=/and ί<=£, then 0<δ^s(t)^l— 8<1. This fact follows immediately
from the definition of δ and the estimate

DEFINITION 10.1. For r(t)&B, define

H(r)(ΐ) = b~l(-u7(s(t)9 t)+u+(s(t), t)) for a.e. f€=[0, T] ,

!

t
r(r)d and u is the solution of the moving boundary problem

o
(M) considered in Proposition 3.3.

Lemma 10.1.
(i) H(r)( ) is measurable on [0, T].

(ii)

Proof, (i) It follows from Proposition 3.3 that u<ΞC°°(Dτ) and (3.8) holds.
Hence the map £-* tt*($(ί)±l/w, t) is continuous and ux(s(i)^\ln, t)-*u*(s(t), t)
as n— >oo for a.e. £€Ξ[0, T]. Therefore H(r)( ) is measurable.

5 t
r(τ)dτ. Then

o

, t)\2+ \ul(s(t), t\*)dt
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sup

sup

by Lemma 2.1 (ii), (0.2), (0.3), Proposition 3.3 and (10.1). q.e.d.

We shall examine the hypotheses of Schauder's fixed point theorem for

the mapping H: B-+B.

Lemma 10.2. H: B-+B is continuous and H(B)dB is precompact in
Lz(0, T).

Proof. We prove the continuity and compactness at the same time.

Suppose rn(t)(ΞB (n=\, 2, •••) and define sn(t)=l+{ rn(τ)dτy thenO<δ^
Jo

sn(t)^l — S<l for Q<*t^T and each n. Let un be the unique solutions of (M)
associated with the curve sn(t). By Proposition 3.3 there are bounds, indepen-
dent of n, on the following quantities,

(10.2) ||«ΊL«(βτ) ,

(10.3) Γ||w?llΛ,r>ώ
Jo

Since L2(0, T) is a Hubert space, there exists a sequence (which we also
denote by rn) such that rn(t) converges weakly to some r(t)€ΞB. Set $(t) =

/+ \ r(τ)dτ. It holds that s*-*s unifomly on [0, T] by Ascoli-Arzela's theorem.
Jo _

Thus we see that un—>u uniformly on Qτ by Propositon 3.4, where u is the
solution of (M) associated with the curve s(t).

We now prove H(rn}-*H(r) in L2(0, T). For a.e. fixed O^ί^Γ there are
following three cases.

(a) s*(t)<s(t). We get

\H(rn}(t}-H(r}(t)\*

^b-*\-uΓ(s\t\ t)+ux(sn(t), t)-u;(s(t), t)+u*,(s(t), t)

+U7(s(t), i)-ux(sn(t\ t)+u»+(sn(t), t)-un

x(s(t\ f)\2

$5(0

jnω
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+ll»"-«lli-«().ι)+ll««-««lli«(Λ).ι))( sup

J s(ί)
(u«2+«;,

__ SΛ(f)

sup

by Lemma 2.1 (i), (0.2) and (0.3). Hence we obtain

(10.4) \H(r»)(t)-H(r)(t)\*

by (10.2).
(b) s(t)<sa(t). We can get (10.4) in the same way.
(c) s(t)=s"(t). We get

\H(r«)(t)-H(r)(t)\*

^b-2 1 -uΓ(s"(t), t)+u7(s(t), ί)-«; W<). t)+u»+(s«(t), t) I

Thus we get (10.4) by the argument used in the case (a).
Consequently it follows (10.3) and (10.4) that

\H(rn)(t)-H(r)(t)\2dt

Therefore we complete the proof, since un—>u in C(OT), s"—>s in C([0, T]) as
rc->oo. q.e.d.

By Lemma 10.2 and Schauder's fixed point thoerem, H: B-*B has at least
one fixed point r. We shall show that (s(t), u(x, t)) is a solution of (S) on [0, Γ],

S t
r(r)dr and u(xy f) is the solution of (M) associated with the

o
curve s(t}. We may examine the Stefan's condition (0.7).

Lemma 10.3. s(t) e C° 3/4([0, T]) Π C°°(]0, Γ]), s(t) e L4(0, Γ), M(Λ, ί) e
C(ρr) n C°°(5T

0) Π C°°(S^) flwrf ̂ e Sίe/αw^ condition (0.7) ώ satisfied.

Proof. We get

by (0.7), Lemma 2.1 (iii), (0.2), (0.3) and (3.10). Thus we have έ(t)<ΞL\0, T)
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and so s(ί)eC° 3/4([0, Γ]). Therefore it follows from Lemma 9.1 that u7(s(t), t)y

u*+(s(t), J)eC([0, Γ]), since there exists ί0 such that u( , ί0)eCM([0, 1]) and
0<α0^£ for any £<E]0, T] by (3.8). Hence we see from fl(r)=r that s(t)G
C'QO, Γ]) and bs(t)=-u7(s(i), t)+uϊ(s(t\ t) (Q<t£T). Consequently we see
that jφeC-QO, Γ]) using the result of Schaeffer [28]. q.e.d.

Thus we complete the proof of Proposition 10.1.

11. Continuation of solutions

We prepare fundamental propositions which are useful in the study of the
continuation of solutions.

Proposition 11.1. Let (s,u) be a solution of (M) on [0, T] satisfying

bS(t) - -u7(s(t), t)+uϊ(s(t), t) a.e. fe[0, T] .

Then (s, u) is a solution of (S) on [0, T].

Proof. It is obvious from Propositoin 3.1 and the proof of Lemma 10.3.
q.e.d.

Proposition 11.2. Let (s1} uj be a solution of (S) on [0, TJ, and (s2) u2) be
a solution of (S) on [Tlt T2] with the initial time Tl and the initial data {sι(T^,

Wl( , 7\)} Assume that s,(f)ZΞH\oc(}^ ΓJ) and s(t)^H\Tly T2). Then (s, u) is
a solution of (S) on [0, T2], where

ί
\ *2(t)

u2(xy t)

Proof. We see from Proposition 3.1, 3.3 and the assumption s(t)&
JϊίoβQO, Γ]) that (s, u) is a solution of (M) on [0, T2]. Hence (s,u) is a solution
of (S) on [0, T2] by Proposition 11.1. q.e.d.

12. A priori estimates

We shall get a priori estimates to show the existence of a global solution
of (S).

Proposition 12.1. Let (s, u) be a solution of (S) on [0, T] with s(t) ̂ H\0, T)
corresponding to the data {I, φ} satisfying the conditions (A'). Then we have

(12.1) 2
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Γ I S(t) 1 3ώ + c2 Γ [ufa ϊfdxdt
Jo Jo Jo

o

Proposition 12.2. Under the assumptions of Proposition 12.1, we have

(12.2) 2~1

+2-1*2 Γf I ί(ί) 1 3dt+c2 (T Ϋtufdxdt
Jo Jo Jo

Γ 1 , t))dt .

REMARK 12.1. We shall use (12.1) and (12.2) in the proof of Theorem 2
and Theorem 1 respectively.

We prepare several lemmas to prove the propositions above. We suppose
the assumptions in Proposition 12.1 throughout this section. We can regard u
as the solution of the moving boundary problem (M) associated with the curve
s(t). We note that we can use Proposition 3.3.

Lemma 12.1. Φt and tΦ* are differ entiable at a.e. t^[0y T]y integrable on
[0, T] and

(12.3)

(12.4)
o o

Proof. Three exists a constant K such that

(12.5) Φt*-Φt

by (3.11). Hence we have

(12.6) fjΦ' -^Φ'i^ JΓfe-fx +

where K'=TK+ sup Φ'(£Φ°+K(2T+[T έ(t)*dt)). It follows from (12.5) and
OgsgT Jθ

(12.6) that Φ'-ί:Γ(l+ί(τ)2μτ and tΦ'-K' (' (l+ί(τ))2dτ are bounded and
Jo Jo

nonincreasing on [0, T]. Consequently we have (12.3) and (12.4) using the
wellknown theorems concerning Lebesgue's integral. q.e.d.

We shall calculate dΦ'/dt. We put a= 2'1 min {min(ί(ί), 1 — s(t));
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(12.7) Φί

i = 2

(12.8) Φί = 2-'( ("uf(x, t)2dx+ Γ u,(X> t)2dx)+θϋ(u(0,
Jo Ji-β

Lemma 12.2. ΦίeC^QO, Γ]), Φ£ is differentίable at a.e. ίe[0, T] and ώ

(12.9) έ/Φ'/Λ - dΦl/dt+dΦί/dt a.e. ίe[0, T] .

Proof. We get ΦjeC^QO, Γ]) by the following lemma. Hence we get the
conclusion from Lemma 12.1. q.e.d.

Lemma 12.3. ΦίeC^QO, T]) and

(12.10) dΦί/dt

!

s ( t ) rl-a

ufdx+Ci ut

2dx)
a Jί(ί)

-u,(α, t)ut(ay t)+ux(l-a, t)ut(\~a, t) .

Proof. We see that weCββ(Sί)ΓlCββ(S^) and ίeC°°(]0, Γ]) by Definition
1.1. Thus we get ΦjeC^QO, T]). We note that

(12.11) u(s(t),t)= Ό

(12.12) uj(ί(ί), ί), ιtf(

(12.13) M(/) = -u7(s(ή. t)+uϊ(s(t)9 t)

where we used Proposition 8.3 to have (12.12). Thus we get

(12.14) «*(*(*), t) = -«ί(*(ΐ), <)ί(0 (0<ί^ Γ) ,

(12.15) -ft| J(ί)| ̂

We have

J s(ί) fl-a

«,(*, ί)2*c+ \ M,(*.
fl Js(ί)

!

s(ί) Γl-Λ

uxuxidx-ul(s(t\ t)2S(t)+2 uxuxtdx)
a Js(ί)

J s(t)
uxlutdx

a

S I- a
uxxutdx

s(t)

S s(t) rl-a

ufdx-cΛ u,2dx
a Js(t)

—ux(a, t)ut(a, t)+ux(l—a, t)ut(l — a, t)

by (0.2), (0.3) and (12.14). Consequently we obtain (12.10), since we have
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(«ί(ί(ί), ff~u-(s(t),

= («*(ί(ί), t)-u7(s(t), <))(βί(ί(ί),

by (0.7) and (12.15). q.e.d.

We shall calculate dΦljdt. We prepare a simple lemma.

Lemma 12.4. It holds that for a.e. /e[0, T]

lira (\(u(x, t)-u(x, t—h))lh—ut(x, t)]2dx = 0 .
A->0 Jo

Proof. We see from Proposition 3.3 that

(12.16) Γ (lut(x, i)2dxdt< oo .
Jo Jo

We define u(t): [0, 1]->L2(0, 1) byu(t)=u( , t). It follows from [29, Proposi-
tion 8.3] and [4, Proposition A.7] that u(t) is absolutely continuous as a

L2(0, l)-valued function. Thus we get the conclusion easily. q.e.d.

Lemma 12.5. It holds that for a.e. /e[0, T]

(12.17) 'dΦUdt^-cufdx-c ut

2dx
Jθ Jl-β

+ux(a, t)ut(a, t)—ux(l—a, t)ut(l—a, t) .

Proof. For a.e. f e[0, Γ], we have

(12.18) 2-1 (β«,(Λ, t-h)2dx+θ0(u(0, t-h)}-(2-1 [aux(x, t)2dx+θ0(u(0, t)))
Jo Jo

^ ("«,(*, ί)(«X«, ί-A)-u,(*, t))dx+θ0(u(0, t-h))-θ0(u(Q, t))
Jo

= -( uxg(x, t)(u(x, t-h)-u(x, t))dx+ux(a ,t}(u(ay t-k)-u(a, t))
Jo

-Ml(0, t)(«(0, i-A)-tt(0, ί))+β,(«(0, ί-A))-ββ(β(0, 0)

ί
«

M^Λ, i)W^ t)—u(x, t—h))dx—ux(a, t)(u(a, t)—u(a, t-h)}
o

-«XO, ί)(«(0, ί-A)-iί(0, ί))+^MO, ί-A))-^0(M(0, ί))

^ c0 ( .«,(*, «)(«(*, t)~u(x, t-h))dx-u,(a, t)(u(a, t)-u(a, t-h))
Jo

by (0.2), (0.4) (a) and dθ0=70. We have also

(12.19) 2-1 Γ «χ*, ί-A)2^+^(«(l, ί-A))-(2-1 Γ M>, i)2^+^(«(l, ί)))
Jl-c «Jl-α
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ut(x, t)(u(x, t)-u(x, t-h))dx
a

+ux(l-a, ί)(u(\-a, t)-u(l-ay t~h))

for a.e. t e [0, T] in the same way. Consequently we obtain (12.17) using
(12.18), (12.19), Lemma 12.2, Lemma 12.4 and u&C^S^nC^Si) q.e.d.

We get the following result by Lemma 12.2, 12.3 and 12.5.

Lemma 12.6.

(12.20) dΦt/dt^-2-ψ\s(t)\3-c2 ut(x, tfdx .
Jo

Proof of Proposition 12.1. It is obvious from (12.3) and (12.20). q.e.d.

Proof of Proposition 12.2. It is obvious from (12.4) and (12.20). q.e.d.

13. Proof of Theorem 2

We show the global existence of a solution of (S) corresponding to the
data {/, φ} satisfying (A').

Proposition 13.1. Let {/, φ} satisfy (A1). Then there exists a solution
(Γ*, s, u) of(S) satisfying (1.18), (1.19) and (1.20).

Proof. According to Proposition 10.1 a solution (s, u) of (S) on [0, T] exists
for some Γ>0, and therefore on a maximal interval [0, Γ*[. If T*=roo, there
is no problem.

If Γ*<oo, it follows from the a priori estimate (12.1) that *(*)->** as ί-»Γ*
for some s*. If 0<s*<l, then the a priori estimate (12.1) and Proposition 10.1
and 11.2 allow us to extend the solution still. This contradicts the maximality
of the time interval [0, Γ*[. Hence limί(/)~0 or 1. Moreover we get (1.18),

/f!Γ*

(1.19) and (1.20) by (12.1) and Lemma 2.2. q.e.d.

Proof of Theorem 2. It is obvious from Proposition 13.1 and Theorem 1
which we prove later. q.e.d.

14. Proof of Theorem 1

In this section we shall show the local existence of the solution of (S) under
the condition (A), and give the proof of Theorem 1 and Theorem 3.

We approximate the given data satisfying (A) by the data satisfying (A)'.

Lemma 14.1. Let the data {I, φ} satisfy the condition (A). Then there
exists a sequence of the data {I, φn}n^ι satisfying (Af),



STEFAN PROBLEMS ON THE FIXED BOUNDARY II 837

(14.1) O^φ'ί^^maxdlψHi.to.o, Ht) ,

(14.2) min(-||φlli~<u>,tfl)^Φ»^0,

(14.3) lim \\φ"(')-φ(ρ)\\c<ίP-sp.p+*f» = 0 for a.e.pe[Q, 1]
«̂ .o» * r

(Sp is a positive constant depending on p).

Proof. Let {xl}0^i^2n (=1> 2, •••) be a family of sets such that each xn

t

is a point of continuity of φ(x), Q~XQ<xΐ< <xϊ-ι<xϊ=l<x'!l+ι< <X2n-ι<
x"n=\, lim(max !#}— *?-i|)=0, and {#5}, C {jφ. c— . Define ώn(#) as a pi-

*->»» l^ί^2»

ecewise linear function such that

( ' '

Φ"(0) = flβ, Φ"(0 = 0, φ (l) =

φ"(«J) = φ(*ϊ) (ίΦO, «, 2«) .

q.e.d.

Let (Tf, s", n") be the unique solution of the Stefan problem (S) corres-
ponding to the data {/, φ"} . This is well-defined, since {/, φ"} satisfies (A ') and
we have Proposition 12.1. We shall show the several estimates which are in-

dependent of n.
The following lemma is useful for further estimates.

Lemma 14.2. There exist positive constants T and d independent of n such

that

(14.5)

(14.6)

Proof. We put wι=max(||φ||i»(0>1), H0, —H^. Let (slt v) and (s2, w) be
the solutions of the following one-phase Stefan problem respectively,

= (1+1)12

, t>0) ,

, f))

(*, 0) = -«

(ί2(0. 0 = 0

2(ί) = »ί(ί,(/), ί)

These are well-defined by [34, Theorem 1]. It is easily seen from (14.1), (14.2)

v(s,(t), ί) = 0 (ί>0)

,(*) = -»Γ(*ι(0. 0
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and the proof of Lemma 15.1 that

for all n. Hence we get the conclusion easily. q.e.d.

We shall show several estimates for {sn}a and {un}.

Lemma 14.3.

(i) 0^z/*^max(||φ||L~(o>/),#0) on D°τ ̂

min(- ||φ|L~(/,D, HJ^if^O on Ό\ ,
CO

(ii) for any compact subset of Γl {(x, t); 0<#<1, xφsn(t), t>0}> derivatives

of u" of all orders are uniformly bounded with respect to ny

(iv)

(V)

for any <re]0, T[9 where Kσ (depending on σ^]0, T[) and K are constants.

Proof. We have (i) using Proposition 8.3, (14.1) and (14.2). We get (ii)

from (i) and the Bernstein's technique [21, p. 415]. It is easily seen from (14.1),

(14.2), (14.6) and Lemma 5.4 that

(14.7) Γ { ΓttK*,
Jo Jo

where Λ4Γis a constant independent of n. Hence we have

using Proposition 12.2 and (14.7). Consequently we obtain (iii), (iv) and (v)

easily. q.e.d.

It follows from (14.6), Lemma 14.3 that there exist subsequence of {sn}

(which we denote again by the same symbol) and a function $eC°'1/3([0, T])Γ\

C°'2/3(]0, ri)n#ίoc(Q0> ?Ί) such that /->* in C([0, Γ]) as n-+ooy and d^s(t)^

1—d (O^t^T). Hence we see from Proposition 3.5, (14.6) and Lemma 14.3

(iii) that un-^u in C(QVtT) as n-»oo for any 0<σ<Γ, where u is a solution of the

moving boundary problem (M) corresponding to the curve s(t) and the data φ(x).

We shall investigate the Stefan's condition.
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Lemma 14.4. u<=ΞC°°(S?) Π C°°(Sϊ), s(EC°°(]0, T]) and (0.7) is satisfied.

Proof. Since each un satisfies (0.7), we have by Proposition 9.1

(14.8) bsίl(t2)—bsn(t1)

= (t2(-un

x(a, t)+un

x(l-a, t))dt—c0 {' ̂  un(x, ΐ2)dx
J tl Ja

5 1-a Ps"^)
un(xy t2)dx+c0 \ un(x, t^dx

+cl ( a u*(x, t^dx for any 0<ΐί<t2^ T,

where α — d/2. Hence noting that u*(a, t)-*ux(a, ί), un

x(\—a, t)-+ux(l—a, t)
uniformly on [tl9 t2] by Lemma 14.3 (ii), and letting n-*o° in (14.8), we have an

equality similar to (14.8) as to (s, u). Hence we get the conclusion from Proposi-

tion 9.1, since *(*)GΞC° 1/3([0, T]) Π C° 2/3(]0, Γ]) ΠffίocQO, T]). q.e.d.

Consequently we have proved the existence of a solution (s, u) of (S) on

[0, T\.
We shall show the global existence of a solution of (S). We note that

{s(t), w( , t)} satisfies the condition (A') for all ze]0, T], since Proposition 3.1

and 8.3 hold. Hence {s(T), u( , T)} satisfies the condition (Ar). Let (Γf, sl9 uj

be the solution of the Stefan problem (S) corresponding to the data {s(T), u(x, T)}.

This is well-defined by Proposition 13.1. We put

j u(x,t)
u9(x, t) = i2V ' ( ιφ,t-T)

where T$=Tf+T. It follows from Proposition 11.2 that (Tf, s2, u2) is a solu-

tion of (S). We have (1.11) by Lemma 14.3 (iv) and Proposition 12.1. We

get (1.12) and (1.13) by Proposition 8.3. We have (1.14) and (1.15) from Pro-

position 12.1, Lemma 2.2 and the fact that there exists a time σ' with 0<σ'<σ

such that u(xy σ'} satisfies the condition (A7).

We can see the uniqueness of the solution of (S) by Proposition 15.1 which

we prove later.

Thus we complete the proof of Theorem 1.

Proof of Theorem 3. It is obvious from Proposition 3.2 and Theorem 1.

q.e.d.
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15. Uniqueness of the solution of (S)

In this section we show the uniqueness of the solution of the Stefan pro-
blem (S) under the condition (A). We state a comparison theorem.

Proposition 15.1. Let (Γf, sly uλ) and ( T f , s2y u2) be the solutions of (S)
corresponding to the data {llt φj and {/2, φ2} satisfying the condition (A) respec-

tively. Suppose that 1^12 and φι^φ2. Then we have

(15.1) ^(0^(0 0fi[0, Γ*],

(15.2) ufa, t)^u2(x, t) onQT*>

where T*=τnin(Tt, Tf).

We prepare a lemma to prove the proposition above.

Lemma 15.1. Under the assumptions of Proposition 15.1, let /!</2 and

Φιί*φ2 Then we have

*(f )<*(*) on[0, T*].

Proof. Assuming the contrary, set t0=mm {£^[0, T1*]; s^t) = s2(t)} .

Clearly ^(ί0) 2£ί2(*o) and £0>0. We may have that u^s^t), t)>0 and Uι(s2(t), t)<Q
(0<t<t0) by virtue of Proposition 8.1, Proposition 8.3 and the strong maximum
principle [24], ruling out the exceptional case u2 = 0 (0^x^s2(t)9 0^t^tQ) or

Uι = Q (sι(t)^x^l, 0^f^f0). In fact, (S) is reduced to a one-phase problem
in the exceptional case, so we can derive a contradiction from the proof of [34,
Lemma 12.1]. Now we have u2—u1>0 in {(#,£); 0<x<s1(t)y s2(t)<x<ly

Q<t^tQ} by Proposition 8.1 and the strong maximum principle. Since u2—ul

vanishes at the point (ί2(*o)> *o)> it follows from the parabolic version of Hopf's
lemma [14] that

Hence we have by s1(ΐQ)= s2(tQ),

0)—u7ιX(s2(tQ), t0)

,)-u^x(Sl(t^ ΪQ) ,

which is a contradiction. q.e.d.

Proof of Proposition 15.1. We shall show (15.1). If /ι</2, then we have
(15.1) by Lemma 15.1. Hence we may treat the case 11= 12. For simplicity
we denote /2, φ2, s2, ^ by /, φ, s, u respectively. We put l*=l+a,
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^ J φ(x) (0^*<A/M = \
I 0 (l^x^l*),

ΛΦ

for sufficiently small a>0. Each {/*, φ*} satisfies (A). Therefore there exists
a solution (T *, SΛ, u") of (S) corresponding to the data {/*, φα} by the result in
§ 14. We see from Lemma 15.1 that

(15.4) *(0<ΛO on [0, min(Γf , Γ*)] .

Now (ί, w) and (ίrt, WΛ), being the solutions of (S), must satisfy their versions
of Proposition 9.1 (ii) respectively. Substracting them and noting that u* — u^O
by Proposition 8.1, we obtain

(15.5) b(s*(t)-(s(t))

, τ)-«χθ, τ)),/τ

!

s(0 fs( ί)

(ι̂  (*, «)-«(*, ί))Λ-A, «'(*»
0 Js(/)

51 f Ao
(WΛ(Λ:, ί)— W(ΛT, ί))έfor+^ι I u(x> t)dx

s*(t) Js(f)

JAσ) f5(σ)
u*(x, σ)dx—cQ \ u(x, σ)dx

o Jo

51 ri
u*(x, σ^dx—c^ \ u(xy σ)dx

s*M J s(σ)

- I+II+III+IV+V+VI+VII+VIII+IX+X+XI ,

for any σ and t with 0<σ</<min(T1?, Γ*) for sufficiently small a. II and
III are non-positive by the argument used in the proof of [34, Lemma 12.1],
and moreover IV, V, VI and VII are non-positive since u"—u^Q and s^^s.
Hence letting σ tend to zero, we obtain

(15.6) b(s»(t)-s(t))^b(l«-l)

+c0(\l φ<Λdx~(lφdx)+c1({1 Φ*dx-[lφdx)
Jo Jo Ji* J /

^ba+Cla\\φ\\L~(ltl}=IΛ on [0, min(Γ2*, Γ*)] .

Therefore we see from (15.4) and (15.6) that

sι(*)<f(t)<**(t)+b-ll* on [0, min(Γf, Γ2*, Γ*)] .

Letting α-^0, we have (15.1). We get (15.2) by Proposition 8.1. q.e.d.

Proof of Theorem 1 (Uniqueness). Let ( J1?, sl9 %) and (Γf , s2, u2) be solu-
tions of (S). Assume that Γf^TT If T?<T$, then we can see from Pro-
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position 15.1 that ^(0=^(0 (O^ί^Γf). Hence s1(Tγ)=s2(Tf). This is a
contradiction since j1(Γf)=0 or 1, and 0<O2(!Γf)<l by Γf<Γ?. Therefore
Tf = Tf. Thus we have ^=^2 on [0, Γf] and u1=u2 on £)r* by Proposition
15.1 and 8.1. q.e.d.
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