Nagura, T. Osaka J. Math. 20 (1983), 779-786

ON THE NORMAL BUNDLES OF S² MINIMALLY IMMERSED INTO THE UNIT SPHERES

Toshinobu NAGURA

(Received February 22, 1982)

Introduction

Let $F: S^2 \to S^m(1)$ be a full minimal isometric immersion of the 2-dimensional sphere S^2 into the *m*-dimensional unit sphere $S^m(1)$. Let $N(S^2)$ be the normal bundle of S^2 and $\Gamma(N(S^2))$ the space of all C^{∞} cross-sections of $N(S^2)$. We denote by \tilde{J} the Jacobi operator acting on $\Gamma(N(S^2))$. The operator \tilde{J} is diagonalisable (Simons [6]).

The 2-dimensional sphere S^2 may be considered as the homogeneous space $SU(2)/S(U(1) \times U(1))$. Then the isometric immersion F is SU(2)equivariant (Calabi [1], Do Carmo & Wallach [2]). Let V_{λ} be the complexification of the λ -eigenspace of \tilde{J} . Then V_{λ} is a SU(2)-module and the multiplicities of any complex irreducible SU(2)-modules contained in V_{λ} are all equal to 2 (Nagura [4]).

In this paper we show that the normal bundle $N(S^2)$ has a holomorphic vector bundle structure (Proposition 2). Therefore $\Gamma(N(S^2))$ is a complex vector space. Secondly we show that the Jacobi operator \tilde{J} is complex linear (Proposition 3). Hence every eigenspace of \tilde{J} is a complex linear subspace of $\Gamma(N(S^2))$. Thirdly we show that if we decompose an eigenspace of \tilde{J} into a direct sum of complex irreducible SU(2)-modules, then any pairs of the components are not SU(2)-isomorphic (Proposition 4). This result explains the above fact on the multiplicities.

1. Preliminaries

We denote by G (resp. by K) the special unitary group SU(2) of degree 2 (resp. the subgroup $S(U(1) \times U(1))$ of SU(2)), i.e.

$$K = \left\{ \begin{pmatrix} b & 0 \\ 0 & \overline{b} \end{pmatrix}; b \in \boldsymbol{C}, |b| = 1 \right\},$$

where \overline{b} is the complex conjugate of b. Let g be the Lie algebra of G and t the Lie subalgebra of g corresponding to the subgroup K of G, i.e.

$$g = \left\{ \begin{pmatrix} \sqrt{-1}a & b \\ -\bar{b} & -\sqrt{-1}a \end{pmatrix}; a \in \mathbf{R}, b \in \mathbf{C} \right\},$$

$$\mathfrak{k} = \left\{ \begin{pmatrix} \sqrt{-1}a & 0 \\ 0 & -\sqrt{-1}a \end{pmatrix}; a \in \mathbf{R} \right\}.$$

Then t is a Cartan subalgebra of g. We define an Ad(G)-invariant inner product (,) on g by

$$(X, Y) = -\frac{1}{2} Tr(XY)$$
 for $X, Y \in \mathfrak{g}$,

where Tr(XY) denotes the trace of the matrix XY. Let \mathfrak{P} be the orthogonal complement of \mathfrak{k} . Then

$$\mathfrak{p} = \left\{ \begin{pmatrix} 0 & b \\ -\bar{b} & 0 \end{pmatrix}; b \in \mathbf{C} \right\}.$$

We may consider \mathfrak{P} as the tangent space $T_0(S^2)$ of S^2 at $o=\pi(e)$, where π is the natural projection of G onto $S^2=G/K$. The inner product (,) defines a G-invariant Riemannian metric on S^2 which coincides with the inner product (,) on $\mathfrak{P}=T_0(S^2)$. We also denote by (,) this G-invariant Riemannian metric. Then the Riemannian manifold $(S^2, (,))$ is of constant sectional curvature 4.

We choose an orthonormal basis $\{h, x, y\}$ of g as follows:

$$h = \begin{pmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{pmatrix}, \quad x = \begin{pmatrix} 0 & \sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix}, \quad y = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

An irreducible orthogonal representation $\rho: G \to GL(V)$ is said to be a *real* spherical representation of the pair (G, K), if there exists a unit vector $v \in V$ such that $\rho(k)v=v$ for any $k \in K$. We have

Lemma 1 (cf. Serre [5]). Let $\rho: G \rightarrow GL(V)$ be a real spherical representation of (G, K). Then

(1) The complexification $\rho: G \rightarrow GL(V^c)$ of ρ is a complex irreducible representation with highest weight 2nh, where V^c is the complexification of the vector space V and n is a non-negative integer.

(2) We can choose an orthogonal basis $\{u, v_i, w_i; i=1, 2, \dots, n\}$ of V with the following properties:

$$d\rho(h)u = 0, \quad d\rho(h)v_i = 2iw_i, \quad d\rho(h)w_i = -2iv_i,$$

$$i = 1, 2, \dots, n.$$

$$d\rho(x)u = 2nv_1, \quad d\rho(y)u = -2nw_1.$$

If i is even,

Normal Bundles of S^2 into the Unit Spheres

$$d
ho(x)v_i = (n+i)v_{i-1} + (n-i)v_{i+1},$$

 $d
ho(x)w_i = (n+i)w_{i-1} + (n-i)w_{i+1},$
 $d
ho(y)v_i = (n+i)w_{i-1} - (n-i)w_{i+1},$
 $d
ho(y)w_i = -(n+i)v_{i-1} + (n-i)v_{i+1}.$

If i is odd,

$$d\rho(x)v_i = \begin{cases} -(n+1)u - (n-1)v_2 & i=1, \\ -(n+i)v_{i-1} - (n-i)v_{i+1} & i>1, \end{cases}$$

$$d\rho(x)w_{i} = \begin{cases} -(n-1)w_{2} & i=1, \end{cases}$$

$$\int (n+i)w_{i-1} - (n-i)w_{i+1} \quad i > 1,$$

$$d\rho(y)v_i = \begin{cases} (n-1)w_2 & i=1, \\ (n-1)w_2 & i=1, \\ (n-1)w_2 & i=1, \end{cases}$$

$$(-(n+i)w_{i-1}+(n-i)w_{i+1} \quad i > 1,$$

$$((n+1)u_{i-1}+(n-1)v_{i-1} \quad ...$$

$$d\rho(y)w_i = \begin{cases} (n+i)v_{i-1} - (n-i)v_2 & i=1, \\ (n+i)v_{i-1} - (n-i)v_{i+1} & i<1. \end{cases}$$

Here $d\rho: \mathfrak{g} \rightarrow \mathfrak{gl}(V)$ is the differential of the representation ρ .

 \mathbf{For}

$$k = \begin{pmatrix} e^{\vee -1\,\theta} & 0\\ 0 & e^{-\vee -1\,\theta} \end{pmatrix} \in K, \ \theta \in \mathbf{R} ,$$

we have by the above lemma

(1.1)
$$\begin{cases} \rho(k)v_i = \cos(2i\theta)v_i + \sin(2i\theta)w_i, \\ \rho(k)w_i = -\sin(2i\theta)v_i + \cos(2i\theta)w_i. \end{cases}$$

Let (M, g) (resp. $(\overline{M}, \overline{g})$) be a Riemannian manifold of dimension k (resp. of dimension m). Let $F: M \to \overline{M}$ be an isometric immersion of M into \overline{M} . We identify the tangent space $T_p(M)$ of M at $p \in M$ with **a** linear subspace of the tangent space $T_{F(p)}(\overline{M})$ of \overline{M} at $F(p) \in \overline{M}$. We denote by $N_p(M)$ the orthogonal complement of $T_p(M)$ in $T_{F(p)}(\overline{M})$. Let T(M) (resp. N(M)) be the tangent bundle (resp. the normal bundle) of M. We denote by $\mathfrak{X}(M)$ (resp. by $\Gamma(N(M))$) the space of all C^{∞} cross-sections of T(M) (resp. of N(M)). Let ∇ (resp. $\overline{\nabla}$) be the Riemannian connection of M (resp. of \overline{M}). Let D be the normal connection of F. Let $B: T_p(M) \times T_p(M) \to N_p(M)$ be the second fundamental form of F, and $A: N_p(M) \times T_p(M) \to T_p(M)$ the Weingarten form of F. For any vector fields $X, Y \in \mathfrak{X}(M)$ and for any normal vector field $\xi \in \Gamma(N(M))$, we have the followings (cf. Kobayashi & Nomizu [3] Vol. 11 Chap. 7 section 3):

$$\overline{\nabla}_{\boldsymbol{X}} Y = \nabla_{\boldsymbol{X}} Y + B(X, Y),$$

$$ar{
abla}_x \xi = -A_{\xi} X + D_x \xi \,,$$

 $g(\xi \,, \, B(X, \, Y)) = g(A_{\xi} X, \, Y) \,.$

We denote by H the mean curvature of F. Let $\{e_1, e_2, \dots, e_k\}$ be an orthonormal basis of $T_{\rho}(M)$. Then we have

$$H_p = \sum_{i=1}^k B(e_i, e_i) \, .$$

The isometric immersion $F: M \rightarrow \overline{M}$ is said to be *minimal*, if the mean curvature H of F vanishes identically.

Let \overline{R} be the curvature tensor of \overline{M} . We define linear mappings \widetilde{A} , \widetilde{R} , of $N_{*}(M)$ as follows:

(1.2)
$$\tilde{A}(v) = \sum_{i,j=1}^{k} \mathbf{g}(v, B(e_i, e_j))B(e_i, e_j),$$

(1.3)
$$\widetilde{R}(v) = \sum_{i=1}^{k} \left(\widetilde{R}(e_i, v) e_i \right)^N \quad \text{for } v \in N_p(M) \,,$$

where $\{e_1, e_2, \dots, e_k\}$ is an orthonormal basis of $T_p(M)$ and $(\overline{R}(e_i, v)e_i)^N$ denotes the normal component of $\overline{R}(e_i, v)e_i$. The linear mappings \widetilde{A} and \widetilde{R} are independent of the choice of an orthonormal basis. We denote by Δ the Laplace operator on N(M). Let $\{E_1, E_2, \dots, E_k\}$ be an orthonormal local basis of T(M)on a neighborhood of $p \in M$. Then we have

$$\Delta f(p) = \sum_{i=1}^{k} (D_{E_i} D_{E_i} f)(p) - \sum_{i=1}^{k} (D_{\nabla B_i E_i} f)(p) \quad \text{for } f \in \Gamma(N(M)) .$$

The Jacobi operator \tilde{J} is the operator on N(M) defined by

(1.4)
$$\tilde{J} = -\Delta - \tilde{A} + \tilde{R}.$$

2. A complex structure on the normal bundle $N(S^2)$

In the rest of this paper we assume that $F: S^2 \to S^m(1)$ is a full minimal isometric immersion of $(S^2, c(,)), c>0$, into the *m*-dimensional unit sphere $S^m(1)$. We may consider $S^m(1)$ as the unit sphere of an (m+1)-dimensional Euclidean vector space V with the center 0. Then the following results are known (Calabi [1] p. 123, Do Carmo & Wallach [2] p. 103): The minimal immersion F is rigid, and there exist a real spherical representation $\rho: G \to GL(V)$ of (G, K) and a unit vector $u_0 \in V$ such that

$$F(gK) = \rho(g)u_0$$
 for any $g \in G$.

Let $\{u, v_i, w_i; i=1, 2, \dots, n\}$ (m=2n) be the orthogonal basis of V in Lemma 1. We identify the tangent space of V with V itself in a canonical way. Then we have

Normal Bundles of S^2 into the Unit Spheres

$$T_0(S^2) = \{v_1, w_1\}_R, N_0(S^2) = \{v_i, w_i; i = 2, 3, \dots, n\}_R,$$

where $N_0(S^2)$ is the normal space of S^2 at o in the unit sphere $S^m(1)$. Put

$$V^{0} = \mathbf{R} u_{0} = \mathbf{R} u$$
, $V^{T} = T_{0}(S^{2})$, $V^{N} = N_{0}(S^{2})$.

Then we have the following orthogonal decomposition:

(2.1)
$$T_{u_0}(V) = V^0 + V^T + V^N$$

REMARK. The number c can be explicitly computed (cf. Nagura [4] I p. 128). We have

$$c=2n(n+1).$$

Let $\phi: K \rightarrow GL(V^N)$ be the representation of K defined by

$$\phi(k) = \rho(k)_{|V^N} \quad \text{for } k \in K.$$

Let $G \times_{\kappa} V^N$ be the vector bundle associated to G by ϕ . The vector bundle homomorphism $\iota: G \times_{\kappa} V^N \to N(S^2)$ defined by

$$\iota(g \circ v) = \rho(g)v \quad \text{for } g \in G \text{ and } v \in V$$

is isomorphic (Nagura [4] I p. 123). Here $x \circ v$ is the image of $(x, v) \in G \times V^N$ by the natural projection of $G \times V^N$ onto $G \times_{\kappa} V^N$. Put

$$C^{\infty}(G; V^{N})_{K} = \{f: G \to V^{N} \mid C^{\infty} \text{ mapping}; f(gk) = \phi(k)^{-1}f(g) \}$$

for $g \in G$ and $k \in K$

The isomorphism $\iota: G \times_{\kappa} V^{N} \to N(S^{2})$ induces an isomorphism of $C^{\infty}(G; V^{N})_{\kappa}$ onto $\Gamma(N(S^{2}))$. We also denote by ι this isomorphism

We denote by \tilde{G} the complex special linear group $SL(2, \mathbb{C})$ of degree 2. Let \tilde{U} be the subgroup of \tilde{G} defined by

$$\widetilde{U} = \left\{ \begin{pmatrix} a & b \\ 0 & \frac{1}{a} \end{pmatrix}; a, b \in C, a \neq 0 \right\}.$$

The 2-dimensional sphere S^2 may be considered as the 1-dimensional complex projective space. In fact, the mapping $i: S^2 = G/K \rightarrow P^1(C) = \tilde{G}/\tilde{U}, i(gK) = g\tilde{U}$ for $g \in G$, gives this identification. We define a complex structure I on V^N by

$$Iv_i = w_i$$
, $Iw_i = -v_i$ $i = 2, 3, \dots, n$

We denote by \overline{V}^N this complex vector space (V^N, I) . We have by

(1.1)
$$\phi(k) \circ I = I \circ \phi(k) \quad \text{for } k \in K.$$

Therefore the bundle $G \times_{\kappa} V^{N}$ has a complex vector bundle structure. In addition the following proposition asserts that $G \times_{\kappa} V^{N}$ is a holomorphic vector bundle.

Proposition 2. Let $F: (S^2, c(,)) \rightarrow S^m(1), c > 0$, be a full minimal isometric immersion. Then the normal bundle $N(S^2)$ has a holomorphic vector bundle structure.

Proof. We shall show that $G \times_{\kappa} V^N$ has a holomorphic vector bundle structure. We define a mapping $\psi \colon \tilde{U} \to GL(\bar{V}^N)$ by

$$\psi(\tilde{u})v_i = (Re\ a^{2i})v_i + (Im\ a^{2i})w_i$$
,
 $\psi(\tilde{u})w_i = -(Im\ a^{2i})v_i + (Re\ a^{2i})w_i$
for $\tilde{u} = \begin{pmatrix} a & b \\ 0 & \frac{1}{a} \end{pmatrix} \in \widetilde{U}$,

where $Re a^{2i}$ (resp. Im a^{2i}) is the real part (resp. the imagenary part) of $a^{2i} \in C$. Since $\psi(\tilde{u}_1 \tilde{u}_2) = \psi(\tilde{u}_1) \psi(\tilde{u}_2)$ for $\tilde{u}_1, \tilde{u}_2 \in \tilde{U}, \psi$ is a holomorphic representation of \tilde{U} . Let $\tilde{G} \times_{\tilde{U}} \tilde{V}^N$ be the vector bundle associated to \tilde{G} by ψ . This vector bundle $\tilde{G} \times_{\tilde{U}} \tilde{V}^N$ is a holomorphic vector bundle. Since the restriction ψ_{1K} of ψ to K coincides with ϕ , the bundle homomorphism $i: G \times_K V^N \to \tilde{G} \times_{\tilde{U}} \tilde{V}^N$, $i(x \circ v) = x \circ v$, is an isomorphism as C^∞ vector bundle. Hence $G \times_K V^N$ has a holomorphic vector bundle structure. Q.E.D.

3. On the Jacobi operator J

We also denote by *I* the complex structure on $C^{\infty}(G; V^N)_{\kappa}$ induced from the complex structure *I* on V^N . Let \tilde{I} be the complex structure on $\Gamma(N(S^2))$ corresponding to this complex structure *I* on $C^{\infty}(G; V^N)_{\kappa}$ under the isomorphism $\iota: C^{\infty}(G; V^N)_{\kappa} \to \Gamma(N(S^2))$. We define an action *L* (resp. an action σ) of *G* on $C^{\infty}(G; V^N)_{\kappa}$ (resp. on $\Gamma(N(S^2))$) as follows:

$$(L_g f)(h) = f(g^{-1}h) \quad \text{for } g, h \in G \text{ and } f \in C^{\infty}(G; V^N)_{\kappa}, (\sigma_{\kappa} f)(hK) = d(\rho(g))f(hK) \quad \text{for } g, h \in G \text{ and } \tilde{f} \in \Gamma(N(S^2)),$$

where $d(\rho(g))$ is the differential of the isometry $\rho(g)$ of $S^{m}(1)$. Then we have (Nagura [4] I p. 124)

$$\iota \circ L_g = \sigma_g \circ \iota \quad \text{for } g \in G.$$

We have easily

(3.1)
$$I \circ L_g = L_g \circ I, \quad \hat{I} \circ \sigma_g = \sigma_g \circ \hat{I} \quad \text{for } g \in G.$$

The above result shows that the action L (resp. σ) is a complex representation of G with representation space $(C^{\infty}(G; V^N)_{\kappa}, I)$ (resp. $(\Gamma(N(S^2)), \hat{I}))$.

Let J be the operator on $C^{\infty}(G; V^N)_{\kappa}$ corresponding to the Jacobi operator \tilde{J} . We have (Nagura [4] I p. 131)

(3.2)
$$Jf = -\frac{1}{c} \bigg[\sum_{i=1}^{3} E_i E_i f - 2c_{\rho} f + 2 \sum_{i=1}^{3} \{ d\rho(E_i)(E_i f) \}^N + 2 \sum_{i=1}^{3} \{ d\rho(E_i)(d\rho(E_i) f)^N \}^N \bigg]$$
for $f \in C^{\infty}(G; V^N)_{r}$,

where $E_1=h$, $E_2=x$, $E_3=y$, $c_p=-2c$ and $(v)^N$ denotes the V^N -component of $v \in V$ with respect to the decomposition (2.1). In (3.2) we consider g as the Lie algebra of left invariant vector fields on G.

Proposition 3. The Jacobi operator \tilde{J} is complex linear on $(\Gamma(N(S^2)), \tilde{I})$.

Proof. We shall show that $J \circ I = I \circ J$. Since $Z \circ I = I \circ Z$ for $Z \in \mathfrak{g}$, it is sufficient to show that

$$(3.3) \qquad \{d\rho(Z)(I(v))\}^N = I(d\rho(Z)v)^N \quad \text{for } Z \in \mathfrak{g} \text{ and } v \in V^N.$$

Applying Lemma 1, we have

$$\{d
ho(Z)(I(v))\}^N = I(d
ho(Z)v)^N$$

for $Z = h, x, y$ and $v = v_i, w_i, i = 2, 3, ..., n$.

This proves (3.3).

Let U_{λ} be the λ -eigenspace of \tilde{J} in $\Gamma(N(S^2))$. Since the space U_{λ} is *G*-invariant (Nagura [4] I p. 119), U_{λ} is a complex *G*-invariant subspace of $(\Gamma(N(S^2)), I)$ by Proposition 3. Therefore we have the following proposition by Nagura [4] (III (2) of Theorem 12.3.3).

Proposition 4. If we decompose an eigenspace of \tilde{J} into a direct sum of complex irreducible G-modules, then any pairs of the irreducible components are not G-isomorphic.

Let \tilde{L} be the space of Killing vector fields on the unit sphere $S^{m}(1)$. Put

$$ilde{W}=\{(ilde{k}_{ert S^2})^N; \; ilde{k}\!\in\! ilde{L}\}$$
 ,

where $(\tilde{k}_{1S^2})^N$ is an element of $\Gamma(N(S^2))$ obtained by the normal projection of $\tilde{k} \in \tilde{L}$. This space \tilde{W} is a G-module. A cross-section $\tilde{f} \in \Gamma(N(S^2))$ is called a *Jacobi field*, if it satisfied the equation $\tilde{f}\tilde{f}=0$. An element of \tilde{W} is a Jacobi field (Simons [6] p. 74). Let \tilde{W}^c be the complexification of the space \tilde{W} . Then the multiplicities of any complex irreducible G-modules contained in \tilde{W}^c are

Q.E.D.

equal to 1 (Nagura [4] III Lemma 12.4.2). Hence we have

$$(3.4) $\tilde{I}\tilde{W}\cap\tilde{W}=\{0\}.$$$

Let U_0 be the space of all Jacobi fields. Then we have by (3.4) and Nagura [4] (III Theorem 12.4.1 and Lemma 12.4.2)

$$U_0 = \tilde{W} + \tilde{I}\tilde{W}$$
 (direct sum).

Thus we could obtain the space U_0 . However the author does not know the geometric meaning of this decomposition.

Bibliography

- [1] E. Calabi: Minimal immersions of surfaces in Euclidean spheres, J. Differential Geom. 1 (1967), 111-125.
- [2] M.P. Do Carmo and N.R. Wallach: Representations of compact groups and minimal immersions into spheres, J. Differential Geom. 4 (1970), 91-104.
- [3] S. Kobayashi and K. Nomizu: Foundations of differential geometry I, II, Interscience, New York, 1969.
- [4] T. Nagura: On the Jacobi differential operators associated to minimal isometric immersions of symmetric spaces into spheres I, II, III, Osaka J. Math. 18 (1981), 115-145; 19 (1982) 79-124; 19 (1982) 241-281.
- [5] J.P. Serre: Algèbres de Lie semi-simples complexes, W.A. Benjamin, New York, 1966.
- [6] J. Simons: Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968), 62-105.

Department of Mathematics Faculty of Science Kobe University Kobe 657, Japan