Kakutani, S. Osaka J. Math. 20 (1983), 439-460

THE EQUIVARIANT SPAN OF THE UNIT SPHERES IN REPRESENTATION SPACES

SHIN-ICHIRO KAKUTANI

(Received September 21, 1981)

1. Introduction

Let G be a finite group and M be a smooth G -manifold. We define $\mathrm{Span}_G(M)$ to be the largest integer k such that M has k linearly independent smooth G-vector fields. Let *V* be an orthogonal G-representation space and let *S(V)* denote the unit sphere in *V.* In the case where G acts freely on *S(V),* $\mathrm{Span}_{G}(S(V))$ (=Span $(S(V)/G)$) has been studied by Becker [6], Iwata [13], Sjerve [23] and Yoshida [29]. In this paper, we consider $\text{Span}_G(S(V))$ when G does not act freely on $S(V)$. Our main results are Theorems 1.1 and 1.2, which are generalizations of Theorems 2.1 and 2.2 in [6] respectively. Our method is due to Becker [6].

Let *H* be a subgroup of G, then we write *H<G.*

Theorem 1.1. *Let G be a finite group and let V, W be unitary G-representation spaces. Suppose that*

(i) $\dim_{\mathbf{C}} V^{\mu} = \dim_{\mathbf{C}} W^{\mu}$ for all $H < G$,

(ii) For each $H < G$, dim_{**n**} $V^H \geq 2k$ if V^H \neq {0}.

Then $Span_G(S(V)) \geq k-1$ *if and only if* $Span_G(S(V))$

Let *ξ* and *η* be orthogonal G-vector bundles over a compact G-space. Denote by $S(\xi)$ (resp. $S(\eta)$) the unit sphere bundle of ξ (resp. η). Then $S(\xi)$ and *S(η)* are said to be *G-fiber homotopy equivalent* if there are fiber-preserving G-maps:

$$
f\colon S(\xi)\to S(\eta),\ \ f'\colon S(\eta)\to S(\xi)
$$

such that $f \circ f'$ and $f' \circ f$ are fiber-preserving G-homotopic to the identity ([6], $[19]$.

Let $\mathbb{R}P^{k-1}$ denote the $(k-1)$ -dimensional real projective space with trivial G-action and let η_k denote the non-trivial line bundle over \mathbb{RP}^{k-1} with trivial G-action.

Theorem 1.2. *Let G be a finite group and let V be an orthogonal G-representation space. Then we have the following:*

(i) Suppose that $\mathrm{Span}_G(S(V)){\geq}k-1.$ Then there are an integer t and a *G-fiber homotopy equivalence*

$$
f\colon S((\eta_k \otimes \underline{V}) \oplus \underline{R}^t) \to S(\underline{V} \oplus \underline{R}^t).
$$

Moreover we suppose that $\dim_\mathbf{R} V^{\mu} \geq k+1$ *if* V^{μ} \neq {0} *for each H<G. Then there is a G-fiber homotopy equivalence*

$$
f\colon S(\eta_k \otimes \underline{V}) \to S(\underline{V}) .
$$

(ii) Suppose that $\dim_{\mathbb{R}} V^H \geq 2k$ if $V^H = \{0\}$ for each $H < G$ and there is a *G-fiber homotopy equivalence*

$$
f\colon S(\eta_k \otimes \underline{V}) \to S(\underline{V}) .
$$

Then $Span_{G}(S(V)) \geq k-1$.

Here \underline{V} denotes the trivial G-vector bundle $\mathbb{RP}^{k-1} \times V \rightarrow \mathbb{RP}^{k-1}$.

Throughout this paper *G* will be a finite group.

The paper is organized as follows:

In §2, we discuss some preliminary results. In §3, we consider equivariant duality, reducibility and coreducibility. In §4, we consider stunted projective spaces with linear G-actions. In \S § 5 and 6, we state an equivariant version of the theorem of James. In §7, we prove Theorem 1.1. In § 8, we prove Theorem 1.2. In § 9, we give an example.

The author wishes to thank Mr. S. Hashimoto and Dr. M. Murayama for valuable discussions.

2. Preliminary results

First we shall fix some notations. Let *X* and *Y* be G-spaces. Let *A* be a *G*-subspace of *X* and let α : $A \rightarrow Y$ be a *G*-map. Denote by $F((X, A), Y; \alpha)$ the space of all maps $f: X \rightarrow Y$ such that $f | A = \alpha$ in the compact open topology. $F((X, A), Y; \alpha)$ is a G-space with the following G-action: if $f: X \rightarrow Y$ and $g \in G$, we put

$$
(g \cdot f)(x) = g(f(g^{-1}x)) .
$$

For H < *G*, X^{μ} denotes the *H*-fixed point set in *X*. The set $F((X, A), Y; \alpha)^{G}$ is just the set of *G*-maps $f: X \rightarrow Y$ such that $f | A = \alpha$. Denote by $[(X, A), Y; \alpha]^G$ the set of G-homotopy classes rel A of G-maps $f: X \rightarrow Y$ such that $f | A = \alpha$. If $A = \phi$, we write $F(X, Y)$ (resp. $[X, Y]^G$) instead of $F((X, A), Y; \alpha)$ (resp. $[(X, A), Y; \alpha]^G$, for simplicity. If X, Y are G-spaces with base points, then we denote the set of G-homotopy classes relative to the base points of pointed G-maps from X to Y by $[X, Y]_0^G$. The base points are G-fixed points as usual. For $H < G$, (*H*) denotes the conjugacy class of *H* in *G*. Denote by G_x the isotropy group at $x \in X$ and we put

$$
\mathrm{Iso}(X) = \{(G_x) | x \in X\}.
$$

For a space Z , we define $conn(Z)$ to be the largest integer *n* such that Z is *n*-connected. In particular, when Z is not path-connected (resp. $Z = \phi$), we put conn(Z) = -1 (resp. conn(Z) = ∞).

The following two lemmas are easily seen by the definition of G-complexes (see Bredon [8] and Waner [26]).

Lemma 2.1. Let $f: X \rightarrow Y$ be a G-map of G-spaces such that $f^H = f\vert X^H$: $X^{\mu} \rightarrow Y^{\mu}$ is an n_H-equivalence for each $H < G$. Let (K, L) be a pair of G-com*plexes and* α *:* $L \rightarrow X$ *be a G-map. Then*

$$
f_*\colon [(K, L), X; \alpha]^G \to [(K, L), Y; f \circ \alpha]^G
$$

is surjective if dim($K^H - L$) $\leq n_H$ *and bijective if dim*($K^H - L$) $\leq n_H - 1$ *for each* $(H) \in \text{Iso}(K-L).$

Lemma 2.2. *Let (K, L) be a pair of G-complexes and X be a G-space.* Let $\alpha: L \rightarrow X$ be a G-map. Then the G-fixed point morphism

$$
\phi_G\colon [(K, L), X; \alpha]^G\to [(K^G, L^G), X^G; \alpha^G]
$$

is surjective if $dim(K^{\mu}-L\cup K^c)$ \le $conn(X^{\mu})+1$ *and bijective if* $dim(K^{\mu}-L\cup K^c)$ \leq conn (X^H) for each $(H) \in$ Iso($K-L\cup K^G$).

DEFINITION 2.3. Let *X* be a G-space. Then *X* is said to be *G-pathconnected* if and only if $\text{conn}(X^H) \ge 0$ for all $H < G$.

Let X and Y be G-spaces. We recall that the join $X*Y$ is the space obtained from the union of X, Y and $X \times Y \times [0, 1]$ by identifying

$$
(x, y, 0) = x
$$
, $(x, y, 1) = y$ for $x \in X, y \in Y$.

We generally omit to write in the identification map, so that the image of (x, y, t) in $X*Y$ is denoted by the same expression. A canonical G-action on $X*Y$ is given by $g'(x, y, t) = (gx, gy, t)$. Let *V* be an orthogonal *G*-representation space. We see that

$$
(X*Y)^{H} = X^{H}*Y^{H}
$$

and

$$
\operatorname{conn}((X * S(V))^H) = \operatorname{conn}(X^H) + \dim_R V^H
$$

for *H*<*G*. Let $i_{s(v)}$: *S*(*V*) \rightarrow *X***S*(*V*) be an inclusion map defined by $i_{s(v)}(v)$ = $(-, v, 1)$. We have the following theorem (cf. [18; Theorem 3.6], [20]):

Theorem 2.4. *Let K be a G-complex and X be a G-space. Let V be*

an orthogonal G-representation space. Assume that $\text{conn}(X^{\mu})\geq 0$ *for each* $(H)\in$ *Iso(K). Then the suspension map*

$$
\tau^V_*: [K, X]^c \to [(K * S(V), S(V)), X * S(V); i_{S(V)}]^c
$$

is surjective if dim $K^{\textit{H}} \leq n_{\textit{H}}$ and bijective if $\dim K^{\textit{H}} \leq n_{\textit{H}}-1$ for each (H) \in Iso (K) , *where*

$$
n_H = \min_{L < H} \begin{cases} 2 \text{ conn } (X^H) + 1 & \text{if } H = L \text{ and } V^H \neq \{0\} \text{,} \\ \text{conn } (X^L) & \text{if } V^H \neq V^L \text{,} \\ \infty & \text{otherwise.} \end{cases}
$$

Proof. Let *D{V)* denote the unit disk in *V.* We define a G-map

$$
\lambda\colon X\to F((D(V), S(V)), X*S(V); i_{s(V)})
$$

by $\lambda(x)(tv)=(x, v, t)$ for $x \in X$, $v \in S(V)$, $t \in [0, 1]$. Consider the following commutative diagram:

$$
K, X]^c
$$

\n
$$
K, X]^c
$$

\n
$$
\downarrow K, K[0]
$$

\n
$$
\downarrow K, F((D(V), S(V)), X * S(V); i_{S(V)})^c
$$

\n
$$
\downarrow \varphi
$$

\n
$$
K, F((D(V), S(V)), X * S(V); i_{S(V)})^c
$$

where φ is the exponential correspondence given by

$$
\varphi(f)(k)(tv) = f(k, v, t)
$$
 for $k \in K$, $v \in S(V)$, $t \in [0, 1]$.

As is easily seen, φ is bijective. Using Lemma 2.2, we see that

$$
\lambda^H \colon X^H \to F((D(V), S(V)), X * S(V); i_{S(V)})^H
$$

is an n_H -equivalence for each $(H) \in \text{Iso}(K)$ by the same argument as in the proof of Theorem 3.6 in [18]. We are now in a position to apply Lemma 2.1. q.e.d.

3. Equivariant duality, reducibility and coreducibility

In this section, we recall the definitions of equivariant duality, reducibility and coreducibility (see [18] and [26]) and consider an equivariant version of Atiyah's duality theorem. Let *X* and *Y* be pointed G-spaces. The reduced join $X \wedge Y$ has a natural G-action induced from the diagonal action on $X \times Y$. For an orthogonal G-representation space V , Σ^V denotes the one-point com pactification of *V* and $\Sigma^V X = \Sigma^V \wedge X$ is called Σ^V -suspension of *X*. We remark that Σ^V is a pointed finite G-complex ([12]).

DEFINITION 3.1. Let X and X^* be G-path-connected pointed finite G-

complexes. Let *U* be an orthogonal G-representation space. Then a pointed G-map

$$
\mu\colon \Sigma^U \to X\wedge X^*
$$

is said to be a (U-)duality G-map if μ^H : $\Sigma^{U^H} \to X^H \wedge X^{*H}$ is a duality map in the usual sense ([6], [24]) for each $H < G$.

DEFINITION 3.2. Let *X* be a G-path-connected pointed finite G-complex and *V* be an orthogonal G-representation space.

(i) A pointed G-map $f: \Sigma^V \rightarrow X$ is said to be a (V-)reduction G-map if f^H : $\Sigma^{\gamma H} \rightarrow X^H$ is a reduction map in the usual sense ([3]) for each $H < G$, and then X is called $G - (V-)reducible.$

(ii) A pointed G-map $f: X \rightarrow \Sigma^V$ is said to be a (V-)coreduction G-map if f^H : $X^H \rightarrow \Sigma^{V^H}$ is a coreduction map in the usual sense ([3]) for each $H < G$, and then X is called $G - (V-)$ *coreducible*.

Let M be a path-connected closed smooth manifold with trivial G -action. Let ξ be a smooth G-vector bundle over M. The fibers ξ_x for $x{\in}M$ are orthog onal G-representation spaces. Since M is path-connected, ξ_x does not depend on the choice of $x \in M$. So we put $V = \xi_x$. Assume that $V^G = \{0\}$. Then $T(\xi)$ is a G-path-connected pointed finite G-complex ([12]), where $T(\xi)$ denotes the Thorn space of *ξ.*

Proposition 3.3. *If T(ξ) is G-V-coreducible, then there is a G-fiber homotopy equivalence f*: S(ξ⊕**R**¹)→S(<u>V</u>⊕**R**¹). Conversely, if there is a G-fiber homo*topy equivalence f:* $S(\xi) \rightarrow S(\underline{V})$, then $T(\xi)$ is G-V-coreducible.

Using Equivariant Dold Theorem (Kawakubo [19; Theorem 2.1]) and Equivariant J.H.C. Whitehead Theorem (Bredon [8; Chap. II Corollary (5.5)]), the proof is almost parallel to that of Proposition 2.8 in [3]. So we omit it.

Let ω , ξ_1 and ξ_2 be smooth G-vector bundles over M. We put $V = \omega_x$, $W_1 = (\xi_1)_x$ and $W_2 = (\xi_2)_x$ for $x \in M$. Assume that $V^c = \{0\}$, $W_1^c = \{0\}$ and W_2^G \neq {0}. Then $T(\omega)$, $T(\xi_1)$ and $T(\xi_2)$ are G-path-connected pointed finite G-complexes.

Lemma 3.4. If there are a reduction G -map $\alpha: \Sigma^V \to T(\omega)$ and a coreduc t *ion G-map* β *:* $T(\xi_1 \oplus \xi_2) \rightarrow \sum^{W_1 \oplus W_2}$, then there is a duality G-map

$$
\mu\colon \Sigma^{W_1\oplus W_2\oplus V}\to T(\xi_1)\wedge T(\xi_2\oplus\omega)\ .
$$

Using Equivariant J.H.C. Whitehead Theorem ([8]), the proof is quite similar to that of (13.2) in $[6]$. So we omit it.

4. Linear actions on stunted projective spaces

Let *V* be an orthogonal *G*-representation space and ε_R be the non-trivial orthogonal 1-dimensional \mathbb{Z}_2 -representation space. Then $\varepsilon_R \otimes V$ is an orthogonal ($\mathbf{Z}_2{\times} G$)-representation space.

Definition 4.1. (i) $\bm{R} P(V){=}\,S(\varepsilon_{\bm{R}}{\otimes}V){|}(\bm{Z}_2{\times}\left\{e\right\}),$ (ii) For $m \geq k$, $P_k(V \oplus R^m) = RP(V \oplus R^m)/RP(V \oplus R^{m-k})$.

Then $P_k(V \oplus R^m)$ is a pointed finite G-complex ([12]). We see that, if *m>k,* then for *H<G*

$$
P_k(V\oplus \mathbf{R}^m)^H = P_k(V^H \oplus \mathbf{R}^m),
$$

$$
\dim P_k(V \oplus \mathbf{R}^m)^H = \dim_{\mathbf{R}} V^H + m - 1
$$

and

$$
\text{conn}(P_k(V\oplus R^m)^H)=\dim_{\boldsymbol{R}}V^H+m-k-1.
$$

In particular, if $m > k$, then $P_k(V \oplus \mathbb{R}^m)$ is G-path-connected. Atiyah [3] identi fies the Thom space of a multiple of η_k as a stunted projective space. As G-spaces this identification takes the form

$$
T(\eta_k{\mathord{ \otimes } } (\underline{V}{\mathord{ \oplus } } \underline{R}^{m-k}))=P_k(V{\mathord{ \oplus } } R^m)\,.
$$

Let $a_{\bm{k}}(\bm{R})$ $(k{>}0)$ be the integer defined by [4; § 5]. We recall that the group $\widetilde{J}(\boldsymbol{R}P^{k-1})$ is cyclic of order $a_k(\boldsymbol{R})$ ([1], [2]). We remark that $a_k(\boldsymbol{R})\!\geq\!k$ for $k\!>\!0.$

Lemma 4.2. Let m, n and k be integers such that $m \equiv 0 \mod a_k(R)$, $n \equiv k \mod a_k(R)$ and $n > m \geq 2k \geq 4$. Let U be an arbitrary orthogonal G-repre*sentation space. Then we have the following:*

(i) If $\Sigma^U P_k (V \bigoplus \boldsymbol{R}^m)$ is G -U $\bigoplus V \bigoplus \boldsymbol{R}^{m-1}$ -reducible, then there is a duality *G-map*

$$
\mu_1\colon \Sigma^{\boldsymbol{R}^{m-1}U\oplus V\oplus \boldsymbol{R}^{n-k}}\to P_{k}(\boldsymbol{R}^{m})\!\wedge\!\Sigma^U P_{k}(V\!\oplus\!boldsymbol{R}^{n})\,,
$$

(ii) If $\Sigma^{\text{U}}P_{\text{k}}(V \bigoplus \boldsymbol{R}^n)$ is G -U $\bigoplus V \bigoplus \boldsymbol{R}^{n-k}$ -coreducible, then there is a duality *G-map*

$$
\mu_2\colon \Sigma^{U\oplus V\oplus R^{m-1}\oplus R^{n-k}}\to \Sigma^U P_k(V\oplus R^m)\wedge P_k(R^n)\ .
$$

Proof. We remark that

$$
T(\underline{U}\oplus(\eta_k\otimes(\underline{V}\oplus R^{m-k})))=\Sigma^U P_k(V\oplus R^m),
$$

$$
T(\underline{U}\oplus(\eta_k\otimes(\underline{V}\oplus \underline{R}^{n-k})))=\Sigma^U P_k(V\oplus R^n).
$$

First we show (i). By assumption, there is a reduction G-map

$$
\alpha\colon \Sigma^{\text{U}\oplus \text{V}\oplus \text{R}^{m-1}}\to T(\underline{\underline{U}}\oplus(\eta_k\otimes(\underline{\underline{V}}\oplus \text{R}^{m-k})))\ .
$$

Set

$$
\omega = \underline{U} \oplus (\eta_k \otimes (\underline{V} \oplus \underline{R}^{m-k})) , \quad \xi_1 = \eta_k \otimes \underline{R}^{m-k}
$$

$$
\xi_2 = \eta_k \otimes \underline{R}^{n-m} .
$$

Since $\xi_1 \oplus \xi_2$ is trivial, there is a coreduction (G-)map

 $\beta\colon T(\xi_1\oplus \xi_2)\to \Sigma^{R^{n-k}}.$

Applying Lemma 3.4 to α , β , ω , ξ ₁ and ξ ₂, we have a duality G-map Next we show (ii). By assumption, there is a coreduction G -map

$$
\beta\colon T(\underline{U}\oplus(\eta_k\otimes(\underline{V}\oplus \underline{\boldsymbol{R}}^{n-k})))\to \Sigma^{U\oplus V\oplus \underline{\boldsymbol{R}}^{n-k}}
$$

Since $m \equiv 0 \mod a_k(R)$ and $m \ge 2k$, there is a reduction (*G*-)map

$$
\alpha\colon \Sigma^{\mathbf{R}^{m-1}}\to T(\eta_k\otimes \underline{\mathbf{R}}^{m-k})\ .
$$

Set

$$
\begin{aligned} & \omega = \eta_k \otimes \underline{\boldsymbol{R}}^{m-k} \,, \quad \xi_1 = \underline{U} \oplus (\eta_k \otimes (\underline{V} \oplus \underline{\boldsymbol{R}}^{m-k})) \,, \\ & \xi_2 = \eta_k \otimes \underline{\boldsymbol{R}}^{n-m} \,. \end{aligned}
$$

Applying Lemma 3.4, we have a duality G-map *μ²*

Lemma 4.3. Let m and k be integers such that $m > k > 0$. Let V be an *orthogonal G-representation space.* Assume that $P_k(V \oplus \boldsymbol{R^m})$ is either $G\text{-}V \oplus \boldsymbol{R^{m-1}}$ *reducible or G-V@R^m ~ k -coreducίble. Then we have*

$$
\dim_{\mathbf{R}} V^K - \dim_{\mathbf{R}} V^H \geq k
$$

if V^{κ} \neq V^{μ} for K \lt H \lt G .

Proof. Let K \lt H \lt G such that V^K \neq V^H . First we assume that $P_k(V \oplus \boldsymbol{R}^m)$ is G - $V \oplus \mathbb{R}^{m-1}$ -reducible. Then, by definition, $P_k(V^{\scriptscriptstyle H} \oplus \mathbb{R}^m)$ and $P_k(V^{\scriptscriptstyle K} \oplus \mathbb{R}^m)$ are reducible. It follows from Atiyah [3; Theorem 6.2] that $\dim_R V^H + m \equiv$ $0 \bmod a_k(R)$ and $\dim_\mathbf{R} V^{\mathbf{K}}+m\!\equiv\!0\bmod a_k(R).$ Thus we see that $\dim_{\mathbf{R}} V^H \equiv 0 \mod a_k(\mathbf{R})$. Now we have

$$
\dim_{\mathbf{R}} V^K - \dim_{\mathbf{R}} V^H \geq a_k(\mathbf{R}) \geq k.
$$

Next we assume that $P_k(V \oplus \mathbb{R}^m)$ is $G-V \oplus \mathbb{R}^{m-k}$ -coreducible. Then $P_k(V^H \oplus \mathbb{R}^m)$ and $P_k(V^K \oplus \mathbb{R}^m)$ are coreducible. By Atiyah [3; Proposition 2.8], we have

$$
\begin{aligned} &J(\eta_k\otimes(\underline{V}^{\scriptscriptstyle H}\oplus \underline{\boldsymbol{B}}^{{\scriptscriptstyle m-k}})-(\underline{V}^{\scriptscriptstyle H}\oplus \underline{\boldsymbol{R}}^{{\scriptscriptstyle m-k}}))=0 &&\text{in }\widetilde{J}(\boldsymbol{R}P^{k-1})\:,\\ &J(\eta_k\otimes(\underline{V}^{\scriptscriptstyle K}\oplus \underline{\boldsymbol{R}}^{{\scriptscriptstyle m-k}})-(\underline{V}^{\scriptscriptstyle K}\oplus \underline{\boldsymbol{R}}^{{\scriptscriptstyle m-k}}))=0 &&\text{in }\widetilde{J}(\boldsymbol{R}P^{k-1})\:. \end{aligned}
$$

Thus we obtain that $\dim_{\mathbf{R}} V^K - \dim_{\mathbf{R}} V^H \equiv 0 \mod a_k(\mathbf{R})$. Now we see that

. q.e.d.

$$
\dim_{\mathbf{R}} V^K - \dim_{\mathbf{R}} V^H \geq a_k(\mathbf{R}) \geq k \, . \tag{q.e.d.}
$$

Proposition 4.4. Let m, n and k be integers such that $m \equiv 0 \mod a_k(R)$, $n \equiv k \mod a_k(R)$ and $n > m \geq 2k \geq 4$. Let V be an orthogonal G-representation *space. Then the following two conditions are equivalent:*

- (i) $P_k(V \oplus R^m)$ is G -V $\oplus R^{m-1}$ -reducible,
- (ii) $P_k(V \oplus R^n)$ is $G-V \oplus R^{n-k}$ -coreducible.

Proof. First we show that (i) implies (ii). By Lemma 4.2, there is a duality G-map

$$
\mu_1\colon \Sigma^{\boldsymbol{R}^{m-1}\oplus V\oplus \boldsymbol{R}^{n-k}}\to P_{\scriptscriptstyle k}(\boldsymbol{R}^m)\!\wedge\! P_{\scriptscriptstyle k}(V\!\oplus\! \boldsymbol{R}^n)\ .
$$

We put $U=V\bigoplus \mathbf{R}^i$. For $s>0$, we define a homomorphism

$$
\begin{aligned} &\overline{\Gamma}_s(\mu_1)\colon [\Sigma^{sU}P_k(V\oplus \boldsymbol{R}^n),\ \Sigma^{sU}\Sigma^{V\oplus \boldsymbol{R}^{n-k}}]_0^G \\ &\to [\Sigma^{sU}\Sigma^{\boldsymbol{R}^{m-1}\oplus V\oplus \boldsymbol{R}^{n-k}},\ \Sigma^{sU}P_k(\boldsymbol{R}^m)\wedge \Sigma^{V\oplus \boldsymbol{R}^{n-k}}]_0^G \end{aligned}
$$

by the following: if $f: \Sigma^{sU} P_k(V \bigoplus \mathbb{R}^n) \rightarrow \Sigma^{sU} \Sigma^{V \oplus \mathbb{R}^{n-k}}$ is a pointed *G*-map, then $s_{s}(\mu_{1})([f])$ is represented by the composition

$$
\Sigma^{sU}\Sigma^{\mathbf{R}^{m-1}\oplus v\oplus\mathbf{R}^{n-k}}\xrightarrow{1/\mathcal{N}}\Sigma^{sU}P_k(\mathbf{R}^m)\wedge P_k(V\oplus\mathbf{R}^n)\xrightarrow{T_1}\n P_k(\mathbf{R}^m)\wedge\Sigma^{sU}P_k(V\oplus\mathbf{R}^n)\xrightarrow{1/\mathcal{N}}\n P_k(\mathbf{R}^m)\wedge\Sigma^{sU}\Sigma^{V\oplus\mathbf{R}^{n-k}}\xrightarrow{T_2}\Sigma^{sU}P_k(\mathbf{R}^m)\wedge\Sigma^{V\oplus\mathbf{R}^{n-k}},
$$

where T_1 and T_2 are the switching maps. Then we have the following:

Assertion 4.4.1. *If* $s > \dim_R V + m+n+1$, then $\overline{\Gamma}_s(\mu_1)$ is an isomorphism.

The proof is quite similar to that of Assertion 4.1.1 in [18]. So we omit it.

On the other hand, the standard identification

$$
\nu_1\colon \Sigma^{\boldsymbol{R}^{m-1}\oplus V\oplus \boldsymbol{R}^{n-k}}\to \Sigma^{\boldsymbol{R}^{m-1}}\!\bigwedge \Sigma^{V\oplus \boldsymbol{R}^{n-k}}
$$

is a duality G-map. We define a homomorphism

$$
\Gamma_s(\nu_1)\colon [\Sigma^{sU}\Sigma^{\boldsymbol{R}^{m-1}},\,\Sigma^{sU}P_k(\boldsymbol{R}^m)]_0^G\to [\Sigma^{sU}\Sigma^{\boldsymbol{R}^{m-1}\oplus V\oplus \boldsymbol{R}^{n-k}},\,\Sigma^{sU}P_k(\boldsymbol{R}^m)\wedge \Sigma^{V\oplus \boldsymbol{R}^{n-k}}]_0^G
$$

by the following: if $f: \Sigma^{sU}\Sigma^{R^{m-1}} \to \Sigma^{sU}P_k(R^m)$ is a pointed G-map, then $\Gamma_{s}(v_{1})([f]) = [f'],$ where f' is the composition

$$
\Sigma^{sU} \Sigma^{\mathbf{R}^{m-1} \oplus v \oplus \mathbf{R}^{n-k}} \xrightarrow{\mathbf{1} \wedge \nu_1} \Sigma^{sU} \Sigma^{\mathbf{R}^{m-1}} \wedge \Sigma^{v \oplus \mathbf{R}^{n-k}} \xrightarrow{f \wedge 1} \Sigma^{sU} P_k(\mathbf{R}^m) \wedge \Sigma^{v \oplus \mathbf{R}^{n-k}}
$$

For $s > \dim_R V + m + n + 1$, we put

$$
\begin{aligned} D_s(\nu_1,\ \mu_1) = \bar{\Gamma}_s(\mu_1)^{-1} \circ \Gamma_s(\nu_1) \colon [\Sigma^{sU} \Sigma^{\boldsymbol{R}^{m-1}},\ \Sigma^{sU} P_k(\boldsymbol{R}^m)]^G_0 \\ \to [\Sigma^{sU} P_k(V\oplus \boldsymbol{R}^n),\ \Sigma^{sU} \Sigma^{V\oplus \boldsymbol{R}^{n-k}}]^G_0 \ . \end{aligned}
$$

Since $m \equiv 0 \mod a_k(R)$ and $m \ge 2k$, there is a reduction $(G-)$ map $f_1: \Sigma^{R^{m-1}} \rightarrow$ *P*_k(R^m). Let f_2 : $\Sigma^{sU}P_k(V \oplus R^n) \to \Sigma^{sU} \Sigma^{V \oplus R^{n-k}}$ be a pointed G-map such that $D_s(\nu_1, \mu_1)([1 \wedge f_1]) = [f_2]$. As is easily seen, f_2 is a coreduction G-map. Here we consider the suspension map

$$
\sigma_*^{sU} \colon [P_{\iota}(V \oplus \boldsymbol{R}^n), \Sigma^V \oplus \boldsymbol{R}^{n-k}]_0^G \to [\Sigma^{sU} P_{\iota}(V \oplus \boldsymbol{R}^n), \Sigma^{sU} \Sigma^V \oplus \boldsymbol{R}^{n-k}]_0^G.
$$

Let $K < H < G$ such that $(sU)^{H}$ \neq $(sU)^{K}$. Since $U = V \oplus \mathbb{R}^{1}$, we see that V^{H} \neq V^{K} . Applying Lemma 4.3, we have

$$
\begin{cases}\n\dim(P_k(V\oplus \boldsymbol{R}^*)^H) = \dim_{\boldsymbol{R}} V^H + n - 1, \\
2 \operatorname{conn}((\Sigma^{V\oplus \boldsymbol{R}^{n-k}})^H) + 1 = 2(\dim_{\boldsymbol{R}} V^H + n - k - 1) + 1 \ge \dim_{\boldsymbol{R}} V^H + n - 1, \\
\operatorname{conn}((\Sigma^{V\oplus \boldsymbol{R}^{n-k}})^K) = \dim_{\boldsymbol{R}} V^K + n - k - 1 \ge \dim_{\boldsymbol{R}} V^H + n - 1.\n\end{cases}
$$

By the suspension theorem [18; Theorem 3.6], we see that σ^{sU}_{*} is surjective. Let $f_3\colon P$ _k($V\oplus \boldsymbol{R}^n$) \to $\Sigma^{V\oplus \boldsymbol{R}^{n-k}}$ be a pointed G -map such that $\sigma_{*}^{sU}([f_3]){=}[f_2].$ Then it is easy to see that f_3 is also a coreduction G-map. That is, $P_k(V \oplus \mathbb{R}^n)$ is G - V \oplus \boldsymbol{R}^{n-k} -coreducible.

Similarly, using μ_2 in Lemma 4.2, we see that (ii) implies (i). $q.e.d.$

5. An equivariant version of the theorem of James

First we fix some notations. Let $V_k(V)$ denote the Stiefel manifold of orthogonal k -frames in an orthogonal G-representation space V with G-action defined by

$$
g\boldsymbol{\cdot}(v_1,\,\cdots,\,v_k)=(gv_1,\,\cdots,\allowbreak gv_k)\,.
$$

Then $V_k(V)$ is a smooth G-manifold. If $\dim_R V^H \geq k$ for some $H < G$, then we see that

$$
{V}_{k}(V)^{\rm H}={V}_{k}(V^{\rm H})
$$

and

$$
\operatorname{conn}(V_k(V)^H)=\dim_{\mathbf{R}}V^H-k-1.
$$

Let

$$
q_k\colon V_k(V)\to S(V)
$$

send (v_1, \dots, v_k) to v_k . We remark that $q_k : V_k(V) \to S(V)$ is a smooth G-fiber bundle in the sense of Bierstone [7]. We remark the following:

Lemma 5.1. Span_c $(S(V)) \geq k-1$ if and only if $q_k: V_k(V) \rightarrow S(V)$ has a *smooth G-cross-section.*

Let $m > k > 0$. There is a well-known mapping

$$
\tau_k\colon P_k(V\!\oplus\! \boldsymbol{R}^{\boldsymbol{m}})\to {V}_k(V\!\oplus\! \boldsymbol{R}^{\boldsymbol{m}})
$$

by

$$
\tau_k([x])=(e_{n+m-k+1}-2(e_{n+m-k+1}, x)x, \cdots, e_{n+m}-2(e_{n+m}, x)x),
$$

where $n=dim_R V$ and e_i denotes the *i*-th unit vector in $V \oplus R^m$. We see that *rk* is a G-map and for *H<G*

$$
\tau^H_k\colon P_k(V\!\oplus\! \boldsymbol{R}^m)^H\to {V}_k(V\!\oplus\! \boldsymbol{R}^m)^H
$$

is a $2(\dim_{\mathbf{R}} V^{\mu} + m - k)$ -equivalence (see James [16; Lemma 8.1]). We remark that τ_1 : $P_1(V \oplus \mathbb{R}^m) \rightarrow S(V \oplus \mathbb{R}^m)$ (=V₁(V $\oplus \mathbb{R}^m$)) is a G-homeomorphism. Let

 $p: S(V \oplus \mathbb{R}^m) \to P_k(V \oplus \mathbb{R}^m)$

and

$$
\pi': P_k(V \oplus \mathbf{R}^m) \to P_1(V \oplus \mathbf{R}^m)
$$

be the natural projection and the collapsing map respectively. For $S(V \oplus \mathbb{R}^m)$, we choose a base point $x_0 \in S(\mathbb{R}^{m-k}) \subset S(V \oplus \mathbb{R}^{m-k}) \subset S(V \oplus \mathbb{R}^m)$). There is a pointed G-map $u: P_1(V \oplus \mathbb{R}^m) \rightarrow S(V \oplus \mathbb{R}^m)$ such that u and τ_1 are G-homotopi We put

$$
\pi = u \circ \pi' \colon P_k(V \oplus \mathbf{R}^m) \to S(V \oplus \mathbf{R}^m) .
$$

Then p and π are pointed G-maps.

Lemma 5.2. Let $m > k > 0$. Let $f: S(V \oplus \mathbb{R}^m) \rightarrow P_k(V \oplus \mathbb{R}^m)$ be a pointed *G-map. Then f is a reduction G-map if and only if the composition*

$$
S(V \oplus \mathbf{R}^m)^H \xrightarrow{f^H} P_k(V \oplus \mathbf{R}^m)^H \xrightarrow{\pi^H} S(V \oplus \mathbf{R}^m)^H
$$

is an ordinary homotopy equivalence (i.e. has degree ± 1) for each $(H) \in$ $\mathrm{Iso}(S(V\bigoplus \boldsymbol{R}^m))$

The proof is easy.

A G-homeomorphism

$$
h\colon S(V) * S(\mathbf{R}^m) \to S(V \oplus \mathbf{R}^m)
$$

is given by $h(x, y, t) = (x \cdot \cos(\pi t/2), y \cdot \sin(\pi t/2))$. In [14], James defined the intrinsic map

$$
\mu\colon\thinspace V_k(V)*V_k(\mathbf{R}^m)\to V_k(V\,\oplus\!\mathbf{R}^m)\ .
$$

We see that μ is a G-map and the following diagram commutes:

$$
V_k(V) * V_k(\mathbf{R}^m) \xrightarrow{\mu} V_k(V \oplus \mathbf{R}^m)
$$

\n
$$
S(V) * S(\mathbf{R}^m) \xrightarrow{h} S(V \oplus \mathbf{R}^m).
$$

\n
$$
S(V) * S(\mathbf{R}^m) \xrightarrow{h} S(V \oplus \mathbf{R}^m).
$$

Now we prove the following theorem, which is a generalization of Proposi tion 11.5 in [6] (see also Theorem 8.2 in [16]):

Theorem 5.3. Let m and k be integers such that $m \equiv 0 \mod a_k(R)$ and $m \geq 2k \geq 4$. *If* $\text{Span}_{G}(S(V)) \geq k-1$, then $P_k(V \oplus \mathbb{R}^m)$ is $G-V \oplus \mathbb{R}^{m-1}$ -reducible.

Proof. Since $m \equiv 0 \mod a_k(R)$ and $m \geq 2k$, there is a reduction (G-)map $\rho\colon S(\boldsymbol{R}^m){\rightarrow}P_k(\boldsymbol{R}^m).$ It follows from Lemma 5.1 that there is a $G\text{-cross-section}$ of q_k

$$
\Delta\colon S(V)\to V_k(V)\,.
$$

Then we define a G-map

$$
\gamma\colon S(V\bigoplus \boldsymbol{R}^m)\to V_{k}(V\bigoplus \boldsymbol{R}^m)
$$

by the composition

$$
S(V \oplus \mathbf{R}^m) \xrightarrow{h^{-1}} S(V) * S(\mathbf{R}^m) \xrightarrow{\Delta * \rho} V_k(V) * P_k(\mathbf{R}^m) \xrightarrow{1 * \tau_k} V_k(V) * V_k(\mathbf{R}^m) \xrightarrow{\mu} V_k(V \oplus \mathbf{R}^m).
$$

Consider a map

$$
\tau_{k^*}: [S(V \oplus \mathbf{R}^m), P_k(V \oplus \mathbf{R}^m)]^c \to [S(V \oplus \mathbf{R}^m), V_k(V \oplus \mathbf{R}^m)]^c.
$$

Since τ_k^H : $P_k(V \oplus \mathbb{R}^m)^H \to V_k(V \oplus \mathbb{R}^m)^H$ is a 2(dim_R $V^H + m - k$)-equivalence for each $H < G$, it follows from Lemma 2.1 that τ_{k^*} is bijective. Moreover we see that

$$
[S(V\oplus \boldsymbol{R}^m), P_k(V\oplus \boldsymbol{R}^m)]^c \cong [S(V\oplus \boldsymbol{R}^m), P_k(V\oplus \boldsymbol{R}^m)]^c.
$$

Hence there is a pointed G-map

$$
\lambda\colon S(V\bigoplus \boldsymbol{R}^m)\to P_k(V\bigoplus \boldsymbol{R}^m)
$$

such that $\tau_{k*}([\lambda]) = [\gamma]$. As is easily seen, the composition

$$
S(V \oplus \mathbf{R}^m)^H \xrightarrow{\lambda^H} P_k(V \oplus \mathbf{R}^m)^H \xrightarrow{\pi^H} S(V \oplus \mathbf{R}^m)^H
$$

is an ordinary homotopy equivalence for each $H < G$. By Lemma 5.2, λ is a reduction G-map. That is, $P_k(V \oplus R^m)$ is $G-V \oplus R^{m-1}$ -reducible. q.e.d.

6. A converse of Theorem 5.3

Let *m* and *k* be integers such that $m \equiv 0 \mod a_k(R)$ and $m \geq 2k \geq 4$. Let κ : $S(R^m) \rightarrow V_k(R^m)$ be a 1-section of q_k . That is, the composition $\stackrel{n}{\longrightarrow} V_k(\mathbf{R}^m) \stackrel{\mathcal{H}_k}{\longrightarrow} S(\mathbf{R}^m)$ has degree 1. For $n > k$, we define

450 S. KAKUTANI

 $: V_k(\mathbb{R}^n) * S(\mathbb{R}^m) \to V_k(\mathbb{R}^{n+m})$

by the composition

$$
V_{k}(\boldsymbol{R}^{n}) * S(\boldsymbol{R}^{m}) \xrightarrow{1*\kappa} V_{k}(\boldsymbol{R}^{n}) * V_{k}(\boldsymbol{R}^{m}) \xrightarrow{\mu} V_{k}(\boldsymbol{R}^{n+m}),
$$

where μ is the intrinsic map (see §5). By Theorem 3.1 in [15], θ_{μ} is a $(2n-2k+m-1)$ -equivalence. The following Theorem is a converse of Theorem 5.3.

Theorem 6.1. Let m and k be integers such that $m \equiv 0 \mod a_k(R)$ and $m \geq 2k \geq 4$. Let V be an orthogonal G-representation space. Assume that

(i) For each $H < G$, dim_{**n**}</sub> $V^H \geq 2k$ if $V^H = \{0\}$,

(ii) $P_k(V \oplus \mathbb{R}^m)$ is G - $V \oplus \mathbb{R}^{m-1}$ -reducible.

 $Then \ \ \mathrm{Span}_G(S(V)) \geq k-1.$

Proof. First we show the following Assertion 6.1.1.

Assertion 6.1.1. *There is a G-map*

$$
\gamma_{0} \colon S(V \oplus \mathbf{R}^{m}) \to V_{k}(V \oplus \mathbf{R}^{m})
$$

such that γ ⁰ satisfies the following: $(6.1.2)$ $\gamma_0(S(\mathbf{R}^m)) \subset V_k(\mathbf{R}^m)$ (6.1.3) *the composition*

$$
S(\boldsymbol{R}^m) \xrightarrow{\gamma_0} \left| \underline{S(\boldsymbol{R}^m)} \right| V_k(\boldsymbol{R}^m) \xrightarrow{q_k} S(\boldsymbol{R}^m)
$$

has degree 1, (6.1.4) *the composition*

$$
S(V\bigoplus \boldsymbol{R}^m)^H \xrightarrow{\gamma_0^H} V_k(V\bigoplus \boldsymbol{R}^m)^H \xrightarrow{q_k^H} S(V\bigoplus \boldsymbol{R}^m)^H
$$

has degree 1 *for each H<G.*

Proof of Assertion 6.1.1. By assumption, we have a reduction G-map

$$
\lambda': S(V\bigoplus \boldsymbol{R}^m)\to P_k(V\bigoplus \boldsymbol{R}^m).
$$

Let π : $P_k(V \oplus \mathbb{R}^m) \rightarrow S(V \oplus \mathbb{R}^m)$ be the pointed G-map as in §5. We put

$$
\lambda = \lambda' \circ (\pi \circ \lambda') : S(V \oplus R^m) \to P_k(V \oplus R^m) .
$$

Then λ is also a reduction G-map such that

$$
\deg(\pi \circ \lambda)^H = 1 \quad \text{for all } H < G.
$$

We put

$$
\gamma_1 = \tau_k \circ \lambda \,:\; S(V \oplus \mathbf{R}^m) \to V_k(V \oplus \mathbf{R}^m) \,.
$$

We consider a G-map

$$
\gamma_2 = \gamma_1 | S(\boldsymbol{R}^m): S(\boldsymbol{R}^m) \to V_k(V \bigoplus \boldsymbol{R}^m) .
$$

First we assume that $V^c \neq \{0\}$. Since $m \equiv 0 \mod a_k(R)$ and $m \ge 2k$, there is a $(G-)$ cross-section of q_k

$$
\Delta\colon S(\mathbf{R}^m)\to V_k(\mathbf{R}^m)\subset V_k(V\bigoplus \mathbf{R}^m)\ .
$$

Since $\text{conn}(V_k(V\oplus \boldsymbol{R}^m)^G) \geqq \dim S(\boldsymbol{R}^m)$, γ_2 and Δ are G-homotopic. Remark that $(S(V\oplus \boldsymbol{R}^m),\; S(\boldsymbol{R}^m))$ has the G -homotopy extension property. We have a G-map

$$
\gamma_0\colon S(V\bigoplus \boldsymbol{R}^m)\to V_k(V\bigoplus \boldsymbol{R}^m)
$$

such that γ_0 and γ_1 are G-homotopic and $\gamma_0|S(\boldsymbol{R}^m)$ $=\Delta$. As is easily seen, γ_0 satisfies our required properties.

Next we assume that $V^G = \{0\}$. In this case, $\gamma_2 = \gamma_1^G$: $S(\mathbb{R}^m) \to V_k(\mathbb{R}^m)$ is a 1-section of q_k . Therefore we put $\gamma_0 = \gamma_1$

This completes the proof of Assertion 6.1.1.

We put
$$
\gamma_3 = \gamma_0 | S(\mathbf{R}^m) : S(\mathbf{R}^m) \rightarrow V_k(\mathbf{R}^m) (\subset V_k(V \oplus \mathbf{R}^m))
$$
. Consider a map
\n $\theta_{\gamma_3^*}: [(S(V \oplus \mathbf{R}^m), S(\mathbf{R}^m)), V_k(V) * S(\mathbf{R}^m); i_{S(\mathbf{R}^m)}]^G$
\n $\rightarrow [(S(V \oplus \mathbf{R}^m), S(\mathbf{R}^m)), V_k(V \oplus \mathbf{R}^m); \gamma_3]^G$.

Since γ_3 is a 1-section, $\theta_{\gamma_3}^H$: $V_k(V)^H * S(R^m) \to V_k(V \oplus R^m)^H$ is a $2k + m - 1$)-equivalence for each $(H) \in \operatorname{Iso}(S(V \oplus R^m) - S(R^m))$ *)).* Applying Lemma 2.1, $\theta_{\gamma_{3}}$ ^{*} is surjective. Therefore we have a G-map

$$
\gamma_{\scriptscriptstyle 4}\colon S(V\oplus \boldsymbol{R}^m)\to V_{\scriptscriptstyle k}(V)*S(\boldsymbol{R}^m)
$$

such that $\theta_{\gamma_3}([\gamma_4]) {=} [\gamma_0]$ and $\gamma_4|S(\pmb{R}^m) {=} i_{S(\pmb{R}^m)}$. As is easily seen, the compos tion

$$
S(V)^{H} * S(\mathbf{R}^{m}) \xrightarrow{h^{H}} S(V \oplus \mathbf{R}^{m})^{H} \xrightarrow{\gamma_{4}^{H}} V_{k}(V)^{H} * S(\mathbf{R}^{m}) \xrightarrow{q_{k}^{H} \times 1} S(V)^{H} * S(\mathbf{R}^{m})
$$

has degree 1 for each $H \leq G$, where h is as in §5. Consider the following suspension map

$$
\tau_{\mathcal{F}}^{R^m}: [S(V), V_{\scriptscriptstyle k}(V)]^G \to [(S(V) * S(\boldsymbol{R}^m), S(\boldsymbol{R}^m)), V_{\scriptscriptstyle k}(V) * S(\boldsymbol{R}^m); i_{S(\boldsymbol{R}^m)}]^G.
$$

Since $\dim\,S(V)^{\textit{H}}\!\leq\!2\operatorname{conn}(V_{\textit{k}}(V^{\textit{H}}))+1$ for each $(H)\!\in\!\operatorname{Iso}(S(V)),$ it follows from Theorem 2.4 that $\tau^{m^m}_{*}$ is surjective. Then we have a G-map

$$
\gamma_5\colon S(V)\to V_k(V)
$$

such that $\tau^{R^m}_*([\gamma_5]) = [\gamma_4 \circ h]$. As is easily seen, the composition

452 S. KAKUTANI

$$
S(V)^H \xrightarrow{\gamma_5^H} V_k(V)^H \xrightarrow{q_k^H} S(V)^H
$$

has degree 1 for each $(H) \in \text{Iso}(S(V))$. Let $K \leq H \leq G$ such that $V^K + V^H$. Using Lemma 4.3, we have $\dim_{\mathbf{R}} V^{\kappa} - \dim_{\mathbf{R}} V^{\mu} \geq k \geq 2$. Thus it follows from Rubinsztein [22; Theorem 8.4] that $q_k \circ \gamma_5$ is *G*-homotopic to the identity. Since q_k : $V_k(V) \rightarrow S(V)$ is a smooth G-fiber bundle in the sense of Bierstone [7], q_k has the smooth G-homotopy lifting property. Using Wasserman [27; Corollary 1.12], we see that q_k has a smooth G-cross-section. Now, by Lemma 5.1, we have $\text{Span}_G(S(V)) \geq k-1$. q.e.d.

7. Proof of Theorem 1.1

Let V and W be unitary G-representation spaces such that $\dim_{\mathbb{C}} V^{\mu}$ $\dim_{\bf C} W^{\rm H}$ for all H < G . By Lee-Wasserman [21; Proposition 3.17], there are direct sum decompositions

$$
\begin{cases} V = V_1 \oplus V_2 \oplus \cdots \oplus V_r, \\ W = W_1 \oplus W_2 \oplus \cdots \oplus W_r \end{cases}
$$

such that V_i and W_i $(1 \leq i \leq r)$ are irreducible unitary G -representation spaces and V_i is conjugate to W_i by a field automorphism of C for $1 \leq i \leq r$. That is, there are integers $n(i)(1 \leq i \leq r)$ such that $(n(i), |G|) = 1$ and $W_i = \psi^{n(i)}(V_i)$ for $1 \leqq i \leqq r,$ where ψ^s denotes the equivariant s-th Adams operation and $\lvert G \rvert$ denotes the order of G. Since $\psi^{s+|G|} = \psi^s$, we may assume that $n(i)$ $(1 \leq i \leq r)$ are odd integers. Let $\varepsilon_{\bm c}$ be the non-trivial unitary 1-dimensional $\bm Z_2$ -represen tation space. Then $\varepsilon_c \otimes V$ and $\varepsilon_c \otimes W$ are unitary ($Z_2 \times G$)-representation spaces and

$$
\begin{cases} \varepsilon_c \otimes V = (\varepsilon_c \otimes V_1) \oplus (\varepsilon_c \otimes V_2) \oplus \cdots \oplus (\varepsilon_c \otimes V_r), \\ \varepsilon_c \otimes W = (\varepsilon_c \otimes W_1) \oplus (\varepsilon_c \otimes W_2) \oplus \cdots \oplus (\varepsilon_c \otimes W_r) \end{cases}
$$

are decompositions of $\varepsilon_c \underset{C}{\otimes} V$ and $\varepsilon_c \underset{C}{\otimes} W$ into direct sums of irreducible unitary $(\mathbf{Z}_2 \times G)$ -representation spaces respectively. Since $n(i)$ $(1 \le i \le r)$ are odd, there $(Z_2^2 \times Z)$ -representation spaces respectively. Since $n(t)$ $(1 \equiv t \equiv t)$ are odd, there are integers $n(r)$ ($1 \equiv r \equiv r$) such that $(n(r), 2\Box)$) -1 and $n(r)$ $n(r)=1$ mod $2\Box$). Then we have

$$
\begin{cases} \varepsilon_c \otimes V_i = \psi^{\bar{\pi}(i)}(\varepsilon_c \otimes W_i) & \text{for } 1 \leq i \leq r, \\ \varepsilon_c \otimes W_i = \psi^{\pi(i)}(\varepsilon_c \otimes V_i) & \text{for } 1 \leq i \leq r. \end{cases}
$$

The following lemma is due to Tornehave [25] (see also [11]).

Lemma 7.1. *There are* $(\mathbb{Z}_2 \times G)$ -maps

EQUIVARIANT SPAN OF THE UNIT SPHERES 453

$$
\begin{cases} \varphi_i \colon S(\varepsilon_c \otimes V_i) \to S(\varepsilon_c \otimes W_i), \\ \psi_i \colon S(\varepsilon_c \otimes W_i) \to S(\varepsilon_c \otimes V_i) \end{cases}
$$

for $1 \leq i \leq r$ *such that*

 $\deg \varphi_i = n(i)$ ^{*ti* \ldots and $\deg \psi_i = n(i)$ ^{*ti* \ldots *n*}}

for each $K < \mathbb{Z}_2 \times G$, where $a_i(K) = \dim_C (c_C \otimes V_i)^m$ $(= \dim_C (c_C \otimes W_i)^m)$.

We put

(7.2)
$$
\begin{cases} \varphi = \varphi_1 * \cdots * \varphi_r : S(\varepsilon_c \otimes V) \to S(\varepsilon_c \otimes W), \\ \psi = \psi_1 * \cdots * \psi_r : S(\varepsilon_c \otimes W) \to S(\varepsilon_c \otimes V). \end{cases}
$$

Then, for each $K < \mathbb{Z}_2 \times G$, we have

$$
\deg(\psi \circ \varphi)^K \equiv 1 \bmod 2 |G| \quad \text{and} \quad \deg(\varphi \circ \psi)^K \equiv 1 \bmod 2 |G|.
$$

Let U be a unitary G-representation space and $m \ge 2$. We define a homomorphism

$$
\Psi \colon [\Sigma^{{\scriptscriptstyle U}\oplus R^{m-1}},\,\Sigma^{{\scriptscriptstyle U}\oplus R^{m-1}}]^{\scriptscriptstyle G}_{0} \to \prod_{({\scriptscriptstyle H})\in {\scriptscriptstyle \operatorname{Iso}}(z^{{\scriptscriptstyle U}\oplus R^{m-1}})}Z
$$

by the following: if $f: \Sigma^{\nu \oplus R^{m-1}} \rightarrow \Sigma^{\nu \oplus R^{m-1}}$ is a point $e^{w\oplus R^{m-1}}$ is a pointed G-map, then $\Psi([f]) =$ $\int_{\pi\oplus\mathbf{R}^{m-1}} \deg f^{\scriptscriptstyle H}$ (for details see Rubinsztein [22]). By the same argument

as in tom Dieck [10; Proposition 1.2.3], we have the following:

Lemma 7.3. Let $x \in \Pi$ **Z** be an arbitrary element. Then $(H) \in \text{Iso}(\Sigma^{\text{U}\bigoplus R^{m-1}})$

Proposition 7.4. Let $m > k \geq 2$. Let V and W be unitary G-representation spaces such that $\dim_C V^{\mu} = \dim_C W^{\mu}$ for all $H < G$. Then the following two con*ditions are equivalent:*

(i) *There is a reduction G-map*

$$
f\colon \Sigma^{V\oplus R^{m-1}} \to P_k(V\oplus R^m)\,,
$$

(ii) *There is a reduction G-map*

$$
g\colon \Sigma^{W\oplus R^{m-1}}\to P_k(W\bigoplus R^m)
$$

Proof. It suffices to show that (i) implies (ii). Let

$$
\begin{cases} \varphi: S(\varepsilon_c \underset{c}{\otimes} V) \to S(\varepsilon_c \underset{c}{\otimes} W), \\ \psi: S(W) \to S(V) \end{cases}
$$

be a $(\mathbf{Z}_2 \times G)$ -map and a $G(\subset \mathbf{Z}_2 \times G)$ -map as in (7.2) respectively. We put a $({\mathbf Z}_2{\times} G)\text{-ma}$

$$
\varphi_1 = \varphi * 1_{S(\varepsilon_R \otimes R^m)} \colon S((\varepsilon_c \otimes V) \oplus (\varepsilon_R \otimes R^m)) \to S((\varepsilon_c \otimes W) \oplus (\varepsilon_R \otimes R^m))
$$

and a pointed G-map

$$
\psi_1 = \psi * 1_{S(\mathbf{R}^m)}\colon S(W \oplus \mathbf{R}^m) \to S(V \oplus \mathbf{R}^m) .
$$

Remark that φ_1 induces a pointed G-map

$$
\varphi_2\colon P_k(V\bigoplus \boldsymbol{R}^m)\to P_k(W\bigoplus \boldsymbol{R}^m)
$$

such that the following diagram commutes:

$$
S((\varepsilon_{\mathcal{C}} \otimes V) \oplus (\varepsilon_{\mathcal{R}} \otimes \mathcal{R}^m)) \xrightarrow{\mathcal{P}_1} S((\varepsilon_{\mathcal{C}} \otimes W) \oplus (\varepsilon_{\mathcal{R}} \otimes \mathcal{R}^m))
$$

\n
$$
\downarrow p_1 \qquad \qquad \downarrow p_2
$$

\n
$$
P_k(V \oplus \mathcal{R}^m) \xrightarrow{\mathcal{P}_2} P_k(W \oplus \mathcal{R}^m),
$$

where p_1 and p_2 are the natural projections as in § 5. We define a pointed G-map

$$
g_1\colon \Sigma^{W\oplus \mathbf{R}^{m-1}}\to P_k(W\bigoplus \mathbf{R}^m)
$$

by the composition

$$
\Sigma^{w \oplus R^{m-1}} \xrightarrow{d_2} S(W \oplus R^m) \xrightarrow{\psi_1} S(V \oplus R^m) \xrightarrow{d_1} S(V \oplus R^m) \xrightarrow{d_2} S(W \oplus R^m) \xrightarrow{q_2} S(W \oplus R^m)
$$

where d_1 and d_2 are pointed G-homeomorphisms. Let $\pi_1: P_k(V \oplus \mathbb{R}^m) \rightarrow$ $S(V\oplus \boldsymbol{R}^{\boldsymbol{m}})$ and $\pi_2\colon\,P_k(W\oplus \boldsymbol{R}^{\boldsymbol{m}}){\rightarrow}S(W\oplus \boldsymbol{R}^{\boldsymbol{m}})$ be the natural collapsing maps as in § 5. Let

$$
g_2 \colon \Sigma^{W \oplus R^{m-1}} \to \Sigma^{W \oplus R^{m-1}}
$$

be a G-map defined by the composition

$$
\Sigma^{w \oplus R^{m-1}} \xrightarrow{g_1} P_k(W \oplus R^m) \xrightarrow{\pi_2} S(W \oplus R^m) \xrightarrow{d_2^{-1}} \Sigma^{w \oplus R^{m-1}}.
$$

Then it is easy to see that

$$
\deg g_{\overline{2}}^H \equiv \deg (d_1 \circ \pi_1 \circ f)^H \mod 2 |G| \quad \text{for each } H < G.
$$

Since f is a reduction G -map, we remark that $\deg(d_1 \circ \pi_1 \circ f)^{\mu} = \pm 1$ for each *H<G.* Let *a(H)* be an integer such that

$$
\deg g_2^{\scriptscriptstyle H}=\deg(d_1\circ\pi_1\circ f)^{\scriptscriptstyle H} \!+\! 2a(H)\!\mid\! G\!\mid
$$

for each $(H) \in \text{Iso}(\Sigma^{\text{W} \oplus \text{R}^{\text{m}-1}})$. By Lemma 7.3, there is a pointed G-map

$$
g_3\colon \Sigma^{\mathit{W}\oplus \boldsymbol{R}^{m-1}}\to \Sigma^{\mathit{W}\oplus \boldsymbol{R}^{m-1}}
$$

such that $\deg g_3^H\!=\!a(H)\!\mid\!G\!\mid$ for each $(H)\!\in\!\mathrm{Iso}(\Sigma^{W\oplus R^{m-1}}).$ We define a pointed G-map

$$
g_{\scriptscriptstyle 4}\colon \Sigma^{\scriptscriptstyle W\oplus {\boldsymbol{R}}^{m-1}}\to P_{\scriptscriptstyle k}({\cal W}\oplus {\boldsymbol{R}}^m)
$$

by the composition

$$
\Sigma^{W\oplus R^{m-1}}\stackrel{g_3}{\longrightarrow} \Sigma^{W\oplus R^{m-1}}\stackrel{d_2}{\longrightarrow} S(W\oplus R^m)\stackrel{\hat{p}_2}{\longrightarrow} P_k(W\oplus R^m) .
$$

Then we see that the composition

$$
(\Sigma^{\mathit{W} \oplus R^{\mathit{m}-1}})^{\mathit{H}} \xrightarrow{\mathcal{S}^{\mathit{H}}}_{k} P_{k}(\mathit{W} \oplus R^{\mathit{m}})^{\mathit{H}} \xrightarrow{\pi_{2}^{\mathit{H}}} S(\mathit{W} \oplus R^{\mathit{m}})^{\mathit{H}} \xrightarrow{(d_{2}^{-1})^{\mathit{H}}}(\Sigma^{\mathit{W} \oplus R^{\mathit{m}-1}})^{\mathit{H}}
$$

has degree $2a(H)$ | G | for each $(H) \in \text{Iso}(\Sigma^{\text{W}\oplus \text{R}^{\text{m}-1}})$. Since $m\geq 2$, pointed G homotopy classes of pointed G -maps from $\Sigma^{\psi \oplus R^{m-1}}$ to $P_{\scriptscriptstyle k}(W \oplus R^m)$ form a group. Then we put

$$
g = g_1 - g_4 \colon \Sigma^{W \oplus R^{m-1}} \to P_k(W \oplus R^m)
$$

It is easy to see that the composition

$$
(\Sigma^{\mathbf{W}\oplus\mathbf{R}^{m-1}})^{\mathbf{H}}\xrightarrow{\mathcal{S}^H}P_k(W\oplus\mathbf{R}^m)^{\mathbf{H}}\xrightarrow{\pi_2^H}S(W\oplus\mathbf{R}^m)^{\mathbf{H}}\xrightarrow{(d_2^{-1})^H}(\Sigma^{\mathbf{W}\oplus\mathbf{R}^{m-1}})^{\mathbf{H}}
$$

has $\deg\left(d_1\circ \pi_1\circ f\right)^{\#}(=\pm\ 1)$ for each $(H)\in {\rm Iso\,}(\Sigma^{\psi\oplus \bm{R}^{\bm{m}-1}}).$ It follows from Lemma 5.2 that g is a reduction G -map. $q.e.d.$

Proof of Theorem 1.1. We may assume that $k \ge 2$. Let *m* be an integer such that $m \equiv 0 \mod a_k(R)$ and $m \ge 2k$. If $\text{Span}_G(S(V)) \ge k-1$, it follows from Theorem 5.3 that $P_k(V\oplus \boldsymbol{R^m})$ is $G\text{-}V\oplus \boldsymbol{R^{m-1}}$ -reducible. According to Proposition 7.4, $P_k(W \oplus \mathbb{R}^m)$ is $G-W \oplus \mathbb{R}^{m-1}$ -reducible. By Theorem 6.1,

The converse is quite similar. $q.e.d.$

8. Proof of Theorem 1.2

In this section, we prove Theorem 1.2.

Lemma 8.1. *Let U be an orthogonal G-representation space such that* $\dim_{\mathbf{R}} U^{\mu} \geq k+1$ if $U^{\mu} + \{0\}$ for each $H < G$. Assume that there are an integer *m and a G-fiber homotopy equivalence*

$$
f\colon S((\eta_k \otimes \underline{U}) \oplus \underline{\underline{\mathbf{R}}}^m) \to S(\underline{U} \oplus \underline{\underline{\mathbf{R}}}^m).
$$

Then we have a G-fiber homotopy equivalence

 $\overline{f}: S(\eta_k \otimes U) \to S(U)$.

Proof. First we show that the following Assertion 8.1.1.

Assertion 8.1.1. *There are an integer n* ($\geq m$) *and a G-map*

 $f_1: S((\eta_k \otimes \underline{U}) \oplus \underline{\mathbf{R}}^n) \to S(U \oplus \mathbf{R}^n)$

such that a restriction

$$
f_1|S((\eta_k \otimes \underline{U}) \oplus \underline{\underline{\mathbf{R}}}^n)_x \colon S((\eta_k \otimes \underline{U}) \oplus \underline{\underline{\mathbf{R}}}^n)_x \to S(U \oplus \underline{\mathbf{R}}^n)
$$

for $x \in \mathbb{R}P^{k-1}$ is a G-homotopy equivalence and a restriction $f_1 \, S(\mathbb{R}^n)$ is the natural *projection* $S(\mathbf{R}^n) \rightarrow S(\mathbf{R}^n) \subset S(U \oplus \mathbf{R}^n)$.

Proof of Assertion 8.1.1. We put $f_2 = p_1 \circ f$: $S((\eta_k \otimes \underline{U}) \oplus \underline{\pmb{R}}^m) \rightarrow S(U \oplus \underline{\pmb{R}}^m)$, where p_1 : $S(\underline{U}\oplus \underline{R}^m) \rightarrow S(U \oplus R^m)$ is the natural projection.

Suppose first that $U^G \! + \! \{0\}$. By assumption, we see that $\mathop{\mathrm{conn}}\nolimits(S(U \! \oplus \! \boldsymbol{R}^m)^G)$ \ge dim *S*(\mathbf{R}^m). Then f_2 *S*(\mathbf{R}^m): *S*(\mathbf{R}^m) \rightarrow *S*($U \oplus \mathbf{R}^m$) and the natural projection p_2 : $S(\underline{\boldsymbol{R}}^m) \to S(\boldsymbol{R}^m) \subset S(U \oplus \boldsymbol{R}^m)$ are *G*-homotopic. Since $(S((\eta_k \otimes \underline{U}) \oplus \underline{\boldsymbol{R}}^m)$, $S(\mathbf{R}^m)$) has the G-homotopy extension property, we have a G-map

$$
f_1\colon S((\eta_k \otimes \underline{U}) \oplus \underline{\underline{\mathbf{R}}}^m) \to S(U \oplus \underline{\mathbf{R}}^m)
$$

such that f_1 and f_2 are G-homotopic and $f_1\vert S(\underline{\underline{R}}^m)=p_2$. We put $n=m$. It is easy to see that f_1 has our required properties.

Suppose second that $U^G = \{0\}$. Remark that f_2^G : $S(\underline{\mathbf{R}}^m) \rightarrow S(\mathbf{R}^m)$ is a map such that $(f_2^G)_x$: $S(\mathbb{R}^m) \rightarrow S(\mathbb{R}^m)$ is a homotopy equivalence for $x \in \mathbb{R}P^{k-1}$. It is well-known that there is a map $h\colon S(\underline{\bm{R}}^{m'}){\rightarrow}S(\bm{R}^{m'})$ such that $f^G_2\tilde{*}h\colon S(\underline{\bm{R}}^{m+m'}){\rightarrow}$ $S(\boldsymbol{R}^{m+m'})$ is homotopic to the natural projection p_3 : $S(\boldsymbol{R}^{m+m'}) \rightarrow S(\boldsymbol{R}^{m+m'})$, where $\tilde{*}$ denotes the fiberwise join. We put

$$
f_3 = f_2 \widetilde{*} h \colon S((\eta_k \otimes \underline{U}) \oplus \underline{\underline{R}}^{m+m'}) \to S(U \oplus \underline{R}^{m+m'}) \ .
$$

Then f_3 $S(\underline{\underline{R}}^{m+m'})=f_3^G$ is (G-)homotopic to p_3 . By the same argument as in the case when U^G \neq {0}, we have a G -map

$$
f_1\colon S((\eta_k \otimes \underline{U}) \oplus \underline{\boldsymbol{R}}^{m+m'}) \to S(U \oplus \underline{\boldsymbol{R}}^{m+m'})
$$

such that f_1 is G-homotopic to f_3 and $f_1\vert S(\underline{\bm{R}}^{m+m'})=p_3$. We put $n=m+m'.$ Then f_1 has our required properties.

This completes the proof of Assertion 8.1.1.

We see that f_1 induces a G-map

$$
f_{\ast} \colon S(\eta_{\ast} \otimes \underline{U}) \ast S(\mathbf{R}^n) \to S(U) \ast S(\mathbf{R}^n)
$$

such that the following diagram commutes:

where *q* is the natural projection. Then $f_4 | S(R^n) = i_{s(R^n)} : S(R^n) \rightarrow S(U) * S(R^n)$. $\text{For each } (H) \text{ } \in \text{Iso}(S(\eta_k \otimes \underline{U})) \text{ } (= \text{Iso}(S(U))), \text{ we see that } \dim S(\eta_k \otimes \underline{U})^H \leq \frac{1}{2}$ $2 \text{ conn}(S(U)^H) + 1.$ It follows from Theorem 2.4 that we obtain a G-map

$$
f_5\colon S(\eta_k \otimes \underline{U}) \to S(U)
$$

such that $f_5 * 1_{S(\mathbb{R}^n)}$ is G-homotopic to f_4 . By Equivariant Dold Theorem ([19]), it is easy to see that

$$
f = p_{\scriptscriptstyle 4} \times f_5 \colon S(\eta_k \otimes \underline{U}) \to \boldsymbol{R}P^{k-1} \times S(U)
$$

gives a G -fiber homotopy equivalence, where $p_{\scriptscriptstyle 4}\colon S(\eta_*\otimes\underline{U}){\rightarrow}\boldsymbol{R}P^{\scriptscriptstyle k-1}$ is the natural projection. $q.e.d.$

Proof of Theorem 1.2. We may assume that $k \ge 2$. Let *m* and *n* be integers such that $m \equiv 0 \mod a_k(R)$, $n \equiv k \mod a_k(R)$ and $n > m \ge 2k$.

First we show (i). By Theorem 5.3, $P_k(V \oplus \mathbb{R}^m)$ is $G\text{-}V \oplus \mathbb{R}^{m-1}$ -reducible. Applying Proposition 4.4, $P_k(V{\oplus} \boldsymbol{R}^n)$ is $G{\hbox{-}} V{\oplus} \boldsymbol{R}^{n-k}\hbox{-coreducible.}$ It follows from Proposition 3.3 that we have a G -fiber homotopy equivalence

$$
f_1\colon S((\eta_k \otimes (\underline{\underline{V}} \oplus \underline{\underline{R}}^{n-k})) \oplus \underline{\underline{R}}^1) \to S(\underline{\underline{V}} \oplus \underline{\underline{R}}^{n-k} \oplus \underline{\underline{R}}^1)
$$

Since $n \equiv k \mod a_k(R)$ and $n > 2k$, we have a G-fiber homotopy equivalence

$$
f_2\colon S((\eta_k \otimes \underline{V}) \oplus \underline{R}^{n-k+1}) \to S(\underline{V} \oplus \underline{R}^{n-k+1})
$$

The first result follows. The second result follows from Lemma 8.1

Next we show (ii). Since $n \equiv k \mod a_k(R)$ and $n > 2k$, we have a G-fiber homotopy equivalence

$$
f_3\colon S(\eta_k \otimes (\underline{\underline{V}} \oplus \underline{\underline{R}}^{n-k})) \to S(\underline{\underline{V}} \oplus \underline{\underline{R}}^{n-k}).
$$

By Proposition 3.3, $P_k(V \oplus \boldsymbol{R}^n)$ is $G\text{-}V \oplus \boldsymbol{R}^{n-k}\text{-coreducible.}$ Applying Proposi tion 4.4, $P_k(V \oplus R^m)$ is $G\text{-}V \oplus R^{m-1}$ -reducible. It follows from Theorem 6.1 that $\text{Span}_{G}(S(V)) \geq k-1$. q.e.d.

9. An example

Let G be a metacyclic group

$$
{a, b | am = bq = e, bab-1 = a'} ,
$$

458 S. KAKUTANI

where *m* is a positive odd integer, *q* is an odd prime integer, $(r-1, m)=1$ and *r* is a primitive q-th root of 1 mod *m*. Let $\mathbf{Z}_{m} = \langle a \rangle \langle G$ and let $t^{h} (h \in \mathbf{Z})$ be the unitary 1-dimensional \boldsymbol{Z}_m -representation space with a acting on \boldsymbol{C}^1 as multi plication with $\exp{(2\pi h\sqrt{-1}/m)}$. Let $T_\textit{h}$ denote the induced representation space Ind ${}_{\mathbf{z}_m}(t^h)$ of the \mathbf{Z}_m -representation space t^h . Then T_h is a unitary q dimensional G-representation space (for details see [9; §47] or [17]). We put

$$
V_n = T_{h_1} \oplus T_{h_2} \oplus \cdots \oplus T_{h_n},
$$

where $(h_i, m) = 1$ for $1 \leq i \leq n$.

EXAMPLE 9.1. If $n \ge 9$, then $\text{Span}_G(S(V_n)) = \rho(2n, R)-1$. Here $\rho(s, R)$ denotes the largest integer *k* such that $s \equiv 0 \mod a_k(R)$ ([1]).

Proof of Example 9.1. Since $\dim_R V_n = 2nq$ and q is odd, Span($S(V_n)$) $\rho(2nq, R) - 1 = \rho(2n, R) - 1$. Thus we have

$$
(9.1.1) \t\text{Span}_G(S(V_n)) \leq \text{Span}(S(V_n)) = \rho(2n, R) - 1.
$$

By Becker [6; Theorems 1.1 and 2.2], there is a *Z^m -fiber* homotopy equivalence

$$
f_1\colon S(\eta_{\rho(2n,\boldsymbol{R})}\underset{\boldsymbol{R}}{\otimes} \underline{\underline{n}t})\to S(\underline{\underline{n}t})\ .
$$

By the same argument as in $[5; II.$ Proposition 2.2], we have a G-fiber homotopy equivalence

$$
f_2\colon S(\eta_{\rho(2n,\boldsymbol{R})}\underset{\boldsymbol{R}}{\otimes}\underset{\boldsymbol{R}}{\boldsymbol{n}}T_1)\rightarrow S(\underset{\boldsymbol{R}}{\boldsymbol{n}}T_1)\ .
$$

Since $n \ge 9$, we see that $\dim_{\mathbf{R}} n T_1^H \ge 2\rho(2n, \mathbf{R})$ if $n T_1^H$ \neq {0} for each $H < G$. Applying Theorem 1.2, we have $\text{Span}_{G}(S(nT_1)) \geq \rho(2n, R) - 1$. It is easy to see that $\dim_{\bm{C}} V^H_{\bm{\imath}}{=}\dim_{\bm{C}} {\bm{n}} T^H_1$ for all $H{<}G$. Thus it follows from Theorem 1.1 that we have

$$
(9.1.2) \quad \mathrm{Span}_G(S(V_n)) \geq \rho(2n, R) - 1 \; .
$$

Combining (9.1.1) and (9.1.2), we have $\text{Span}_G(S(V_n)) = \rho(2n, R) - 1$. q.e.d.

Added in proof. Professor P. May kindly informed me that Dr. U. Namboodiri has obtained similar results [30].

References

- [1] **J.F.** Adams: *Vector fields on spheres,* Ann. of Math. 75 (1962), 603-632.
- [2] \longrightarrow : *On the groups J(X)-II*, Topology 3 (1965), 137-171.
- [3] M.F. Atiyah: *Thorn complexes,* Proc. London Math. Soc. 11 (1961), 291-310.
- [4] , R. Bott and A. Shapiro: *Clifford modules,* Topology 3 (1964), Suppl. 1, 3-38.
- [5] and D.O. Tall: *Group representations*, *λ*-rings and the *J*-homomor*phism,* Topology 8 (1969), 253-297.
- [6] J.C. Becker: *The Span of spherical space forms,* Amer. J. Math. 94 (1972), 991 1026.
- [7] E. Bierstone: *The equivariant covering homotopy property for differentiable Gfiber bundles,* J. Differential Geom. 8 (1973), 615-622.
- [8] G.E. Bredon: Equivariant cohomology theories, Lecture Notes in Math. 34, Springer-Verlag, 1967.
- [9] C.W. Curtis and I. Reiner: Representation theory of finite groups and associ ative algebras, Interscience, 1962.
- [10] T. tom Dieck: Transformation groups and representation theory, Lecture Notes *in* Math. 766, Springer-Verlag, 1979.
- [11] and T. Petrie: *Geometric modules over the Burnside ring,* Invent. Math. 47 (1978), 273-287.
- [12] S. Illman: *Smooth equivariant triangulations of G-manifolds for G a finite group,* Math. Ann. **233** (1978), 199-220.
- [13] K. Iwata: *Span of lens spaces,* Proc. Amer. Math. Soc. 26 (1970), 687-688.
- [14] I.M. James: *The intrinsic join: A study of the homotopy groups of Stiefel manifolds,* Proc. London Math. Soc. 8 (1958), 507-535.
- [15] \longrightarrow : Cross-sections of Stiefel manifolds, Proc. London Math. Soc. 8 (1958), 536-547.
- [16] : *Spaces associated with Stiefel manifolds,* Proc. London Math. Soc. 9 (1959), 115-140.
- [17] S. Kakutani: *On the groups* $J_{\mathbf{Z}_{mq}}(*)$ *, Osaka J. Math.* **17** (1980), 513–524.
- [18] and M. Murayama: Equivariant duality, reducibility and coreduci*bility,* preprint 1981.
- [19] K. Kawakubo: *Compact Lie group actions and fiber homotopy type,* J. Math. Soc. Japan **33** (1981), 295-321.
- [20] K. Komiya and M. Morimoto: *Equivariant desuspension of G-maps,* Osaka J. Math. **18** (1981), 525-532.
- [21] C.N. Lee and A.G. Wasserman: On the groups *JO(G),* Memoirs of Amer. Math. Soc. 159 (1975).
- [22] R.L. Rubinsztein: On the equivariant homotopy of spheres, Dissertationes Math. 134 (1976).
- [23] D. Sjerve: *Vector bundles over orbit manifolds,* Trans. Amer. Math. Soc. **138** (1969), 97-106.
- [24] E.H. Spanier: *Function spaces and duality,* Ann. of Math. 70 (1959), 338-378.
- [25] J. Tornehave: *Equivariant maps of spheres with conjugate orthogonal actions,* Aarhus Universitet preprint series No. 24 (1976/77).
- [26] S. Waner: *Equivariant homotopy theory and Milnor's theorem,* Trans. Amer. Math. Soc. **258** (1980), 351-368.
- [27] A.G. Wasserman: *Equivariant differential topology,* Topology 8 (1969), 127— 150.
- [28] K. Wirthmϋller: *Equivariant S-duality,* Arch. Math. 26 (1975), 427-431.

460 S. KAKUTANI

- [29] T. Yoshida: *A remark on vector fields on lens spaces,* J. Sci. Hiroshima Univ. Ser. A-I 31 (1967), 13-15.
- [30] U. Namboodiri: *Equivariant vector fields on spheres,* Dr. Phil. Thesis, Univ. of Chicago, 1982.

Department of Mathematics Faculty of Science Kochi University Kochi, 780 Japan