EQUIVARIANT ISOTOPIES OF SEMIFREE G-MANIFOLDS

Dedicated to Professor Minoru Nakaoka on his sixtieth birthday

KATSUHIRO KOMIYA

(Received June 18, 1981)

1. Introduction

In the previous paper [3] we studied the set of equivariant isotopy classes of equivariant smooth embeddings of a sphere with semifree linear action into a euclidean representation space. In this paper we will study more general case, i.e., the set of equivariant isotopy classes of equivariant smooth embed dings of a manifold into another manifold, where the manifolds in question have a smooth semifree action.

Let G be a compact Lie group, and *M, N* smooth G-manifolds. Two smooth G-embeddings f and g of M into N are called G-isotopic, if there is a smooth G-map

$$
H\colon M\times [0,\,1]\to N
$$

such that, for any $t \in [0, 1]$, $H_t = H \mid M \times \{t\}$ is a smooth G-embedding, and that $H_0=f$, $H_1=g$. Such *H* is called a *smooth G-isotopy* between *f* and *g*. The *G-isotopy class* [f] is the set of all smooth *G*-embeddings *G*-isotopic to f. Denote by $Iso^G(M, N)$ the set of all G-isotopy classes of smooth G-embeddings of *M* into *N*. Fix a smooth *G*-embedding *f* of *M* into *N*, and denote by $\text{Iso}_f^G(M, N)$ the set of all G-isotopy classes of smooth G-embeddings G-homotopic to f . If N is a euclidean representation space of G , then N is G -contractible, and then

$$
\operatorname{Iso}^G_f(M, N) = \operatorname{Iso}^G(M, N)
$$

for any smooth G-embedding / of *M* into *N.*

For *X€ΞM* denote by *G^x* the isotropy subgroup of G at *x.* An action of G on M is called *semifree* if, for any $x \in M$, G_x is either trivial or is all of G. If, moreover, the fixed point set

$$
M^G = \{x \in M \, | \, G_x = G\}
$$

is neither empty nor is all of M, the action is called *properly semifree.* For denote by M_x^G the connected component of M^G containing x. Choose

a point from each connected component of M^c , and let $C(M^c)$ be the set of these points. Then M^G is the disjoint union of M^G for all $x \in C(M^G)$.

Let M , N be smooth properly semifree G -manifolds, and f a smooth G embedding of *M* into *N.* This paper will proceed as follows. In section 2 we define $\Gamma_f(M_s^G)$ as the set of homotopy classes of cross sections of a fibre bundle over M_s^G , and give a definition of a transformation

$$
\Phi\colon \operatorname{Iso}^G_f(M,N) \to \prod_{x \in \sigma(M^G)} \Gamma_f(M_x^G).
$$

Under dimensional conditions we prove the surjectivity of Φ in section 3, and prove the injectivity of Φ in section 4. Finally in section 5 we analyze $\Gamma_f(M_s^G)$ by using obstruction theory.

REMARK. If the G-action on *M* is properly semifree, a normal representa tion of G at a fixed point has no fixed point except the origin. Any compact Lie group G does not always admit a fixed point free (outside the origin) representation. Finite groups which admit fixed point free representations are classified by Wolf $[5]$. If G is positive dimensional, then there are only three posibilities: $G \cong S^3$, S^1 , and its normalizer $N(S^1)$ in S^3 (e.g. as shown in Bredon [2; 8.5]). Thus the groups considered in this paper are finite groups, S^1 , $N(S^1)$, and S^3 .

2. Transformation Φ

Let M , N be smooth properly semifree G -manifolds, and f a smooth G embedding of *M* into *N.* Choose once and for all a set *C(M^G)* such that *M^G* is the disjoint union of M_x^G for all $x \in C(M^G)$. For any $x \in C(M^G)$, let

$$
\nu(M_x^G)=(\tau(M)\,|\,M_x^G)/\tau(M_x^G)
$$

be the normal bundle of M_x^G in M . Denote by $\nu_y(M_x^G)$ the fibre over This is a representation of G which has no fixed point outside the origin. Denote by

$$
\operatorname{Mon}^G(\nu_{\nu}(M_x^G), \nu_{f(\nu)}(N_{f(x)}^G))
$$

the set of all *G*-monomorphisms from $\nu_y(M^G_x)$ to $\nu_{f(y)}(N^G_{f(x)})$, and define

$$
\operatorname{Mon}_{f}^{G}(\nu(M_{x}^{G}), \nu(N_{f(x)}^{G})) = \bigcup_{\nu \in M_{x}^{G}} \operatorname{Mon}^{G}(\nu_{y}(M_{x}^{G}), \nu_{f(y)}(N_{f(x)}^{G})) .
$$

By the standard manner this becomes a smooth fibre bundle over *M^G .* The set of continuous (resp. smooth) cross sections of this bundle is in bijective correspondence with the set of continuous (resp. smooth) G-vector bundle monomorphisms from $\nu(M_s^G)$ to $\nu(N_{f(s)}^G)$ which cover

$$
f_x^G = f \, | \, M_x^G \colon M_x^G \to N_{f(x)}^G \, .
$$

Denote by $\Gamma_f(M_s^G)$ the set of homotopy classes of continuous cross sections of $\text{Mon}_{f}^{G}(\nu(M_{x}^{G}),\ \nu(N_{f(x)}^{G})).$ Note that we may take smooth ones as representa tives of classes in $\Gamma_f(M_s^G)$ by the differentiable approximation theorem [4; 6.7].

Let $g: M \rightarrow N$ be a smooth G-embedding G-homotopic to f. Note that $N^{\,G}_{{\bm{s}}(\bm{x})}$ $\!=$ $\!N^{\,G}_{f(\bm{x})}$ for any x $\!\!\in$ $\!C(M^{\,G})$. Then two maps

$$
g_x^G, f_x^G \colon M_x^G \to N_{f(x)}^G
$$

are homotopic, i.e., there is a homotopy

$$
H: M^G_{\mathfrak{X}} \times [0, 1] \to N^G_{f(\mathfrak{x})}
$$

with $H_0 = g_x^G$ and $H_1 = f_x^G$. By Bierstone [1] we may lift H to a G-homotopy of G-vector bundle monomorphism

$$
\tilde{H}: \nu(M_x^G) \times [0, 1] \to \nu(N_{f(x)}^G)
$$

with

$$
\tilde{H}_0 = \tilde{d}_x g \colon \nu(M_x^G) \to \nu(N_{f(x)}^G) ,
$$

where $\tilde{d}_{\mu}g$ is the *G*-vector bundle monomorphism induced from the differential *dg: τ*(*M*) \rightarrow *τ*(*N*) of *g*. Then H ¹ is a G-vector bundle monomorphism which $\frac{1}{2}$ covers f_x^G . Let

$$
\Phi_{x}(g) \colon M_{x}^{G} \to \text{Mon}_{f}^{G}(\nu(M_{x}^{G}), \nu(N_{f(x)}^{G}))
$$

be a cross section corresponding to \tilde{H}_1 . $\Phi_x(g)$ is determined dependently on *H* and its lifting \tilde{H} . But, if $N_{f(x)}^G$ is (dim M_x^G + 1)-connected, the homotopy class of $\Phi_{\star}(g)$ does not depend on H and \tilde{H} . More precisely we show

Lemma 1. Let g, h: $M \rightarrow N$ be smooth G-embeddings G-homotopic to f. *If g and h are G-isotopic, and if* $N_{f(x)}^G$ *is (dim* M_x^G *+1)-connected, then* $\Phi_x(g)$ *and Φ^x (h) are homotopic as cross section.*

Proof. Let

$$
\tilde{H}^{(i)}: \nu(M_x^G) \times [0, 1] \to \nu(N_{f(x)}^G), \qquad i = 0, 1,
$$

be G-homotopies of G-vector bundle monomorphism which cover G-homo topies

$$
H^{(i)}\colon M_x^G\times[0, 1]\to N_{f(x)}^G, \qquad i=0, 1,
$$

such that

- $H_0^{(0)} = f, H_1^{(0)} = g, H_0^{(1)} = h, H_1^{(1)} = f,$
- (B) $\hat{H}^{(0)}_1 = d_x g, \hat{H}^{(1)}_0 = d_x h,$
- (3) $\tilde{H}^{(0)}_0$ and $\tilde{H}^{(1)}_1$ correspond to $\Phi_x(g)$ and $\Phi_x(h)$, respectively.

Let $K: M \times [0, 1] \rightarrow N$ be a smooth *G*-isotopy with $K_0 = g$ and $K_1 = h$. Since $N_{f(x)}^G$ is (dim M_x^G + 1)-connected, there is a homotopy

$$
E\colon {M}_*^G\!\times\![0,\,3]\!\times\![0,\,1]\!\to\!{N}_{f(x)}^G
$$

such that, for any $(y, t, s) \in M_s^G \times (\{0, 3\} \times [0, 1] \cup [0, 3] \times \{1\}),$

$$
E(y, t, s) = f(y),
$$

and for any $(y, t, 0) \in M_x^G \times [0, 3] \times \{0\},$

$$
E(y, t, 0) = \begin{cases} H^{(0)}(y, t) & \text{if } 0 \leq t \leq 1 \\ K(y, t-1) & \text{if } 1 \leq t \leq 2 \\ H^{(1)}(y, t-2) & \text{if } 2 \leq t \leq 3. \end{cases}
$$

Define

$$
k\colon \nu(M_x^G)\times [0, 3]\to \nu(N_{f(x)}^G)
$$

as, for any $(v, t) \in \nu(M_x^G) \times [0, 3]$,

$$
k(v, t) = \begin{cases} \n\widetilde{H}^{(0)}(v, t) & \text{if} \quad 0 \leq t \leq 1 \\ \n\widetilde{d}_x K(v, t-1) & \text{if} \quad 1 \leq t \leq 2 \\ \n\widetilde{H}^{(1)}(v, t-2) & \text{if} \quad 2 \leq t \leq 3 \n\end{cases}
$$

Then *k* is a *G*-vecotr bundle monomorphism, and covers $E \mid M_x^G \times [0, 3] \times \{0\}$. By Bierstone [1] we obtain a G-homotopy of G-vector bundle monomorphism

 $\widetilde{E} \colon \nu(M^{\,G}_{\,x})\!\times\![0,\,3]\!\times\![0,\,1] \rightarrow \nu(N^{\,G}_{\,f(x)})$

such that $\widetilde{E}_0 = k$ and that \widetilde{E} covers E . Then

$$
\tilde{E} \, |\, \nu(M^{\,G}_{\,s}) \times (\{0,\,3\} \times [0,\,1] \cup [0,\,3] \times \{1\})
$$

covers f_x^G on each level M_x^G , and

$$
\begin{array}{l} \widetilde{E} \, |\nu(M^\mathit{G}_*) \times \{0\} \times \{0\} = \tilde{H}_0^\text{(0)}\,, \\ \widetilde{E} \, |\nu(M^\mathit{G}_*) \times \{3\} \times \{0\} = \tilde{H}_1^\text{(1)}\,. \end{array}
$$

Thus we see that $\Phi_{\rm x}(g)$ and $\Phi_{\rm x}(h)$ are homotopic as cross section. Q.E.D.

If $N^c_{f(x)}$ is (dim M^c_x+1)-connected for all $x\!\in\!C(M^c)$, then, by Lemma 1, we may define a transformation

$$
\Phi\colon \mathrm{Iso}^G_f(M, N) \to \prod_{x \in \mathcal{C}(\mathbf{M}^G)} \Gamma_f(M_x^G)
$$

as

$$
\Phi([g]) = \prod_{x \in \sigma(\mathbf{M}^d)} [\Phi_x(g)]
$$

for any $[g] \in \text{Iso}_f^G(M, N)$. If N is a euclidean representation space of G, then N^G is contractible and Φ is always defined.

Define

$$
\dim N^c = \max \{ \dim N_x^c \, | \, x \in C(N^c) \} \; .
$$

We obtain

Theorem 2. Let M, N be smooth properly semifree G-manifolds without *boundary, M compact, and f a smooth G-embedding of M into N. Assume that* $N_{f(x)}^G$ is (dim M_x^G +1)-connected for any $x \in C(M^G)$. Then the transformation

$$
\Phi\colon \mathrm{Iso}_{f}^{G}(M,\,N)\to\prod_{\alpha\in\mathrm{Aut}^{G}}\Gamma_{f}(M_{x}^{G})
$$

satisfies that

(a) *if*

 $\dim M + \max \{\dim M, \, \dim N^c\} \! < \! \dim N + \dim G$,

then Φ is surjective,

(b) *if*

 $2 \dim M_{\tilde{X}}^G + 1 < \dim N_{f(x)}^G$ for any $x \in C(M^G)$,

and if

 $\dim M + \max \left\{ \dim M, \, \dim N^G \right\} + 1 \! < \! \dim N + \dim G$,

then Φ is bijective.

The surjectivity of Φ will be proven in the next section 3, and the injectivity of Φ in section 4.

3. Surjectivity of Φ

First we provide a lemma for the proof of surjectivity of Φ.

Lemma 3. Let $\alpha: X \rightarrow Y$ be a map. Let $\xi \rightarrow X$ and $\xi \rightarrow Y$ be a- and b*dίmensional G-sphere bundles over X and Y, respectively. Here G acts trivially on both X and Y, and freely on ξ. Assume that X is a finite connected complex, and that A is a subcomplex of X. Let* φ *:* $\xi | A \rightarrow \zeta$ *be a fibre preserving G-map which covers* α |*A. If*

$$
\dim X + a \leq b + \dim G,
$$

then φ is extended to a fibre preserving G-map from ξ to ζ which covers a.

Proof. Denote by $\text{Map}^G(\xi_x, \zeta_{\alpha(x)})$ the set of *G*-maps from the fibre ξ_x of ξ over $x \in X$ to the fibre $\zeta_{\alpha(x)}$ of ζ over $\alpha(x) \in Y$. Give the compact-open topology to the set. Define

$$
\mathrm{Map}_{\alpha}^G(\xi,\,\zeta)=\bigcup_{x\in\mathbf{x}}\mathrm{Map}^G(\xi_x,\,\zeta_{\alpha(x)})\,.
$$

By the standard manner this becomes a fibre bundle over *X* with fibre $\text{Map}^G(\xi_x, \zeta_{\alpha(x)})$. The set of cross sections of $\text{Map}^G_{\alpha}(\xi, \zeta) \to X$ is in bijective correspondence with the set of fibre preserving G-maps from *ξ* to *ζ* which cover *a.* Let

$$
s(\varphi): A \to \text{Map}_\alpha^G(\xi, \zeta) | A
$$

be the cross section corresponding to φ . To prove the lemma we extend $s(\varphi)$ over *X*. For this it suffices to see that the fibre $\text{Map}^c(\xi_x, \zeta_{\alpha(x)})$ is $(\dim X - 1)$ connected. For any *i* with $0 \le i \le \dim X - 1$, let D^{i+1} be the canonical $(i+1)$ dimensional disc with trivial G-action, *S** its boundary, and

$$
\beta\colon S^i\to\mathrm{Map}^G(\xi_x,\,\zeta_{\alpha(x)})
$$

any map. We should like to extend *β* over *Di+1 .* By the exponential law *β* gives a G-map

$$
\tilde{\beta}\colon S^i{\times}\xi_x\to \zeta_{\alpha(x)}.
$$

From the hypothesis,

$$
\dim D^{i+1}\mathord \times\mathord{\xi}_{{\scriptscriptstyle \mathcal{X}}}/G\mathop \leq\limits b
$$

and $\zeta_{\alpha(x)}$ is (b-1)-connected. Then, as in the proof of Lemma 5 in [3], we may extend *β* to a G-map on *Di+1 χξx .* Thus we may also extend *β* over D^{i+1} *.* Q.E.D.

From Lemma 3 we obtain

Corollary 4. Let $\xi \rightarrow X$ and $\xi \rightarrow Y$ be a- and b-dimensional G-vecotr bundles *over X and Y, respectively. Here G acts trivially on both X and Y, and freely on both ξ and ζ outside the zero sections. Assume X is a finite complex. Let*

 $\varphi, \psi \colon \xi \to \zeta$

be G-vector bundle monomorphisms which cover a map $\alpha: X \rightarrow Y$ *. If*

$$
\dim X + a < b + \dim G
$$

then there exists a fibre preserving G-homotopy

$$
H: \xi \times [0, 1] \to \zeta
$$

such that

- (1) $H_0 = \varphi, H_1 = \psi,$
- (2) H_t covers α for any $t \in [0, 1]$, $(H_t$ is not necessarily linear on fibres of ξ .)

(3) $H((\xi - X) \times [0, 1]) \subset \xi - Y$ *, where X and Y are regarded as the zero sections of ξ and ζ, respectively.*

Proof. Let $S(ξ)$ and $S(ξ)$ be associated G-sphere bundles of $ξ$ and $ξ$, respectively. Since φ and ψ are monic on each fibre of ξ ,

$$
\varphi(S(\xi)) \subset \xi - Y
$$
, and
 $\psi(S(\xi)) \subset \xi - Y$.

Let $r: \zeta - Y \rightarrow S(\zeta)$ be the radial retraction. Apply Lemma 3 to

$$
r \circ \varphi \cup r \circ \psi \colon S(\xi) \times \{0, 1\} \to S(\xi).
$$
 Q.E.D.

We now begin the proof of surjectivity of Φ under the assumption (a) of Theorem 2. Let

$$
\alpha = \prod_{x \in C(\mathbf{M}^G)} [s_x] \in \prod_{x \in C(\mathbf{M}^G)} \Gamma_f(M_x^G)
$$

be any element. We will construct a smooth G-embedding *g* of *M* into *N* with $\Phi([g]) = \alpha$. Let

$$
t_x: \nu(M_x^G) \to \nu(N_{f(x)}^G)
$$

be a G-vector bundle monomorphism covering f_x^G which corresponds to s_x . Without loss of generality we may assume t_x is smooth. From the assumption (a) and Corollary 4 we obtain a fibre preserving G -homotopy

$$
H^{(1)}\colon \nu(M_x^G)\times [0, 1]\to \nu(N_{f(x)}^G)
$$

such that

- (1) $H_0^{(1)} = \tilde{d}_x f, H_1^{(1)} = t_x,$
- (2) $H_t^{(1)}$ covers f_x^G for any $t \in [0, 1]$,
- (3) $H^{(1)}((\nu(M_x^G) M_x^G) \times [0, 1]) \subset \nu(N_{f(x)}^G) N_{f(x)}^G$.

Define

$$
t=\bigcup_{x\in \sigma(M^G)} t_x\colon \nu(M^G)=\bigcup_{x\in \sigma(M^G)} \nu(M_x^G)\to \nu(N^G)\ .
$$

Making use of exponential maps as in the proof of Lemma 6 of [3], from *t* we obtain a G-homotopy

$$
H^{(2)}\colon T_{3\epsilon}(M^G)\times [0, 1]\to N
$$

such that

- $H_0^{(2)} = f | T_{3} (M^G),$
- (2) $H_1^{(2)}$ is a smooth G-embedding with $\tilde{d}H_1^{(2)}=t$,

(3) $H^{(2)}((T_{33}(M^c)-M^c)\times[0, 1])\subset N-N^c$, where $T_{33}(M^c)$ is a G-equiv ariant closed tubular neighborhood of M^c in M with radius $3\varepsilon > 0$. Using $H^{(2)}$

and f , we may construct a smooth G -map

 $g^{(1)}: M \rightarrow N$

such that

- (1) $g^{(1)}$ and f are G-homotopic,
- (2) for some δ , $\gamma > 0$ with $\gamma < 3\varepsilon$

$$
(g^{(1)})^{-1}(T_{\delta}(N^G)) \subset \text{Int } T_{\gamma}(M^G),
$$

(3) $g^{(1)} = H_1^{(2)}$ on $T_\gamma(M^c)$, hence $g^{(1)} = f$ on M^c . In fact, $g^{(1)}$ can be constructed as follows. First define a G-map

$$
h\colon M\to N
$$

as the followings:

$$
\begin{array}{lll} h(x)=H_1^{(2)}(x) & \textrm{for}\; x\!\in\! T_{\scriptscriptstyle \rm g}(M^c)\,, \\[2mm] h(x)=H^{(2)}\Bigl(\frac{\mathcal{E}x}{||x||},\, 2\!-\!\frac{||x||}{\mathcal{E}}\Bigr) & \textrm{for}\ \ \, x\!\in\! T_{\scriptscriptstyle 2\scriptscriptstyle \rm g}(M^c)\!-\!\operatorname{Int} T_{\scriptscriptstyle \rm g}(M^c), \ \ \text{where}\ \ \, ||x|| \end{array}
$$

denotes the length of x in $T_{3s}(M^c)$,

$$
h(x) = f\left(\left(2 - \frac{3\varepsilon}{||x||}\right)x\right) \quad \text{for } x \in T_{3\varepsilon}(M^c) - \text{Int } T_{2\varepsilon}(M^c), \text{ and}
$$

$$
h(x) = f(x) \quad \text{for } x \in M - \text{Int } T_{3\varepsilon}(M^c).
$$

Next, smooth *h* to obtain the desired $g^{(1)}$.

Define

$$
K = M - \mathrm{Int}\,(g^{(1)})^{-1}(T_{\delta}(N^G)), \quad \text{and} \quad
$$

$$
L = N - \mathrm{Int}\,T_{\delta}(N^G).
$$

These are smooth free *G*-manifolds with boundary. Since $g^{(1)}(K) \subset L$, we obtain a smooth G-map

$$
g^{(1)}|K:K\to L.
$$

Passing to orbit spaces, we also obtain a smooth map

$$
g^{(2)} = (g^{(1)}|K)/G \colon K/G \to L/G,
$$

which is an embedding on a neighborhood of $\partial K/G$ in K/G . From the assumption (a),

$$
2\dim K\!/\!G\!<\!\dim L\!/\!G\,.
$$

Thus $g^{(2)}$ is homotoped to a smooth embedding, precisely there is a smooth homotopy

$$
H^{(3)}: K/G \times [0, 1] \to L/G
$$

such that

- (1) $H_0^{(3)} = \varrho^{(2)}$,
- (2) $H_1^{(3)}$ is a smooth embedding, and

(3) $H^{(3)}$ is a constant homotopy on a neighborhood of $\partial K/G$.

Since the natural projections $K\rightarrow K/G$ and $L\rightarrow L/G$ are smooth G-fibre bundles, then by Bierstone [1] we obtain a smooth G-homotopy

$$
H^{(4)}: K \times [0, 1] \rightarrow L
$$

such that $H_0^{(4)} = g^{(1)} | K$, and that $H_1^{(4)}$ is a smooth G-embedding. Moreover, we can choose $H^{(4)}$ so that it is a constant homotopy on a neighborhood of ∂K in K, hence that $H_1^{(4)} = g^{(1)}$ on the neighborhood. Then, from $g^{(1)}$ and $H_1^{(4)}$, we obtain a smooth G-embedding

$$
g^{(3)}\colon M\to N
$$

such that

(1) $g^{(3)}$ is G-homotopic to f, and

(2) $g^{(3)} = g^{(1)} = H_1^{(2)}$ on a neighborhood of M^G in M .

Thus

$$
\tilde d g^{(3)} = \tilde d H_1^{(2)} = t \colon \nu(M^G) \to \nu(N^G) \, ,
$$

and

$$
\Phi([g^{(3)}]) = \prod_{x \in \mathcal{C}(\mathcal{M}^G)} [s_x].
$$

This completes the proof for the surjectivity of Φ under the assumption (a) of Theorem 2.

4. Injectivity of Φ

In this section we will show the injectivity of Φ under the assumption (b) of Theorem 2. Let

$$
\Phi([g]) = \Phi([h]) \quad \text{in} \quad \prod_{x \in \sigma(\mathbf{M}^G)} \Gamma_f(M_x^G)
$$

for [g], $[h] \in \text{Iso}_{f}^{G}(M, N)$. We will construct a smooth G-isotopy between g and *h.*

First, since g and h are G -homotopic, there is a G -homotopy

$$
H^{\text{(1)}}\colon M{\times}\text{[0,1]}\to N
$$

with $H_0^{(1)} = g$ and $H_1^{(1)} = h$. By the assumption

$$
2 \dim M_{x}^{G} + 1 < \dim N_{f(x)}^{G} \quad \text{for all } x \in C(M^{G}),
$$

we see

$$
f^c, g^c, h^c \colon M^c \to N^c
$$

are isotopic each other. From this and $\Phi([g]) = \Phi([h])$ we obtain a smooth G-homotopy of G-vector bundle monomorphism

$$
H^{(2)}\colon \nu(M^G) \times [0, 1] \to \nu(N^G)
$$

such that

(1) $H_0^{(2)} = \tilde{d}g$, $H_1^{(2)} = \tilde{d}h$, and

(2) $H^{(2)}$ covers a smooth isotopy: $M^G \times [0, 1] \rightarrow N^G$.

Making use of exponential maps as in the proof of Lemma 6 of [3], from *H(2)* we obtain, for an appropriate $\varepsilon > 0$, a smooth G-isotopy

$$
H^{\scriptscriptstyle{\mathrm{(3)}}}\!\colon T_{\scriptscriptstyle{4\mathrm{e}}}(M^{\scriptscriptstyle{G}})\!\times\![0,\,1]\!\to\!N
$$

with $H_0^{(3)} = g | T_{4} (M^G)$ and with $H_1^{(3)} = h | T_{4} (M^G)$. Since $N_{f(x)}^G$ is (dim $M_x^G + 1$)connected for any $x \in C(M^c)$, we may obtain a homotopy

$$
H^{\scriptscriptstyle{\mathrm{(4)}}}\colon (M^{\scriptscriptstyle{G}}\mathord\times[0,\,1])\!\times\![0,\,1]\!\rightarrow\!N^{\scriptscriptstyle{G}}
$$

such that

- (1) $H_0^{(4)}=H^{(3)}|M^G \times [0, 1],$
- (2) $H_1^{(4)} = H^{(1)} | M^G \times [0, 1],$
- (3) $\left\vert H_{t}^{\left(4\right) }\right\vert M^{G}\times\left\{ 0\right\} =g^{G}\qquad\text{for any }t\!\in\![0,\,1],$ and
- (4) $H_i^{(4)}|M^G \times \{1\} = h^G$ for any $t \in [0, 1]$.

Define a G-homotopy

$$
H^{(5)}\colon M\times [0,\,1]\to N
$$

as follows: for any $(x, t) \in M \times [0, 1]$,

$$
H^{(5)}(x, t) = H^{(3)}(x, t) \quad \text{if} \quad x \in T_{\epsilon}(M^c),
$$

\n
$$
H^{(5)}(x, t) = H^{(3)}\left(\left(\frac{2\varepsilon}{||x||} - 1\right)x, t\right) \quad \text{if} \quad x \in T_{2\epsilon}(M^c) - \text{Int } T_{\epsilon}(M^c),
$$

\n
$$
H^{(5)}(x, t) = H^{(4)}\left(\pi(x), t, \frac{||x||}{\varepsilon} - 2\right) \quad \text{if} \quad x \in T_{3\epsilon}(M^c) - \text{Int } T_{2\epsilon}(M^c),
$$

where π : $T_{3e}(M^G) \rightarrow M^G$ is the canonical projection,

$$
H^{(5)}(x, t) = H^{(1)}\Big(4\Big(1-\frac{3\varepsilon}{||x||}\Big)x, t\Big) \quad \text{ if } \quad x \in T_{48}(M^c)-\text{Int } T_{38}(M^c),
$$

$$
H^{(5)}(x, t) = H^{(1)}(x, t) \quad \text{ if } \quad x \in M-\text{Int } T_{48}(M^c).
$$

Then $H_0^{(5)}$ and g are G-homotopic, and its homotopy can be so chosen as to be constant on $T_e(M^c)$. Similarly for $H_1^{(5)}$ and h. From these homotopies we obtain a G-homotopy

$$
H^{(6)}\colon M\times [0,\,1]\to N
$$

such that $H_0^{(6)} = g$, $H_1^{(6)} = h$, and that $H^{(6)}$ is a smooth G -isotopy on $T_e(M^c)$. Define

$$
L = (M - \text{Int }T_{\epsilon}(M^c)) \times [0, 1].
$$

Note the G-action on L is free. Let G act diagonally on $L \times N$. Passing a G-map

$$
id \times H^{(6)} \colon L \to L \times N
$$

to orbit spaces, we obtain a map

$$
\alpha^{(1)} = id \times H^{(6)} / G \colon L/G \to (L \times N)/G \ .
$$

Consider a submanifold

$$
(L\!\times\!N^{\textit{G}}\!)/\!G=L\!/\!G\!\times\!N^{\textit{G}}
$$

of $(L \times N)/G$. Then

$$
\alpha^{_{(1)}}\!(\partial L\vert G)\cap L\vert G\!\times\!N^{\hskip.7pt G}=\phi\;.
$$

From the assumption (b),

$$
\dim L/G \triangleleft \dim \left(L \times N \right) / G - \dim L/G \times N^G
$$

Thus $\alpha^{(1)}$ can be so homotoped that its image does not intersect $L/G\times N^G,$ i.e., there is a map

 $\alpha^{(2)}: L/G \to (L \times N)/G$

which is homotopic to $\alpha^{(1)}$ relative to $\partial L/G$, and whose image does not inter sect $L/G \times N^G$. From this we obtain a G-map

$$
\alpha^{(3)}: L \to N
$$

which is G-homotopic to $H^{(6)}|L$ relative to ∂L , and whose image does not intersect *N^G .* Define

$$
H^{(7)}: M \times [0, 1] \to N
$$

as

$$
H^{(7)} = H^{(6)} \qquad \text{on} \ \ T_{\mathfrak{e}}(M^G) \times [0,1], \text{ and} \\ H^{(7)} = \alpha^{(3)} \qquad \text{on} \ L \ .
$$

Then $H^{(7)}$ is a G-homotopy between g and h, and a smooth G-isotopy particu larly on $T_e(M^c)$. We see

$$
M^{\hskip1pt G}\hspace{-1pt}\times\hspace{-1pt}[0,1]=(H^{\hskip1pt(\hskip1pt\tau)}\hspace{-1pt})^{-{\hskip1pt}\scriptscriptstyle 1}(N^{\hskip1pt{\scriptscriptstyle G}})\,.
$$

At this point it only remains to deform $H^{(7)}$ outside a neighborhood of *M*^{*G*} to a smooth *G*-isotopy. It can be done similarly to the proof in [3]. So we will merely give an outline. Since $M \times [0, 1]$ is compact, for small $\delta > 0$,

Int $T_{\text{e}/2}(M^G) \times [0, 1]$

Let η be a level preserving G-diffeomorphism of $M \times [0, 1]$ such that

$$
\begin{aligned} &\eta(T_{\mathfrak{e}}(M^c)\times[0,\,1])=T_{\mathfrak{e}}(M^c)\times[0,\,1],\text{ and}\\ &\eta(T_{\mathfrak{e}/2}(M^c)\times[0,\,1])=(H^{(7)})^{-1}(T_{\mathfrak{d}}(N^c))\,. \end{aligned}
$$

Define

$$
P = M - \text{Int } T_{\epsilon/2}(M^G), \text{ and}
$$

$$
Q = N - \text{Int } T_{\delta}(N^G).
$$

Consider a G-homotopy

$$
H^{(7)} \circ \eta \colon P \times [0, 1] \to Q,
$$

which is a smooth G-isotopy on a neighborhood of ∂P . From the assumption (b),

$$
2\dim P{+}1{<}\dim Q{+}\dim G\,.
$$

Then *H(7) oη* may be deformed to a smooth G-isotopy

$$
H^{(8)}\colon P\times [0,1]\to Q
$$

such that

(1)
$$
H_0^{(8)} = g \circ \eta_0 | P
$$
,

$$
(2) \quad H_1^{(8)} = h \circ \eta_1 | P
$$

(3) $H^{(8)}=H^{(7)}\circ \eta$ on (n.b.d of $\partial P)\times [0, 1].$

From $H^{(7)}$ and $H^{(8)}$ we obtain a smooth G -isotopy between g and h . This completes the proof for the injectivity of Φ under the assumption (b) of Theorem 2.

5. Analysis of $\Gamma_f(M_x^G)$

In this section we will analyze $\Gamma_f(M_s^G)$.

Let ${V_i | j \in J(G)}$ be a complete set of fixed point free (outside the origin), nonisomorphic, irreducible, real representations of G. For any $j \in J(G)$ denote by \boldsymbol{F}_j the set of G-endomorphisms of V_j , $\text{Hom}^c(V_j, V_j)$, which is the field of real numbers \mathbf{R} , complex numbers \mathbf{C} , or quaternions \mathbf{Q} . V_i is the real restriction of a complex representation if $F_j = C$, and of a quaternionic representation if $F_i = Q$.

For any $y \in M_x^G$, $\nu_y(M_x^G)$ and $\nu_{f(y)}(N_{f(x)}^G)$ are fixed point free (outside the origin) representations of G. Let

$$
\nu_{y}(M_{x}^{G}) \cong \bigoplus_{j\in J(G)} m_{x,j} V_{j}, \text{ and}
$$

$$
\nu_{f(y)}(N_{f(x)}^{G}) \cong \bigoplus_{j\in J(G)} n_{f(x),j} V_{j}
$$

be the decompositions into irreducible representations, where all *m^x j* and all $n_{f(x),j}$ are nonnegative integers independent of $y \in M_x^G$, and where mV_j denotes the direct sum of *m* copies of V_j . Since $\tilde{d}_x f$ embedds $v_y(M_x^G)$ into $v_{f(y)}(N_{f(x)}^G)$, we see

$$
m_{x,j} \leq n_{f(x),j}
$$

for any $j \in J(G)$. As seen in § 1 of [3], $Mon^{G}(m_{x,j}V_j, n_{f(x),j}V_j)$ is identified with $V(m_{x,j}, n_{f(x),j}; \mathbf{F}_j)$, where $V(m, n; \mathbf{F}_j)$ is the Stiefel manifold of m-frames (not necessarily orthonormal) in the *n*-dimensional vector space nF_j over F_j .

We may split the normal bundle $\nu(M_x^G)$ into Whitney sum

$$
\mathop{\oplus}\limits_{j\in J(\theta)}\nu({\overline M}^G_s)_j\,.
$$

Here each $\nu(M_x^G)$ _{*j*} is a G-vector bundle over M_x^G whose fibre is $m_{x,j}V_j$, and as whose structure group we may take $\Lambda(m_{x,i}; F_i)$, where $\Lambda(m; F_i)$ denotes the orthogonal group $O(m)$ if $\mathbf{F}_i = \mathbf{R}$, the unitary group $U(m)$ if $\mathbf{F}_i = \mathbf{C}$, and the symplectic group $Sp(m)$ if $\mathbf{F}_j = \mathbf{Q}$. Similarly for the normal bundle $\nu(N^c_{f(x)})$. Thus we may split the fibre bundle

$$
\operatorname{Mon}^G_f(\nu(M_x^G),\,\nu(N_{f(x)}^G))
$$

into Whitney sum

$$
\bigoplus_{j\in J(G)} B_j.
$$

Here each B_j is a fibre bundle over M_x^G whose fibre is $V(m_{x,j}, n_{f(x),j}; \mathbf{F}_j)$, and whose structure group is $\Lambda(m_{x,j}; \, \mathbf{F}_j) \times \Lambda(n_{f(x),j}; \, \mathbf{F}_j)$.

We easily obtain

Theorem 5. If both $\nu(M_x^G)$ and $\nu(N_{f(x)}^G)$ are product bundles, then there *is a bijectίve correspondence*

$$
\Gamma_f(M_x^G) \approx \prod_{j \in J(G)} [M_x^G, V(m_{x,j}, n_{f(x),j}; \boldsymbol{F}_j)],
$$

where [,] *denotes the homotopy set.*

The Stiefel manifolds are *q*-simple for any $q \ge 0$. According to [4; 30.2], denote by $B_j(\pi_q)$ the bundle of q -th homotopy groups associated with B_j . Define

$$
d_j = \dim_R \mathbf{F}_j, \text{ and}
$$

$$
q_j = d_j(n_{f(x),j} - m_{x,j} + 1) - 1,
$$

then $V(m_{x,j}, n_{f(x),j}; F_j)$ is (q_j-1) -connected and its q_j -th homotopy group is nonzero. So from (37.2) and (37.5) of $[4]$ we obtain

Theorem 6. (a) If

 $\dim M_s^G \leq q_j+1$

for any j with $m_{x,i} \neq 0$, then there is a surjective correspondence

$$
\Gamma_f(M_x^G) \to \prod_{j \in J(G)} H^q (M_x^G; B_j(\pi_q)) .
$$

(b) *If*

 $\dim M^G_* < a$

for any j with $m_{x,j}$ \neq 0, then there is a bijective correspondence

$$
\Gamma_j(M_s^c) \approx \prod_{j \in J(\mathcal{G})} H^q \mathbf{1}(M_s^c; B_j(\pi_{qj})) .
$$

For many cases $B_j(\pi_q)$ becomes a product bundle. In fact we will see this for the cases (i) \sim (iv) in the next Proposition. So for these cases we may replace H^q ^{*j*}(M^G ; $B_j(\pi_{qj})$), in Theorem 6, by the ordinary cohomology groups *H*^{*q*}_{*i*}(*M*^{*G*}; π _{*g*}</sub>(*V*(m _{*x*,*i*}, n _{*f*(*x*),*i*; F _{*j*}))).}

Proposition 7 *Bj(π^q) is a product bundle for each case of the fallowings* $(i) \sim (iv)$:

- (i) *G is not of order 2 (including infinite groups),*
- (ii) both $\nu(M_x^G)$ and $\nu(N_{f(x)}^G)$ are orientable,
- (iii) G is of order 2, $m_{x,j} \geq 2$, and $q = n_{f(x),j} m_{x,j}$ is odd,
- (iv) M^G *is simply connected.*

Proof.

$$
G_j = \Lambda(m_{x,j};\, \boldsymbol{F}_j) \times \Lambda(n_{f(x),j};\, \boldsymbol{F}_j)
$$

is the structure group of B_j . The action of G_j on the fibre $V(m_{x,j}, n_{f(x),j}; F_j)$ induces automorphisms of $\pi_q = \pi_q(V(m_{x,j}, n_{f(x),j}; \mathbf{F}_j))$. Let H_j be the subgroup which acts as the identity in π_q . Then G_j/H_j is the structure group $of B_j(\pi_q)$

(i) From the table in [5; p. 208], we see that $\mathbf{F}_j = \mathbf{C}$ or **Q** if G is not of order 2. Thus G_j is connected, and $G_j = H_j$. So the structure group of $B_j(\pi_q)$ is trivial, and the bundle is a product bundle.

(ii) The structure group of $B_j(\pi_q)$ may be reduced to a connected group. Thus, as seen above, $B_j(\pi_q)$ is a product bundle.

(iii) For this case we see

$$
\pi_q(V(m_{x,j},\, n_{f(x),j};\, \boldsymbol{F}_j)) = \boldsymbol{Z}_2\,,
$$

and the identity is the only automorphism of \mathbf{Z}_2 . Thus $B_j(\pi_q)$ is a product bundle.

(iv) Clear since the fibre of $B_j(\pi_q)$ is discrete. Q.E.D.

References

- [1] E. Bierstone: *The equivariant covering homotopy property for differentiable* G *fibre bundles,* J. Differential Geom. 8 (1973), 615-622.
- [2] G.E. Bredon: Introduction to compact transformation groups, Academic Press, New York and London, 1972.
- [3] K. Komiya: *Equivariant embeddings and isotopies of a sphere in a representation,* J. Math. Soc. Japan 34 (1982), 425-444.
- [4] N. Steenrod: The topology of fibre bundles, Princeton University Press, Prince ton, 1951.
- [5] J.A. Wolf: Spaces of constant curvature (4-th edition), Pubilish or Perish Inc., Berkeley, 1977.

Department of Mathematics Faculty of Science Yamaguchi University Yoshida, Yamaguchi 753 Japan