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1. Introduction

In the previous paper [3] we studied the set of equivariant isotopy classes
of equivariant smooth embeddings of a sphere with semifree linear action into
a euclidean representation space. In this paper we will study more general
case, i.e., the set of equivariant isotopy classes of equivariant smooth embed-
dings of a manifold into another manifold, where the manifolds in question
have a smooth semifree action.

Let G be a compact Lie group, and M, N smooth G-manifolds. Two
smooth G-embeddings / and g of M into N are called G-isotopic, if there is a
smooth G-map

H:Mx[0y 1]->N

such that, for any ίe[0, 1], Ht=H\Mx {t} is a smooth G-embedding, and
that i/0—/> Hλ=g. Such H is called a smooth G-ίsotopy between / and g. The
G-isotopy class [/] is the set of all smooth G-embeddings G-isotopic to /. De-
note by IsoG(M, iV) the set of all G-isotopy classes of smooth G-embeddings
of M into N. Fix a smooth G-embedding / of M into Ny and denote by
Iso/(M, N) the set of all G-isotopy classes of smooth G-embeddings G-homotopic
to /. If N is a euclidean representation space of G, then N is G-contractible,
and then

lsoG(M, N) = IsoG(M, N)

for any smooth G-embedding / of M into N.
For X€ΞM denote by Gx the isotropy subgroup of G at x. An action of

G on M is called semifree if, for any x^M> Gx is either trivial or is all of G.
If, moreover, the fixed point set

MG= {x<EΞM\Gx=G}

is neither empty nor is all of M, the action is called properly semifree. For
denote by Mx the connected component of MG containing x. Choose



384 K. KOMIYA

a point from each connected component of MG, and let C(MG) be the set of
these points. Then MG is the disjoint union of MG for all x&C(MG).

Let My N be smooth properly semifree G-manifolds, and / a smooth G-
embedding of M into N. This paper will proceed as follows. In section 2
we define Tf(MG) as the set of homotopy classes of cross sections of a fibre
bundle over MG> and give a definition of a transformation

Φ: Iso?(M,ΛΓ)- Π Tf(MG).

Under dimensional conditions we prove the surjectivity of Φ in section 3, and
prove the injectivity of Φ in section 4. Finally in section 5 we analyze Yf{MG)
by using obstruction theory.

REMARK. If the G-action on M is properly semifree, a normal representa-
tion of G at a fixed point has no fixed point except the origin. Any compact
Lie group G does not always admit a fixed point free (outside the origin) re-
presentation. Finite groups which admit fixed point free representations are
classified by Wolf [5]. If G is positive dimensional, then there are only three
posibilities: G ^ S 3 , S1, and its normalizer N(Sι) in S3 (e.g. as shown in
Bredon [2; 8.5]). Thus the groups considered in this paper are finite groups,
S\ NiS1), and S\

2. Transformation Φ

Let My N be smooth properly semifree G-manifolds, and / a smooth G-
embedding of M into N. Choose once and for all a set C(MG) such that MG

is the disjoint union of MG for all ΛIGC(M G ) . For any Λ ; G C ( M G ) , let

be the normal bundle of MG in M. Denote by vy{MG) the fibre over
This is a representation of G which has no fixed point outside the origin.
Denote by

the set of all G-monomorphisms from vy{MG) to v/(y)(NG

(x))y and define

= U MonG(^(M,G), vf(y)(Nf(x))).

By the standard manner this becomes a smooth fibre bundle over MG. The
set of continuous (resp. smooth) cross sections of this bundle is in bijective
correspondence with the set of continuous (resp. smooth) G-vector bundle
monomorphisms from v(MG) to v{NG

{x)) which cover



EQUIVARIANT ISOTOPIES OF SEMIFREE G-MANIFOLDS 385

Denote by Tf(Mx) the set of homotopy classes of continuous cross sections of
Monf (p(Mx)f v(Nfίxl)). Note that we may take smooth ones as representa-
tives of classes in Tf(MG) by the differentiable approximation theorem [4; 6.7].

Let g: M-+N be a smooth G-embedding G-homotopic to /. Note that
Ng(x)=Nf(x) for any Λ G C ( M G ) . Then two maps

ΛG xG. τ\/rG _^ ATG

are homotopic, i.e., there is a homotopy

with H0=gχ and H1=fx. By Bierstone [1] we may lift H to a G-homotopy
of G-vector bundle monomorphism

R: v

with

where dxg is the G-vector bundle monomorphism induced from the differential
dg: τ(M)-*τ(N) of g. Then βx is a G-vector bundle monomorphism which
covers fx. Let

Φx(g): MG - Mo n /

G(K^?). "TO*)))

be a cross section corresponding to βv Φx(g) is determined dependently on
H and its lifting β. But, if -2V/(X) is (dimM? + l)-connected, the homotopy
class of Φx(g) does not depend on H and β. More precisely we show

Lemma 1. Let g, h: M-+N be smooth G-embeddίngs G-homotopic to f.
If g and h are G-isotopic, and if N/(x) is (dim Mx+l)-connected, then Φx(g)
and Φx(h) are homotopic as cross section.

Proof. Let

J?«>: v(MG

x)x [0, 1] -> v(NG

f(x)), ί = 0, 1,

be G-homotopies of G-vector bundle monomorphism which cover G-homo-

topies

H":Mϊχ[0, l]->NG

ω, i=0, 1,

such that
(1) HV>=f, HT=g, mi}=h, Hγ>=f,
(2) βT=dxg,β^=dxhy

(3) i?(

0

0) and ft[l) correspond to Φx(g) and Φx(h), respectively.
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Let K: Mx[0, 1]->N be a smooth G-isotopy with K0=g and Kλ=h. Since
Nf(x) is (dim M j + l)-connected, there is a homotopy

E:M°x[0,3]x[0,l]-+Nflt)

such that, for any (y, t,s)(ΞMGx({0, 3} X [0, 1] U [0, 3]X {1}),

E(y,t,s) = f(y),

and for any (y, t, 0 ) E M , G X [0, 3] X {0},

( H^(y,t) if 0<ί<l

E(y,t,0)=\ K(y,t-ί) if l<t<2

[ W>{y, t-2) if 2<ί<3 .

Define

k:v(M°)x[0,3]-+v{N%x))

as, for any (v, t)^v(M°)x[0, 3],

^\v,t) if 0<ί<l

©, ί-1) if l < / < 2

v, t-2) if 2 < ί < 3 .

(β, ί) =

Then k is a G-vecotr bundle monomorphism, and covers E \ M G x [0, 3] X {0}.
By Bierstone [1] we obtain a G-homotopy of G-vector bundle monomorphism

E: v(MG)x [0, 3]x [0, 1] - v(NG

f(x))

such that E0=k and that E covers E. Then

E\v(MG)x({0, 3}x[0, l]U[0, 3]x{l})

covers fG on each level Mxy and

E\v(MG)x{3}x{0} = B[1).

Thus we see that Φx(g) and ΦΛ(Λ) are homotopic as cross section. Q.E.D.

If Nf(x) is (dim M j + l)-connected for all Λ:GC(M G ) , then, by Lemma 1,
we may define a transformation

χ U^Tf(MG)

as

TT
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for any [g] GΞ Iso/ (M, N). If N is a euclidean representation space of G, then
NG is contractible and Φ is always defined.

Define

dim NG = max {dim NG \ x e qΛΓ6)} .

We obtain

Theorem 2. Le£ M, iV be smooth properly semifree G-manifolds without
boundary, M compact, and f a smooth G-embedding of M into N. Assume that
iV/(x) is (dim M? 4-1)-connected for any x^C(MG). Then the transformation

Φ: Iso? (M,N)-> Π Tf(MG)

satisfies that
(a) if

dim M+max {dim M, dim NG} <dim iV+dim G ,

then Φ is surjective,
(b) if

2 dim MG +1< dim iV?(jί, /or αŵ  x e C(MG),

dim M+max {dim M, dim NG} + 1 <dim iV+dim G ,

then Φ is bijective.

The surjectivity of Φ will be proven in the next section 3, and the injec-

tivity of Φ in section 4.

3. Surjectivity of Φ

First we provide a lemma for the proof of surjectivity of Φ.

Lemma 3. Let a: X->Y be a map. Let ξ->X and ?->Y be a- and b-
dίmensional G-sphere bundles over X and Y, respectively. Here G acts trivially
on both X and Y, and freely on ξ. Assume that X is a finite connected complex,
and that A is a subcomplex of X. Let φ: ξ\A->ζ be a fibre preserving G-map
which covers a\A. If

then φ is extended to a fibre preserving G-map from ξ to ζ which covers a.

Proof. Denote by MapG(ξχy ζa(x)) the set of G-maps from the fibre ξx of
ξ over x G l to the fibre £«(*) of ζ over a(x)^Y. Give the compact-open
topology to the set. Define



388 K. KOMIYA

By the standard manner this becomes a fibre bundle over X with fibre
MapG(fΛ, ζct(x)) The set of cross sections of Map£(£, ζ)-^X is in bijective
correspondence with the set of fibre preserving G-maps from ξ to ζ which cover
a. Let

be the cross section corresponding to φ. To prove the lemma we extend s(<p)
over X. For this it suffices to see that the fibre MaρG(fx, ζa(x)) is (dim X—l)-
connected. For any i with 0 < / < d i m X— 1, let Di+1 be the canonical (*+l)-
dimensional disc with trivial G-action, S* its boundary, and

β: S' -* Map G (^, £«,,)

any map. We should like to extend β over Di+1. By the exponential law β
gives a G-map

From the hypothesis,

dim Di+1xξxIG<b

and ζa(x) is (b— l)-connected. Then, as in the proof of Lemma 5 in [3], we
may extend β to a G-map on Di+1χξx. Thus we may also extend β over
Di+1. Q.E.D.

From Lemma 3 we obtain

Corollary 4. Let ξ-*X and £-> Y be a- and b-dtmensional G-vecotr bundles
over X and Y, respectively. Here G acts trivially on both X and Y, and freely
on both ξ and ζ outside the zero sections. Assume X is a finite complex. Let

be G-vector bundle monomorphisms which cover a map a: X-+Y. If

dim X+a<b+dim G,

then there exists a fibre preserving G-homotopy

H:ξx[Oy l ] - > ?

such that

(1) H,=Ψ,Hx=φ,
(2) Ht covers a for any t^[0> 1], (Ht is not necessarily linear on fibres of ξ.)
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(3) H((ξ—X)x[0, l])cf—Y, where X and Y are regarded as the zero
sections of ξ and ζ, respectively.

Proof. Let S(ξ) and S(ζ) be associated G-sphere bundles of ξ and £,
respectively. Since φ and ψ are monic on each fibre of ξy

φ(S(ξ))dξ-Y, and

ψ(S(ξ))czξ-Y.

Let r: ζ— Y->S(ζ) be the radial retraction. Apply Lemma 3 to

ro<p{jroψ: S(ξ)x {0, 1} -> 5(f). Q.E.D.

We now begin the proof of surjectivity of Φ under the assumption (a) of
Theorem 2. Let

a= Π W e Π Yf{MG

x)

be any element. We will construct a smooth G-embedding g of M into N
with Φ([g])=a. Let

be a G-vector bundle monomorphism covering fx which corresponds to sx.
Without loss of generality we may assume tx is smooth. From the assumption
(a) and Corollary 4 we obtain a fibre preserving G-homotopy

such that
(1)
(2) HP covers ff for any ίe[0, 1],
(3)

Define

/ = U ί , : K ^ G ) = U v{MG

x)-*v
σ G

Making use of exponential maps as in the proof of Lemma 6 of [3], from t we
obtain a G-homotopy

: Γ3s(MG)x[0, 1]->JV

such that

(1) m2>=/|Γ3 s(MG),
(2) iϊ"(i2) is a smooth G-embedding with 3Hf=t,
(3) ίZ"(2)((Γ3s(MG)-MG)x[0, l])cΛΓ-iVG, where T3s(MG) is a G-equiv-

ariant closed tubular neighborhood of M° in M with radius 3ε>0. Using H(2)
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and/, we may construct a smooth G-map

such that
(1) g(1) and / are G-homotopic,
(2) for some δ, γ > 0 with γ<3£

(3) gW=H[2) on Ty(M% hence g^=f on MG.
In fact, g(1) can be constructed as follows. First define a G-map

h:M->N

as the followings:

h(x) = #ί 2 ) (*) for xGjΓe(MG),

h(x) = H^(—, 2 - M l \ for * e Γ 2 s ( M G ) - I n t Γ 8 ( M G ) , where ||x||
N| |X | | c /

denotes the length of x in T3ε(MG),

% ) =/((2-j j j^)*) for ^GΓ3S(MG)-Int Γ2ε(MG), and

% ) =/(*) for

Next, smooth h to obtain the desired £(1).
Define

K = M-Int(gV)-\T8(NG)), and

L = N-IntT8(NG).

These are smooth free G-manifolds with boundary. Since gil\K)czLi we
obtain a smooth G-map

Passing to orbit spaces, we also obtain a smooth map

which is an embedding on a neighborhood of dKjG in KjG. From the as-
sumption (a),

2dimί:/G<diinL/G.

Thus g{2) is homotoped to a smooth embedding, precisely there is a smooth
homotopy
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tf<3): KIGx[Q, \]^LjG

such that
(1) HP=gV,
(2) H[3) is a smooth embedding, and
(3) if(3) is a constant homotopy on a neighborhood of dK/G.

Since the natural projections K-^KjG and L-+L/G are smooth G-fibre bundles,
then by Bierstone [1] we obtain a smooth G-homotopy

such that H(o4)=g(1)\Ky and that H[4) is a smooth G-embedding. Moreover,
we can choose i/ ( 4 ) so that it is a constant homotopy on a neighborhood of
3i£ in K, hence that H^=gil) on the neighborhood. Then, from g{1) and
H[4\ we obtain a smooth G-embedding

such that
(1) g(3) is G-homotopic to/, and
(2) gW=gW=:H[2) on a neighborhood of M G in M.

Thus

= t: v(MG) -* ^

and

φ([Λ= Π

This completes the proof for the surjectivity of Φ under the assumption (a)
of Theorem 2.

4. Injectivity of Φ

In this section we will show the injectivity of Φ under the assumption (b)
of Theorem 2. Let

for [#], [A]GISO/(M, JV). We will construct a smooth G-isotopy between
and h.

First, since £ and h are G-homotopic, there is a G-homotopy

with H(o1)=g and H[1)=h. By the assumption

2 dim M? + 1 <dim NG

f{x) for all x e C(MG),



392 K. KOMIYA

we see

fG,gG, hG:MG^

are isotopic each other. From this and Φ([g])=Φ([h]) we obtain a smooth
G-homotopy of G-vector bundle monomorphism

#< 2 ): v(MG)x[0, l]-+v(NG)

such that
(1) Htfϊ=dg, H^=dh, and
(2) Hi2) covers a smooth isotopy: MGX [0, l]^-NG.

Making use of exponential maps as in the proof of Lemma 6 of [3], from H(2)

we obtain, for an appropriate £>0, a smooth G-isotopy

tf<3): Γ48(MG)x[0, \]^N

with H^=g I Tie(MG) and with Hψ>=h | T«(MG). Since Nfw is (dim MG +1)-
connected for any xGC(MG), we may obtain a homotopy

#•<«: (MGx[0, 1])X[

such that

(1) i ϊ (

0

4 ) =#< 3 ) |M G x[0, 1],
(2) H[v=HW\MGx[0, 1],
(3) ϋ"'/' IMG X {0} = £ G for any <e [0, 1], and
(4) i ί (

(

4 ) | M c x {1} =/iG for any ίe[0, 1].
Define a G-homotopy

as follows: for any (x, ί)eΛίx [0, 1],

(x, t) = H«\x, t) if x6ΓB(Mβ),

(*, ί) = ^ ( 3 ) ( ( | | - 1 ) * » 0 ί f ^eT28(MG)-Int

//<5)(Λr, ί) = H^(π(x), t, M-2\ if * e Γ 3 s (M G )-Int Γ2ε(MG),

where w: Γ38(ΛίG)-»MG is the canonical projection,

(*, ί) = i ϊ ( υ ( 4 ( l - ^ , ί ) if x^

\x, t) = HW(x, ΐ) if ^ e M - I n t T42(MG).

Then i/o5) and ^ are G-homotopic, and its homotopy can be so chosen as to
be constant on T2(MG). Similarly for H[5) and h. From these homotopies
we obtain a G-homotopy
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#< 6 ) :Mx[0, 1]-+N

such that H(

0

6)=gy H[6)=hy and that i ϊ ( 6 ) is a smooth G-isotopy on TZ(MG).
Define

L = ( M - I n t Γε(MG))x [0, 1] .

Note the G-action on L is free. Let G act diagonally on LxN. Passing a
G-map

to orbit spaces, we obtain a map

α<" = tdxH^/G: L/G ~> (LχN)/G .

Consider a submanifold

of (LxN)/G. Then

From the assumption (b),

dimL/G<dim(LxΛΓ)/G-dimL/GxΛΓG.

Thus a(1) can be so homotoped that its image does not intersect L/GχNG

y

i.e., there is a map

which is homotopic to a(1) relative to 3L/G, and whose image does not inter-
sect LjGxNG. From this we obtain a G-map

which is G-homotopic to H(6)\L relative to 9L, and whose image does not
intersect NG. Define

ff(7):Mx[0, 1]->JV

as

o n Tζ(MG)x[0, 1], and

o n L β

Then i/ ( 7 ) is a G-homotopy between ^ and A, and a smooth G-isotopy particu-

larly on Γε(MG). We see

M G χ[0, 1] = (HW)
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At this point it only remains to deform H{1) outside a neighborhood of
MG to a smooth G-isotopy. It can be done similarly to the proof in [3]. So
we will merely give an outline. Since Mx[0, 1] is compact, for small δ>0,

Int T2/2(MG)x[0,

Let η be a level preserving G-diffeomorphism of Mx[0, 1] such that

v(Tζ(MG)x[0, 1]) = Te(MG)x[Oy 1], and

v(Tζ/2(MG)x [0, 1]) = (H^)-\Tδ(NG)).

Define

P = M - I n t Tt!2{M% and

Q = TV-Int TS(NG).

Consider a G-homotopy

which is a smooth G-isotopy on a neighborhood of dP. From the assumption

(b),

2 dim P + l < d i m Q+dim G .

Then H(7)oη may be deformed to a smooth G-isotopy

#<8>:Px[0, i ] - > ρ

such that

(2)
(3) H^=H^ov on (n.b.d of 9P) X [0, 1].

From Hσ) and /ί ( 8 ) we obtain a smooth G-isotopy between g and A. This
completes the proof for the injectivity of Φ under the assumption (b) of Theo-
rem 2.

5. Analysis of Γf(M£)

In this section we will analyze Tf(MG).
Let {Vj\j^J(G)} be a complete set of fixed point free (outside the ori-

gin), nonisomorphic, irreducible, real representations of G. For any j^J(G)
denote by Fj the set of G-endomorphisms of Vh HomG(F, , F ; ), which is the
field of real numbers R, complex numbers C, or quaternions Q. Vj is the
real restriction of a complex representation if Fj=C, and of a quaternionic
representation if Fj=Q.
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For any y^Mxy vy(Mx) and Vf(y)(Nf{x)) are fixed point free (outside the
origin) representations of G. Let

mxjVj, and

be the decompositions into irreducible representations, where all mxj and all
n/(χ)j a r e nonnegative integers independent of J G M J , and where mVj denotes
the direct sum of m copies of Vj. Since dxf embedds vy(MG) into vfiy){NG

{x)\
we see

mxJ<nf(x)j

for a n y / e / ( G ) . As seen in § 1 of [3], MonG(mxjVjy n/(x)jVf) is identified
with V(mxj, nf(x)tj; F})y where V(my n Fj) is the Stiefel manifold of m-frames
(not necessarily orthonormal) in the n-dimensional vector space nFj over Fj.

We may split the normal bundle v(MG) into Whitney sum

θ v{M% .

Here each P(MX)J is a G-vector bundle over Mx whose fibre is mxjVjy and
as whose structure group we may take A(mxj; Fj), where A(m; Fj) denotes
the orthogonal group O(m) if Fj=R, the unitary group U(m) if F y = C , and
the symplectic group Sp(m) if Fj=Q. Similarly for the normal bundle v{N^x)).
Thus we may split the fibre bundle

into Whitney sum

θ Bj.

Here each Bj is a fibre bundle over Mx whose fibre is V(mx jy nf(x)fj; Fj), and
whose structure group is A(mxJ; F ; )xΛ(n / ( ί ) ) i ; Fj).

We easily obtain

Theorem 5. If both v(Mx) and v(NG

w) are product bundles, then there
is a bijectίve correspondence

Tf{MG

x)~ Π [MG

X, V(mxJ, n/ωj; F,)],

where [ , ] denotes the homotopy set.

The Stiefel manifolds are g-simple for any q>0. According to [4; 30.2],
denote by Bj(πq) the bundle of #-th homotopy groups associated with Bj.
Define
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dj = dimΛ Fj, and

qj = dj(nf(x)j-mxJ+i)-lJ

then V(mxJ, nf(x)J; Fj) is (qj — l)-connected and its qrth homotopy group is
nonzero. So from (37.2) and (37.5) of [4] we obtain

Theorem 6. (a) //

dim MG

x<qj+1

for any j with mx>7 φ 0 , then there is a surjective correspondence

Γ/M?) - . Π

(b) If

for any j with mxJή=0, then there is a bίjective correspondence

For many cases Bj(πq) becomes a product bundle. In fact we will see
this for the cases (i)~(iv) in the next Proposition. So for these cases we may
replace Hqj(Mx\ Bfaq.)), in Theorem 6, by the ordinary cohomology groups
H\M° πgj(V(mxJ> nfix)J F,)))

Proposition 7 Bj(πq) is a product bundle for each case of the fallowings

(i)~(iv):
(i) G is not of order 2 (including infinite groups),
(ii) both v(Mx) and v(Nf(x)) are orίentable,
(iii) G is of order 2, mx j>2, and q=nf(x)j—MXJ is odd,
(iv) Mx is simply connected.

Proof.

Gj = A(mxJ; Fj)xA(n/(x)J; Fj)

is the structure group of Bj. The action of Gy on the fibre V(mx h nf(x)j; Ff)
induces automorphisms of πq=πq(V(mxjf nf(x)tj; Fj)). Let Hj be the sub-
group which acts as the identity in πq. Then GjjHj is the structure group
oϊBj(πq).

(i) From the table in [5; p. 208], we see that Fj=C or Q if G is not of
order 2. Thus Gj is connected, and Gj=Hj. So the structure group of Bj(πq)
is trivial, and the bundle is a product bundle.

(ii) The structure group of Bj(πq) may be reduced to a connected group.
Thus, as seen above, Bj(πq) is a product bundle.
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(iii) For this case we see

and the identity is the only automorphism of Z2. Thus Bj(πq) is a product

bundle.

(iv) Clear since the fibre of Bj(πq) is discrete. Q.E.D.
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