Suwa, T. Osaka J. Math. 20 (1983), 373-382

KUPKA-REEB PHENOMENA AND UNIVERSAL UNFOLDINGES OF CERTAIN FOLIATION SINGULARITIES

Dedicated to Professor Yozo Matsushima on his 60th birthday

TATSUO SUWA*

(Received July 20, 1981)

If $\tilde{\omega}$ is an integrable 1-form, under certain circumstances, $\tilde{\omega}$ is given as the pull back of a 1-form ω on a lower dimensional space by a submersion, that is, $\tilde{\omega}$ is a trivial unfolding of ω (Kupka-Reeb phenomenon). Especially, if we have an integrable 1-form ω which is a universal unfolding of some other 1-form, then every unfolding of ω is trivial. Thus we obtain "stable" singularities as universal unfoldings.

In this note, we construct universal unfoldings of some complex foliation singularities as an application of the versality theorem proved in [5]. For generalities on unfolding theory of complex analytic foliations, we refer to [4] and [5]. We briefly discuss universal unfoldings in section 1. In section 2, we consider the form $\omega = (\alpha x + \beta y)ydx - (\gamma x + \delta y)xdy$ on $C^2 = \{(x, y)\}$ and show that, under some condition on α , β , γ and δ , we can construct a universal unfolding $\tilde{\omega}$ of ω (Theorem 2.1). As a foliation singularity, $\tilde{\omega}$ turns out to be a simple one (Remark 2.2). This fact can be used, for example, to find the solutions of the differential equation $\omega = 0$ and its "perturbations". In section 3, we take up the form $\overline{\omega} = x_1 \cdots x_n \sum_{i=1}^n a_i \frac{dx_i}{x_i}$ studied by Cerveau and Neto in [1]. They proved, among others, that every unfolding of (a form whose n-1 st jet is equal to) $\overline{\omega}$ is trivial, provided that $a_i \neq a_i \neq 0$. We give (Theorem 3.2) an alternative proof of this using the versality theorem in [5]. When n=3and two of the a_i 's are the same, we show that some unfolding of $\overline{\omega}$ is identical with one of the universal unfoldings constructed in section 2. We also indicate how to "stabilize" $\overline{\omega}$ in general when two or more of the a_i 's are the same (Proposition 3.8).

1. Universal unfoldings. Let $F=(\omega)$ be a codim 1 local foliation at the origin 0 in C^{*} ([5] section 1).

^{*} Partially supported by the National Science Foundation.

DEFINITION 1.1. An unfolding \mathcal{F} of F is universal if it is versal and if the infinitesimal unfolding map of $\mathcal{F}([5] \text{ section } 1)$ is injective.

DEFINITION 1.2. An unfolding \mathcal{F} of F is trivial if there is a local holomorphic submersion $\Phi: (\mathbb{C}^n \times \mathbb{C}^m, 0) \to (\mathbb{C}^n, 0)$ such that \mathcal{F} is generated by the pull back $\Phi^*\omega$ of ω by Φ , where \mathbb{C}^m is the parameter space of \mathcal{F} .

Proposition 1.3. Let F be a local foliation at 0 in \mathbb{C}^n . If $\mathcal{F}=(\tilde{\omega})$ is a universal unfolding of F, then every unfolding of \mathcal{F} is trivial.

Proof. Let $x=(x_1, \dots, x_n)$ be a coordinate system on \mathbb{C}^n and let $\mathbb{C}^m=\{t=(t_1, \dots, t_m)\}$ be the parameter space of \mathcal{F} . Thus \mathcal{F} is a local foliation at the origin in $\mathbb{C}^n \times \mathbb{C}^m$. Let \mathcal{F}' be an arbitrary unfolding of \mathcal{F} with parameter space $\mathbb{C}^l=\{s=(s_1,\dots,s_l)\}$. Then we may think of \mathcal{F}' as an unfolding of F with parameter space $\mathbb{C}^m \times \mathbb{C}^l$. By the universality of \mathcal{F}' there are map germs Φ and φ such that (i) the diagram

$$(\mathbf{C}^{n} \times \mathbf{C}^{m} \times \mathbf{C}^{l}, 0) \xrightarrow{\Phi} (\mathbf{C}^{n} \times \mathbf{C}^{m}, 0)$$
$$\begin{array}{c}\pi' \\ (\mathbf{C}^{m} \times \mathbf{C}^{l}, 0) \xrightarrow{\varphi} (\mathbf{C}^{m}, 0),\end{array}$$

where π' and π are canonical projections, is commutative, (ii) for each (t, s), the restriction of Φ to $\pi'^{-1}(t, s)$ is a biholomorphic map into $\pi^{-1}(\varphi(t, s))$ and (iii) \mathcal{F}' is generated by $\Phi^*\tilde{\omega}$. In order to prove the proposition, it suffices to show that Φ is a submersion. We may write $\Phi(x, t, s) = (\psi(x, t, s), \varphi(t, s))$, where ψ is a local map $(\mathbf{C}^n \times \mathbf{C}^m \times \mathbf{C}^l, 0) \to (\mathbf{C}^n, 0)$. By the above property (ii), ψ is a submersion. Consider the diagram

where ρ and ρ' are the infinitesimal unfolding maps ([4] (2.9), (4.3), [5] section 1) of \mathcal{F} and \mathcal{F}' respectively, $d\varphi$ is the differential of φ and ι is the natural inclusion. Since \mathcal{F}' is an unfolding of \mathcal{F} , we have $\rho' \circ \iota = \rho$. Also, by the naturality of infinitesimal unfolding maps, we have $\rho' = \rho \circ d\varphi$. Hence $\rho = \rho \circ d\varphi \circ \iota$. Since \mathcal{F} is a universal unfolding, ρ is injective. Therefore, $d\varphi$ must be surjective and φ is a submersion, Q.E.D.

REMARKS 1.4. 1°. For Proposition 1.3, the codimension of F need not be one.

 2° . For the universal unfoldings given in this note, we could use [5] (4.1) Corollary instead of Proposition 1.3.

374

2. Universal unfoldings of some singularities on C^2 . We consider the 1-form

$$\omega = (\alpha x + \beta y)ydx - (\gamma x + \delta y)xdy$$

on $C^2 = \{(x, y)\}$ with α , β , γ and δ complex numbers. We assume that the set of zeros of ω consists only of the origin 0, that is, we assume that

$$\beta \neq 0, \gamma \neq 0$$
 and $D = \alpha \delta - \beta \gamma \neq 0$.

Let $F=(\omega)$ be the codim 1 local foliation at 0 in C^2 generated by the germ of ω at 0 ([5] section 1). We set

$$A = \gamma \{D + \beta(\alpha - \gamma)\}, \ B = \beta \{D + \gamma(\delta - \beta)\} \text{ and } C = \alpha \beta - \gamma \delta.$$

Then it is not difficult to show that F is a Haefliger foliation ([4] (1.10) Definition), that is, ω admits an integrating factor, if and only if A=B=0.

We assume that F is non-Haefliger hereafter. Furthermore, we consider only the following three cases:

- (I) $A = 0, B \neq 0,$
- (II) A = 0, B = 0,
- (III) $A \neq 0, B \neq 0, C = 0.$

In the case (I), we may set $\alpha = 2ak$, $\beta = a$, $\gamma = bk$, $\delta = b - a$. Then we have D = -a(2a-b)k and B = -a(a+b)(2a-b)k. The constants a, b and k are arbitrary as long as $abk \pm 0$, $a \pm -b$ and $2a \pm b$.

In the case (II), we may set $\alpha = a-b$, $\beta = ak$, $\gamma = b$ and $\delta = 2bk$. Then we have D = -b(2b-a)k and A = -b(b+a)(2b-a)k. The constants a, b and k are arbitrary as long as $abk \neq 0$, $b \neq -a$ and $2b \neq a$.

In the case (III), we may set $\alpha = ak$, $\beta = b$, $\gamma = a$ and $\delta = bk$. Then we have $D = ab(k^2-1)$, $A = a^2b(k-1)(k+2)$ and $B = ab^2(k-1)(k+2)$. The constants a, b and k are arbitrary as long as $ab \pm 0$, $k^2 \pm 1$ and $k \pm -2$.

Theorem 2.1. If one of the conditions (I), (II) and (III) is satisfied, then there is a universal unfolding $\mathcal{F}=(\tilde{\omega})$ of the foliation $F=(\omega)$. \mathcal{F} is a (codim 1, local) foliation at 0 in $C^4=\{(x, y, s, t)\}$. In each case we may choose the following as a generator $\tilde{\omega}$ of \mathcal{F} :

(I)
$$\tilde{\omega} = (2akx+ay+as)ydx - \{bkx^2+(b-a)xy+bxs+bt\}dy+axyds+aydt$$
.

(II)
$$\tilde{\omega} = \{(a-b)xy + aky^2 - ays - at\} dx - (bx + 2bky - bs)xdy + bxyds + bxdt$$
.

(III)
$$\tilde{\omega} = \{akxy+by^2-ys-(k+1)at\}dx - \{ax^2+bkxy+xs-(k+1)bt\}dy + (k+1)(xy-t)ds + (ax-by+s)dt.$$

Proof. Let \mathcal{O} be the ring of germs of holomorphic functions at 0 in \mathbb{C}^2 and let Ω be the \mathcal{O} -module of germs of holomorphic 1-forms. We set $\Omega_F = \Omega/F$. If we denote by f and g the germs of the functions $(\alpha x + \beta y)y$ and $-(\gamma x + \delta y)x$, respectively, we have ([4] (4.5), [5] section 1) $\operatorname{Ext}_{\mathcal{O}}^1(\Omega_F, \mathcal{O}) = \mathcal{O}/(f, g)$, where (f, g) is the ideal generated by f and g. For any element h in \mathcal{O} , we denote by [h] the class of h in $\mathcal{O}/(f, g)$. In our case, since $\beta \neq 0$ and $\gamma \neq 0$, we have

$$Ext^1_{\mathcal{O}}(\Omega_F, \mathcal{O}) = C^4$$

and we may take [1], [x], [y] and [xy] as basis elements. Next we determine the set U(F) of equivalence classes of first order unfoldings of F, which is given by ([4] (6.1) Theorem, (6.8) Remark)

$$U(F) = \{ [h] \in Ext^{1}_{\mathcal{O}}(\Omega_{F}, \mathcal{O}) | hd\omega = \eta \wedge \omega \text{ for some } \eta \in \Omega \}$$

First we have

$$d\omega = - \{(\alpha + 2\gamma)x + (\delta + 2\beta)y\} dx \wedge dy$$
.

If $\alpha+2\gamma=\delta+2\beta=0$, then A=B=0. Hence by our assumption, $d_{\omega}\neq 0$. Since the coefficients of ω are homogeneous polynomials of degree 2, if an element of the form $\lambda_1[1]+\lambda_2[x]+\lambda_3[y]+\lambda_4[xy]$ is in U(F), then we must have $\lambda_1=0$. Now the element [xy] is in U(F), since if we set $h_1=Dxy$, we have

$$h_1 d\omega = \eta_1 \wedge \omega$$

with $\eta_1 = \{D + \beta(\alpha - \gamma)\} y dx + \{D + \gamma(\delta - \beta)\} x dy$. We now look for elements of the form $h = \lambda x + \mu y$ such that $[h] \in U(F)$. It is not difficult to see that the equation $h d\omega = \eta \wedge \omega$ has a solution for η if and only if

$$\begin{vmatrix} \gamma & 0 & (\alpha+2\gamma)\lambda \\ \delta & \alpha & (\delta+2\beta)\lambda+(\alpha+2\gamma)\mu \\ 0 & \beta & (\delta+2\beta)\mu \end{vmatrix} = 0$$

or equivalently $A\mu + B\lambda = 0$. Thus if we set $h_2 = Ax - By$, then

$$h_2 d\omega = \eta_2 \wedge \omega$$

with $\eta_2 = \left(2 + \frac{\alpha}{\gamma}\right) A dx - \left(2 + \frac{\delta}{\beta}\right) B dy$. Hence we see that $U(F) = C^2$ and we may take $[h_1] = [Dxy]$ and $[h_2] = [Ax - By]$ as basis elements. The element h_1 determines a first order unfolding

$$\tilde{\omega}_1 = \omega + \omega_1^{(1)} s + h_1 ds$$

with $\omega_1^{(1)} = dh_1 - \eta_1 = \beta(\gamma - \alpha)ydx + \gamma(\beta - \delta)xdy$, where s is a parameter. The

376

second order (in s) term in $d\tilde{\omega}_1 \wedge \tilde{\omega}_1$ is

$$d\omega_1^{(1)} \wedge \omega_1^{(1)}s^2 + (h_1 d\omega_1^{(1)} - dh_1 \wedge \omega_1^{(1)})sds$$
.

We have $d\omega_1^{(1)} \wedge \omega_1^{(1)} = 0$, since $\omega_1^{(1)}$ is a 1-form on C^2 . Using $d\omega_1^{(1)} = Cdx \wedge dy$, we have $h_1 d\omega_1^{(1)} - dh_1 \wedge \omega_1^{(1)} = (DC - DC)xydx \wedge dy = 0$. Hence $\tilde{\omega}_1$ satisfies the integrability condition $d\tilde{\omega}_1 \wedge \tilde{\omega}_1 = 0$. Thus $\tilde{\omega}_1$ is actually an unfolding of ω . The element h_2 determines a first order unfolding

$$\widetilde{\omega}_2 = \omega + \omega_2^{(1)}t + h_2 dt$$

with $\omega_2^{(1)} = dh_2 - \eta_2 = -\left(1 + rac{lpha}{\gamma}
ight)Adx + \left(1 + rac{\delta}{eta}
ight)Bdy$,

where t is a parameter. Since $d\omega_2^{(1)}=0$, the second order term in $d\tilde{\omega}_2 \wedge \tilde{\omega}_2$ is $-dh_2 \wedge \omega_2^{(1)} \wedge tdt = \frac{1}{\beta\gamma} ABCdx \wedge dy \wedge tdt$. Hence under the condition (I), (II) or (III), this vanishes. Thus $\tilde{\omega}_2$ is actually an unfolding of ω . (I) A=0, B=0. In this case, we have $h_1=Dxy=-a(2a-b)kxy, \omega_1^{(1)}=-(2a-b)k(aydx-bxdy), h_2=-By=aCy$ and $\omega_2^{(1)}=-bCdy$. We set $h'_1=axy, \omega_1^{(1)'}=aydx-bxdy, h'_2=ay$ and $\omega_2^{(1)'}=-bdy$. Then clearly

$$\tilde{\omega}_1' = \omega + \omega_1^{(1)'} s + h_1' ds$$
 and $\tilde{\omega}_2' = \omega + \omega_2^{(1)'} t + h_2' dt$

are unfoldings of ω . We combine $\tilde{\omega}'_1$ and $\tilde{\omega}'_2$ to obtain a form on $C^4 = \{(x, y, s, t)\}$:

$$\tilde{\omega} = \omega + \omega_1^{(1)'} s + \omega_2^{(1)'} t + h_1' ds + h_2' dt$$

We now show that $\tilde{\omega}$ satisfies the integrability condition and is thus an unfolding of ω . Noting that $d\omega_2^{(1)\prime}=0$, we have

$$d\tilde{\omega} = d\omega + d\omega_1^{(1)\prime}s - (\omega_1^{(1)\prime} - dh_1') \wedge ds - (\omega_2^{(1)\prime} - dh_2') \wedge dt$$

For our purpose, it suffices to show that the terms in $d\tilde{\omega} \wedge \tilde{\omega}$ involving *sdt*, *tds* or *ds* \wedge *dt* vanish. First, the coefficient of *sdt* is

$$(\omega_2^{(1)\prime} - dh_2') \wedge \omega_1^{(1)\prime} + h_2' d\omega_1^{(1)\prime} = a(a+b)y dx \wedge dy - a(a+b)y dx \wedge dy = 0$$

The coefficient of tds is

$$(\omega_1^{(1)\prime}-dh_1')\wedge\omega_2^{(1)\prime}=b(a+b)xdy\wedge dy=0$$
.

Finally the coefficient of $ds \wedge dt$ is

$$h'_1(\omega_2^{(1)'}-dh'_2)-h'_2(\omega_1^{(1)'}-dh'_1)=-a(a+b)xydy+a(a+b)xydy=0$$
.

Therefore, $\tilde{\omega}$ is integrable. Let $\mathcal{F}=(\tilde{\omega})$ be the unfolding of $F=(\omega)$ generated

by $\tilde{\omega}$. The infinitesimal unfolding map of \mathcal{F} sends the tangent vectors $\frac{\partial}{\partial s}$ and $\frac{\partial}{\partial t}$ of the parameter space $C^2 = \{(s, t)\}$ to the classes $[h'_1]$ and $[h'_2]$ in U(F). Since $[h'_1]$ and $[h'_2]$ form a basis of U(F), by the versality theorem in [5], \mathcal{F} is a universal unfolding of F.

(II) $A \neq 0, B = 0$. Similar to the case (I).

(III) $A \neq 0, B \neq 0, C=0$. In this case, we have $h_1 = Dxy = ab(k^2-1)xy, \omega_1^{(1)} = -ab(k-1)d(xy), h_2 = ab(k-1)(k+2)(ax-by)$ and $\omega_2^{(1)} = -ab(k^2-1)(k+2)(adx-bdy)$. We set $h_1' = (k+1)xy, \omega_1^{(1)''} = -d(xy), h_2' = ax-by$ and $\omega_2^{(1)''} = -(k+1)(adx-bdy)$. Then clearly

$$\widetilde{\omega}_1^{\prime\prime} = \omega + \omega_1^{(1)\prime\prime} s + h_1^{\prime\prime} ds$$
 and $\widetilde{\omega}_2^{\prime\prime} = \omega + \omega_2^{(1)\prime\prime} t + h_2^{\prime\prime} dt$

are unfoldings of ω . We construct a universal unfolding of ω by combining $\tilde{\omega}_1'$ and $\tilde{\omega}_2'$. If we simply add them as in the case (I), we do not get an integrable form. However, again by a straightforward computation, it can be shown that the form

$$\tilde{\omega} = \omega + \omega_1^{(1)''s} + \omega_2^{(1)''t} + h_1''ds + h_2''dt - (k+1)tds + sdt$$

on $C^4 = \{(x, y, s, t)\}$ is integrable (see also Remark 2.2 below). Thus $\mathcal{F} = \{\tilde{\omega}\}$ is an unfolding of F. Moreover, since $[h_1']$ and $[h_2']$ form a basis of U(F), by the versality theorem in [5], \mathcal{F} is a universal unfolding of F, Q.E.D.

REMARK 2.2. For each $\tilde{\omega}$ in Theorem 2.1, we have $d\tilde{\omega}(0) \neq 0$. Hence there must be a coordinate system on C^4 in terms of which the form $\tilde{\omega}$ involves only two variables (Kupka-Reeb phenomenon [3], [1] p. 2). In fact, in each case, such a coordinate system (x', y', s', t') is given as follows:

(I) If x' = x, y' = y, s' = s and $t' = kx^2 + xy + xs + t$, then $\tilde{\omega} = ay'dt' - bt'dy'$. (II) If x' = x, y' = y, s' = s and $t' = -xy - ky^2 + ys + t$, then $\tilde{\omega} = bx'dt' - at'dx'$.

(III) If
$$x' = x$$
, $y' = y$, $s' = ax+by+s$ and $t' = -xy+t$, then
 $\tilde{\omega} = s'dt' - (k+1)t'ds'$.

From this we can readily find the singular set and the leaves of the foliation $\mathcal{F}=(\tilde{\omega})$. The leaves of \mathcal{F} are given, in terms of the old system (x, y, s, t), by

(2.3)
$$\begin{cases} (I) & cy^b = (kx^2 + xy + xs + t)^a, \\ (II) & cx^a = (-xy - ky^2 + ys + t)^b, \\ (III) & c(xy - t) = (ax - by + s)^{k+1}, \end{cases}$$

where c is an arbitrary constant. Also, if we consider, for each fixed (s, t), the foliation $F_{s,t}=(\omega_{s,t})$ on $C^2=\{(x, y)\}$ generated by

(I)
$$\omega_{s,t} = (2akx + ay + as)ydx - \{bkx^2 + (b-a)xy + bxs + bt\}dy$$
,

(II)
$$\omega_{s,t} = \{(a-b)xy + aky^2 - ays - at\} dx - (bx + 2bky - bs)xdy,$$

(III)
$$\omega_{s,t} = \{akxy+by^2-ys-(k+1)at\}dx - \{ax^2+bkxy+xs-(k+1)bt\}dy$$
,

then (2.3) also gives the leaves of $F_{s,t}$, or solutions of the differential equation $\omega_{s,t}=0$.

EXAMPLES 2.4. 1°. If $\alpha=0$, $\beta=1$, $\gamma=1$ and $\delta=0$, then D=-1, A=B=-2 and C=0. Hence (III) is satisfied and a=b=1, k=0. Thus

$$\tilde{\omega} = (y^2 - ys - t)dx - (x^2 + xs - t)dy + (xy - t)ds + (x - y + s)dt$$

is a universal unfolding of $\omega = y^2 dx - x^2 dy$.

2°. If $\alpha=2$, $\beta=1$, $\gamma=1$ and $\delta=2$, then D=3, A=B=4 and C=0. Hence (III) is satisfied and a=b=1, k=2. Thus

$$\tilde{\omega} = (2xy + y^2 - ys - 3t)dx - (x^2 + 2xy + xs - 3t)dy + 3(xy - t)ds + (x - y + s)dt$$

is a universal unfolding of $\omega = (2x+y)ydx - (x+2y)xdy$. 3°. If $\alpha = 2$, $\beta = -1$, $\gamma = 1$ and $\delta = 0$, then D = 1, A = 0, B = -2 and C = -2. Hence (I) is satisfied and a = b = k = -1. Thus

$$\tilde{\omega} = (2x - y - s)ydx - (x^2 - xs - t)dy - xyds - ydt$$

is a universal unfolding of $\omega = (2x - y)ydx - x^2dy$.

Examples 2° and 3° give universal unfoldings of singularities of Dumortier [2] p. 95.

3. Singularity of Cerveau and Neto. Consider the integrable 1-form

(3.1)
$$\overline{\omega} = x_1 \cdots x_n \sum_{i=1}^n a_i \frac{dx_i}{x_i}$$

on $C^n = \{(x_1, \dots, x_n)\}$. First we give an alternative proof, which uses the versality theorem in [5], of the following result of Cerveau and Neto [1].

Theorem 3.2. Let \overline{F} be the foliation generated by $\overline{\omega}$ in (3.1). If $a_i \neq a_j \neq 0$, then the set $U(\overline{F})$ of first order unfoldings of \overline{F} is zero. Thus \overline{F} is a universal unfolding of \overline{F} itself and every unfolding of \overline{F} is trivial.

Proof. Let \mathcal{O} be the ring of germs of holomorphic functions at 0 in \mathbb{C}^n and let Ω be the \mathcal{O} -module of germs of holomorphic 1-forms. We set $\Omega_{\overline{F}} = \Omega/\overline{F}$. Also we denote by f_i the germ of the function $x_1 \cdots x_i \cdots x_n$ (omit x_i)

at 0. Then we have

$$(3.3) \qquad \qquad Ext^{1}_{\mathcal{O}}(\Omega_{\bar{F}},\mathcal{O}) = \mathcal{O}/(f_{1},\cdots,f_{n}),$$

where (f_1, \dots, f_n) is the ideal generated by f_1, \dots, f_n . Now we find the set $U(\overline{F})$, which is given by

$$U(\bar{F}) = \{ [h] \in Ext^{1}_{\mathcal{O}}(\Omega_{\bar{F}}, \mathcal{O}) | hd\overline{\omega} = \eta \wedge \overline{\omega} \text{ for some } \eta \in \Omega \} .$$

We have $d\overline{\omega} = x_1 \cdots x_n \sum_{i < j} (a_j - a_i) \frac{dx_i \wedge dx_j}{x_i x_j}$ and, if we write $\eta = \sum_{i=1}^n g_i dx_i$, $\eta \wedge \overline{\omega} = x_1 \cdots x_n \sum_{i < j} \left(\frac{a_j g_i}{x_j} - \frac{a_i g_j}{x_i}\right) dx_i \wedge dx_j$. Hence $hd\overline{\omega} = \eta \wedge \overline{\omega}$ is equivalent to (3.4) $(a_j - a_i)h = a_j x_i g_i - a_i x_j g_j$ for all i, j with $1 \le i < j \le n$.

By (3.3), we may assume that each monomial in h involves at most n-2 different x_i 's. Thus, if $a_i \neq a_j \neq 0$, (3.4) is satisfied only when h=0. Therefore $U(\bar{F})=0$. By the versality theorem in [5], \bar{F} is a universal unfolding of \bar{F} itself and every unfolding of \bar{F} is trivial ([5] (4.1) Corollary), Q.E.D.

Now we consider the case where two or more of the a_i 's are the same. First we assume that n=3 and $a_1 \neq a_2 = a_3$. We may set $a_2 = a_3 = 1$. Also we set $a_1 = \lambda$. Thus

$$\overline{\omega} = \lambda x_2 x_3 dx_1 + x_1 x_3 dx_2 + x_1 x_2 dx_3,$$

where $\lambda \neq 1$. We also impose a technical condition $\lambda \neq -2$. The following proposition, which is a direct consequence of Theorem 2.1, shows that we can "stabilize" $\overline{\omega}$ in (3.5) by unfolding it suitably.

Proposition 3.6. Let $\tilde{\omega}$ be the 1-form on $C^4 = \{(x_1, x_2, x_3, t)\}$ given by

$$\tilde{\omega} = \lambda (x_2 x_3 + t) dx_1 + x_1 x_3 dx_2 + x_1 x_2 dx_3 + x_1 dt, \quad \lambda \neq 0, 1, -2$$

Then $\tilde{\omega}$ is integrable; $d\tilde{\omega} \wedge \tilde{\omega} = 0$, and the foliation $\mathcal{F} = (\tilde{\omega})$ can be viewed as a universal unfolding of a certain foliation on \mathbb{C}^2 . Thus every unfolding of \mathcal{F} is trivial.

Proof. Consider the 1-form

$$\omega = (-2x+y)ydx - \{\lambda x - (\lambda+1)y\} xdy$$

on $C^2 = \{(x, y)\}$. Then we have $D = \lambda + 2$, A = 0, $B = -(\lambda - 1)(\lambda + 2)$. Thus by Theorem 2.1 (I),

$$\tilde{\omega} = (-2x + y + s)ydx - \{\lambda x^2 - (\lambda + 1)xy - \lambda xs - \lambda t\} dy + xyds + ydt$$

is a universal unfolding of ω . By the coordinate transformation $x_1 = y$, $x_2 = x$, $x_3 = -x + y + s$, t = t of C^4 , $\tilde{\omega}$ becomes the one in the statement, Q.E.D.

380

REMARK 3.7. Let \overline{F} be the foliation in $C^3 = \{(x_1, x_2, x_3)\}$ generated by $\overline{\omega}$ in (3.5). If we set, for each integer $p \ge 1$, $h_p = x_1^p$, then $[h_p]$ is in $U(\overline{F})$. In fact, h_p determines an actual unfolding

$$\tilde{\omega}_{p} = \{\lambda x_{2}x_{3} + (\lambda + p - 1)x_{1}^{p-1}t\} dx_{1} + x_{1}x_{3}dx_{2} + x_{1}x_{2}dx_{3} + x_{1}^{p}dt$$

of $\overline{\omega}$. Moreover, if $p \neq q$, then $[h_p] \neq [h_q]$ in $U(\overline{F})$. Hence the unfoldings $\widetilde{\omega}_p$ and $\widetilde{\omega}_q$ are not equivalent. However, the above proposition shows that essentially it suffices if we unfold $\overline{\omega}$ to $\widetilde{\omega}_1$ which is the unfolding determined by $h_1 = x_1$. Thus if we consider the form

$$\widetilde{\widetilde{\omega}} = \{\lambda x_2 x_3 + \lambda t + (\lambda + 1) x_1 s\} dx_1 + x_1 x_3 dx_2 + x_1 x_2 dx_3 + x_1 dt + x_1^2 ds$$

on $C^5 = \{(x_1, x_2, x_3, t, s)\}$, which is readily checked to be integrable, as an unfolding of $\overline{\omega}$, it contains the two independent unfoldings determined by $h_1 = x_1$ and $h_2 = x_1^2$. However, as an unfolding of $\widetilde{\omega}$ in Proposition 3.6, it is trivial.

More generally consider the form $\overline{\omega}$ in (3.1) and assume that $a_1 = \lambda_1, \dots, a_m = \lambda_m, a_{m+1} = \dots = a_n = 1, m \ge 1, \lambda_i \neq \lambda_j \neq 0, 1$. Thus

$$\overline{\omega} = x_1 \cdots x_n \sum_{i=1}^m \lambda_i \frac{dx_i}{x_i} + x_1 \cdots x_n \sum_{i=m+1}^n \frac{dx_i}{x_i}.$$

Let \overline{F} be the foliation generated by $\overline{\omega}$. If $h=x_1\cdots x_m$, then it is not difficult to show that [h] is in $U(\overline{F})$ and is not obstructed. In fact, the following proposition shows that we can "stabilize" $\overline{\omega}$ if we unfold $\overline{\omega}$ to the unfolding $\widetilde{\omega}$ determined by $h=x_1\cdots x_m$.

Proposition 3.8. Let $\tilde{\omega}$ be the 1-form on $C^{n+1} = \{(x_1, \dots, x_n, t)\}$ given by

$$\tilde{\omega} = x_1 \cdots x_m (x_{m+1} \cdots x_n + t) \sum_{i=1}^m \lambda_i \frac{dx_i}{x_i} + x_1 \cdots x_n \sum_{i=m+1}^n \frac{dx_i}{x_i} + x_i \cdots x_m dt,$$
$$\lambda_i = \lambda_j = 0, 1.$$

Then $\tilde{\omega}$ is integrable. If $\mathcal{F}=(\tilde{\omega})$ is the foliation generated by $\tilde{\omega}$, then $U(\mathcal{F})=0$. Thus \mathcal{F} is a universal unfolding of \mathcal{F} itself and every unfolding of \mathcal{F} is trivial.

Proof. We introduce a new coordinate system (y_1, \dots, y_{n+1}) on \mathbb{C}^{n+1} by $y_1 = x_1, \dots, y_m = x_m, y_{m+1} = x_{m+1} \dots x_n + t, y_{m+2} = x_{m+1}, \dots, y_{n+1} = x_n$. Then $\tilde{\omega}$ becomes

$$\tilde{\omega} = y_1 \cdots y_{m+1} \sum_{i=1}^{m+1} \lambda_i \frac{dy_i}{y_i},$$

where we set $\lambda_{m+1}=1$. The proposition is then proved by a similar argument as in the proof of Theorem 3.2.

References

- [1] D. Cerveau et A.L. Neto: Formes intégrables tangentes à des actions commutatives, Université de Dijon, 1979.
- [2] F. Dumortier: Singularities of vector fields on the plane, J. Differential Equations 23 (1977), 53-106.
- [3] I. Kupka: Singularities of integrable structually stable Pfaffian forms, Proc. Nat. Acad. Sci. 52 (1964), 1431-1432.
- [4] T. Suwa: Unfoldings of complex analytic foliations with singularities, to appear in Japan. J. Math. 9 (1983).
- [5] T. Suwa: A theorem of versality for unfoldings of complex analytic foliation singularities, Invent. Math. 65 (1981), 29–48.

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060, Japan