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Introduction. In this paper we continue our study of isoparametric tri-
ple systems. These triple systems have been introduced in [3] and are studied
in [3], [4] and [5]. They are in one-to-one correspondence with isoparametric
hypersurfaces in spheres which have four distinct principal curvatures.

The classes of isoparametric hypersurfaces which have been considered
up to now are the homogeneous ones ([10], [11]), the surfaces of FKM-type
([5], [6]), the surfaces satisfying ‘“‘condition (A) and (B)” ([9], [10]) and the
surfaces where the multiplicity of one of the principal curvatures is <2 ([12],
[10]).

However, until now there exists no classification of all isoparametric hyper-
surfaces in spheres. It therefore may be useful to investigate special types of
hypersurfaces, i.e., special types of isoparametric triple systems. In this paper
we classify isoparametric triples of algebra type. Such triples correspond
uniquely to those isoparametric hypersurfaces which satisfy the “condition (A)”
of [9], but not necessarily the additional “‘condition (B)” of [9].

The classification is summarized in Theorem 5.18. As a corollary we get
that every isoparametric triple of algebra type is equivalent to a hypersurface
of FKM-type or to one 8-dimensional homogeneous hypersurface.

The paper is organized as follows: In section 1 we introduce the basic
notations and mention some fundamental results concerning isoparametric tri-
ple systems. Next, we reduce the problem of describing isoparametric triples
of algebra type to the problem of classifying certain families of representa-
tions of Clifford algebras. The result indicates that one has to consider the
cases m;>my+1, my=m,+1 and m;=m, separately (where m, and m, are the
multiplities of the principal curvatures). This is done in the next 3 sections.
In each case we explicitly determine the isomorphism classes of the correspond-
ing triple systems. As an application of our results we show in the last sec-
tion that every isoparametric triple system which is ‘generically’ of algebra type
is already homogeneous.
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We thank K. McCrimmon for solving the isotopy problem considered in
section 4.

1. Some results from the theory of isoparametric triple systems

In this section we state, without proofs, some of the results of the theory
of isoparametric triple systems which was developed in [3].

An isoparametric triple system is a tuple (V, <, >, {---}) where (V, {,)) is
a finite dimensional Euclidean space and

{}: VXV XV > TV: (%, 2)— {xyz} =: T(x, y)2
is a trilinear map such that the following properties hold

(1.1) {xx0%03} = {%o(¥s(¥s(»} for any permutation o, i.e.,
{:--} is totally symmetric,
(1.2) T(x, y) is selfadjoint relative to {-, +>,
(1.3) Hoexx}, oo} >—9x, x> {xxx} ,x>+18{x, x)° = 0,
(1.4) there exist positive integers m;, m,>0 satisfying
trace T(x, y) = 2(3+2m,+my)<x, y> and dim V = 2(m,+m,+1).

When no confusion is possible we write V instead of (V, <+, +>, {--:}). We
also often use the abbreviation T(x) for T'(x, x).

To each isoparametric triple system (V, (-, +>, {-::}) there is associated its
dual (triple system) (V, <+, +>, {-+:}') where

(1.5)  {aya}’ = 3(<x, p22-+<y, 2ox4<z, 2)y)— {xyz} .

By [3], Lemma 1.3, we know that (V, <+, +>, {-::}’), usually abbreviated by V”,
is again an isoparametric triple system with the constants m{=m, and m;=m,.

A ceV with <{c, ¢>=1 is called minimal (resp. maximal) tripotent if {ccc} =
6¢c(resp. {ccc} =3¢). Let ceV be a minimal tripotent. Then 7(c) has only the
eigenvalues 0, 2 and 6 and we have

V = Vy(c)DVy(c)PRc

where V,(c) denotes the eigenspace of T(c) for the eigenvalue X.
Let e be a maximal tripotent. Then T'(e) has the eigenvalues 1 and 3 and
we have

V = Vi(e)®Vye)DRe,
where V,(e)={x€V; T(e)x=%Xx, <{e, x»=0} for X=1, 3. The minimal and

maximal tripotents of 7 and V' are related in the following manner: a mini-
mal (resp. maximal) tripotent of V' is a maximal (resp. minimal) tripotent of 7’
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and vice versa.

Two minimal tripotents e, and e, are called orthogonal if {e,e,e;} =0 (which
is equivalent to {eee}=0). It can be shown that orthogonal tripotents al-
ways exist. If (e, e,) are orthogonal, then the selfadjoint operators T'(e;), T'(e,)
and T(e,, e;) commute. Hence we can define simultaneous eigenspaces of T'(e;),
T(e;) and T(e,, €;), called Peirce spaces

(1.6) Vis(er, ) = Viy(er) N Vy(e,)
Vie, ) = {xEV (e, €); T(ey, e)x = x}
Ve, &) = {xE Ve, €2); T(er, &)x = —u}
Viie, &) = {x€Vy(e); T(e, x)y = 0 for all ye V(e;)}
V(e &) = {xEVy(e,); T(ey x)y = 0 for all ye Vi(e,)}
Ve, &) = Vi(e) O (Visler, e)DV1i(ey, &)
Valer &) = Vie) S(Viey, &)DV z(en, €))
Ve, e)) = Re; DV 11(ey, €)
Ve, €) = Re, DV 72(en, €3)

where we use the notation U SW to denote the orthogonal complement of W
in U. When it is clear which pair of orthogonal tripotents is referred to we
will write V;; instead of V; (e, e;). The spaces V7;(e, ¢,) depend only on e;.
We therefore frequently use the abbreviations V7;(e;, )=V Ti(e;)=V3(e;). We
have

(1-7) V="Vyd VlzéB sz@ Vlo@ Vm )
Vi(e) = Vie®BVn@®Vy, Vie)=TV,BVndlVy,
Vo(el) = Vp®Vy, Vo(ez) =Vu®V,.

For orthogonal tripotents e;, e, we put
(1.8) e=Me+e), é=ne—e), N=2717,

Then e and ¢ are maximal tripotents (which are orthogonal for { }’) and
we have
(1.9) Vie) = REDV 1, Vyé)= RedDV1,
Vi(e) = VDV V b Vy®Va,
Vi@) =ViDViLDV bV DVy.

An isoparametric triple system V is said to be of algebra type (relative
to ey, &) if Vi(e, €)=0="Vy(e;, ¢;). The following is known

(1.10)  ([3] Corollary 5.12) Ve, &) = 0= Viy(ey, ;) = 0.
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(1.11)  ([5], §6) If V is of algebra type relative to (e, e;), then V7 is not
necessarily of algebra type relative to every pair of orthogonal tripo-
tents. However, we have:

(1.12)  ([3] Theorem 5.13) V is of algebra type relative to (e, e;) if and only
if V' is of algebra type relative to (e, #,) for every minimal tripotent
% EV(e).

Because of (1.12) we often just say V is of algebra type relative to ¢, We have
the following useful characterization of ¥ or V"’ being of algebra type:

Lemma 1.1. Let (e, ¢,) be orthogonal tripotents. a) Then V' is of algebra
type relative to (M(e;+-¢€,), Mey—ey)) iff {Vize, e)eV iz(ey, €)}=0. b) V is of
algebra type relative to (e,, ,) iff Vi(e))=V(f) for every f €V (e,) with {f, f>=1.

Proof. a) By [3] Corollary 5.20 the assumption {V (e}, e))e,V 1z(ey, €2)}
=0 is equivalent to (V');=V1, and (V')=V1{, and thus to V{;=0=V%,.
b) If V is of algebra type relative to (e, e,), then Vi(e))=Vy(e), e)=V15(e,)
and V(f)=V(e;) follows from [3] Theorem 5.15. Conversely, if Vi(e,)=V(f)
for every fEVy(e;) we have by the same theorem that f&V §(e,)=V(e,, &,).
Thus Vy(e))=V (e, €;) and Ve, €;)=0.

The following lemma connects isoparametric triple systems of algebra type
to the paper [9] of H. Ozeki and M. Takeuchi:

Lemma 1.2. V is of algebra type relative to e, if and only if V' satisfies
condition (A) of [9] relative to e,.

Proof. The assertion is obviously equivalent to: ¥ satisfies condition (A)
of [9] relative to a maximal tripotent e of V iff V' is of algebra type relative
to e. We choose orthogonal tripotents (e, ;) such that e=x\(e,+¢,), A=27"2
and consider the Peirce spaces V;; relative to (e;, €,). Then Vy(e)=RépV i,
where é=Me,—e,), Vi(e)=VnBV BV ®Vy and ker(T(e, €)|V(e)=V 1.
Hence, using the notation of [9], we have by [3], § 3.1 that P, ,=--{w5[Jxp, ¥
+x+72+%y). By definition, V satisfies (A) relative to e, iff Py ;=0 for all «,
which is equivalent to {xi>[]xD, &11+ %0+ Xz +%5>=0 for all x;;€V;;. Since
2 xeVn BV Va®Vy, by [3] (5.10), this condition is fulfilled iff
VV=0. By [3] Lemma 5.17, this is equivalent to (V')3(e)=V 1, i.e. to
(V" )le, €)=0.

2. The principal construction theorem for isoparametric triple sys-
tems of algebra type

2.1 We will characterize what it means for an arbitrary triple system to be
an isoparametric triple system of algebra type.
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Let (V, <-, +>) be a euclidean space and { } a triple system on V (i.e., {---}:
VXVXV-V is a trilinear map). As usual, we put T(x, y)z={xyz} and
T'(x)=T(x, x) and assume
(2.1.a) V= V,@V,,®V, is an orthogonal sum,

(2.1.b)  {---} is totally symmetric,

(2.1.c)  T(x) is self-adjoint with respect to <+, «> for all x&V,
(2.1.d)  T(x))x; = 6Ky 202, 1= 1, 2, x;,EV;

(2.1.e)  T(x;)xp = 2{a;, x5y 1 =1, 2, %, EV}, 2,E V7
(2.18)  T(x)x, = T(x))x, = 0, €V, and x, €V,

(2.1.g)  T(wp)xp,E Vi,

REMARK. It is easy to check from [3] §§2.5 that an isoparametric triple
system which is of algebra type relative to e,, e, satisfies the conditions (2.1.a)
to (2.1.g) with V,=Re;®V 7;; note dimV,;=m,+1, dim V},=2m,.

In the following we denote the j-component of a triple product {abc} by
{abc} ;.

Lemma 2.1. Let (V, <, ->, {-:}) satisfy (2.1.a) to (2.1.g)
a) Then, in addition to (2.1.a) to (2.1.g), the following multiplication rules
hold :

(2.1.h)  T(x;, xp)x, V3,
(2.1.1) T(xlz)xl = 2%y, x12>x169[T(x12)x1]2
(2.1k)  T(xpp)x, = [T(12)2:] D215, X)X .

b) The entire triple product is determined once T(x,, %)%, and T(xy,)%y, are
given for x, €V ;, x,E V1.
c) For x=ux,Px,PDx, we have

(2.2) {rxx} = (6(<x1, 2 )+< 012y x12>)x1—|—3{x12x12x2} 1)
@({xllelez} + 6(<x1’ x1>+<xz» x2>)x12+ 6{x1x2x12})
B(6(<xz, o> +<X1zy X120)%+ 3 {w10%15%1} ) -

Proof. a) We have {T(x, %)%, yi>=<xp, T(x), 2,)y;>=0 for i=1, 2.
Further, {T(xy)x1, Y10 =1<%p, T(%y, y1)¥1> = 25, X120<x, > (by linearizing
(2.1.e)) and <{T(xy)x1, y12) =<1, T(Y12)y1z> =0 which implies (2.1.i). The for-
mula (2.1.k) follows similarly.

b) The identities (2.1.d) to (2.1.f) determine T'(x;). If T(x,, x;)x;, and
T(x1,)%;, are known, then {T(xp,)x;, 20 =<1, T(%1, %) 1,0 =T (%12)%, %> shows
that 7(x,)x is known, too. This proves b).

¢) fawx} = {we} + 3 {xuxy, xpp + a0} + 3 {0y, wip + 2y, w0}
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+ (1o, Xip ¥, Xppwa} = 6Ky, X0%, 46K, XK1+ 3 {x%0%0} +6{x1x2x12}
+ {o019%12%15} -+ 3 {Rpx15%} 465, 20515+ 6<%y, %, %,, from which c¢) easily follows.

Lemma 2.2. Let (V, <+, +>, {--}) satisfy (2.1.€) to (2.1.g). Then {-+}
satisfies (1.3) if and only if

(2.3) T (1, %5)%15 = {21, 200 <%, Xy

(2.4) 3 o} 2y {Higipn} o>+ oy, 2> KT (210) %00 X10) = 6K1, 210y %10
(2.5) 3 {xiaxip%o} 1, {WipXi%o} DA<ty 2D CT(H12) K12y X120 = 65, 2,0 Hngy X1
(2.6) T (%1, %) %12, T(H1) %120 = 31, 1)< T (%1, Xp) X1z X120

(2.7) LT (1) %125 T(%12) %120 — K12y X120 <Hrgy T(12) %120+ 18015, x120° = 0

for all €V, %, EV, and x,EV,.

Proof. For x=x,+x,+x, we first compute

1) <x, 2% = (Kxyy 2D+ Kz, 210+, ,0)°
= {1, 2,0° 4300, 2% 1, X120 +-3K001, 20000, 2504361, 20D gy X127
3Ky, 20>ty 23076001, 2101z, X10) Xy XD 43 K1z X)X, XD
+ 31z, 212D gy 2P -1z, X1 P gy X7
2) <y foa} > = 6w, 2076wz, %150 <y, X0+ 3 {rxipno}, x>
< {orp215%10} X120 +-6[<x1, %0+, 2] K12y X120 +6 {maka%15} 5 210
6<%, 2,07 6<%z, %120y 22043 {21 %121}, 22D
= 6wy, %0 12[<oy, 20+, 220112 %100
H 12 {xy, 25, 215}, 10+ {ora%19%10} , X120 46K, 207

where we have used (2.2)

3) ({wxx}, {waex} > = <6(Coy, 20 >+<rzy #120)20+3 {Hrpwra%a} 1
6(<xy, %> rgy X120)% 3 {X1p¥10%0} 1D
< {12152} +6[<xy, 24w, %0]%1,4-6 {20521}
{xllelez} +6[<x1, 20+, X 0]%1,+6 {xlxlez} >
H<O(<z, XD+ 1y X100)%5 43 {01001} 2, 6(<, 200+ gy X150) %043 {212%10%1} 2>
= 36Ky, 2,043+ 36[< s, 2124z, 2,071y X150+ 2« 36001, 20 Dy 25D K1z, X1
+336[<0y, 2>k, 201 frrpis}, w120
+36<xy,, x12>2[<x1; x1>+<x2, x2>] +72< x5, 23X T(xb xz)xIZ’ x12>
RREAG LTET ) PR ENC NN PO ST SN SR PN B
H{{mpxnpx} s {Ripxia¥i0} >+ 12[<oxy, 21046, 2] {rp%12%12} 5 2120
H12 {oenpxipnia}, {oenearig D436 {ayeax}, {waxax10} D4-36<w,, 2,07 .
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In (1.3) we equate expressions of type (n, m, k), i.e., which are homoge-
neous of degree 7z (resp. m, k) in x; (resp. xy,, %,). We get

(6,0,0): 0 = 36<xy, x,0°—9+6<uxy, 2,00y, 2241800y, 2,3

(5,1,0):  does not appear

(5,0,1):  does not appear

(4,2,0): 0 = 3:36<00y, 20K %2, 120— 9y, 2, 12y, 2,501, %15
— 913, Xz 6y, 2074183y, 20,5 %15, K1)

(4,1,1):  does not appear

(4,0,2): 0 = —9-axy, %0600y, 20, Y7+ 183 o0y, x>y, %,

(3,3,0): does not appear

(3,2,1): 0= 3-36<x;, 2, < {x,205%,5} , %120—9+ 12, LG LR By

(3,1,2): does not appear

(3,0,3): does not appear

(2,4,0): 0 = 36<wy,, %120X w1, 2>+ I {2151} 5, {10201} 2>
120, 20X {rp®inxs} s 212>
—912<w;, 20X %12, %1507 — 90y, %, {X12X10%15} 5 %12
+ 318y, 2, )X %15, X12)°
which is equivalent to (2.4)

(2,3,1): does not appear

(2,2,2): 0 = 236<0x;, 2,15, %1200, 250+ 36 {010,315}, {x105%,5} >
—9+12<u,, 2,01, 22X %1z, %12
— 912y, 2,05, 20X K12, X120+ 1862, 20,0y, 215X X, %)
which is equivalent to (2.3)

(2,1,3): does not appear

(2,0,4): 0= —9w;, 2,06y, 2,02+ 18 3wy, 2,05 %y, %,

(1,5,0); does not appear

(L4,1): 0 = 72{wy, 2T (%1, %)%y 2120+ 12 {00505}, {21025} >
— 95, 212012 {25210}, %12,
which is equivalent to (2.6)

(1,3,2):  does not appear

(1,2,3): 0=3 «36<%5, 2,0 {12515}, X120 — 9+ 12085, 20,0 {1515} X150

(1,1,4): does not appear

(1,0,5):  does not appear



152 J. DorrMEISTER AND E. NEHER

(0,6,0): 0 = {{wppxrzis}, {Frp%rz¥ie} >—Kwpz, 21X {orxxis} s %120
+ 18wy, 210
which is (2.7)

(0,5,1):  does not appear

(0,4,2): 0 = 36<xy5, %12% oz, 20+ {212%12%5} 1, {wop10%5}
1205, 0 {X1aX15%15} 5 %120 — 9+ 12Kz, 20Kz X12)°
— 9Kz, 20X 15215712}, X120 +3 - 1800y, w00y, 2100
which is equivalent to (2.5).

The remaining identities are trivial.

Lemma 2.3. Let { } be an arbitrary triple system on the finite-dimensional
euclidean space (V, -+, +D) which satisfies (2.1.a) to (2.1.g). Then
a) trace T(x;, %,,)=0 for i=1, 2, trace T(x;, x,)=trace(T(x, ;)| V1)
b) trace T(x, x,)=<wy, ;) 2(2+dim V;4dim V3,)
trace T(x,, 2,)=<xy, 2,02(2+dim V,+dim V3,)
c) trace T(x;y, X1p) =<, %1, +2(dim V,+dim V,)+trace T(x5, X15) | Viae

Proof. a) By (2.1) we know T(x;, %,)(V1+V,)=0 and T(x,, %)V 1.C V1,
hence trace T(x,, x,)=trace (T(xy, x,)| V1,). From (2.1) we get T(x;, %12)V1C Vi,
T (y, %) Vi,CV+V, and T(x,, x5)V,C Vi,  Therefore trace T(x;, 55) = 0.
Similarly trace T'(x,, x,,)=0.

b) can be read off from (2.1.d) and (2.1.e).

c) follows from (2.1.g), (2.1.i) and (2.1.k).

Lemma 2.4. Let {---} be an arbitrary triple system on the finite-dimen-
stonal euclidean vector space (V, -, >) which satisfies (2.1.a) to (2.1.g) and (2.3).
a) Let (x7) be an orthonormal basis of V,, i=1, 2. Then for every x;,EV; with
{x;, x,>=1 we have

(2.8) [T (%1, %5)T(21, 25°)+ T'(001, x8°) T (301, x5°)]| V3o = 28;1d

and
(2.8)  [T(x, x,)T(x$P, 2,)+ T (x5, ) T(x$, 2x,)]| Vip = 28;1d .
b) If dim V,>2 or dim V,>2, then trace (T(x,, x,)| V12)=0.
Proof. a) By linearization we get from (2.3)
[Ty, 2,)T (21, ¥2)+T(31, 5 )T (1, %2)]1 Vg = 20y, X2, y0Id ,

which implies a).
b) Itis enough to show trace T(x,, #5’)=0 for {x,, x,>=1. From a) we
know [T(x;, #5°)|V,]?=1d, hence V), is the direct sum of the eigenspaces of
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T(x,, x57) for the eigenvalues 1 and —1. By assumption there exists a &
different from j. Then (2.8) implies that 7(x;, x%’) interchanges the two
eigenspaces of T'(x;, x5’), which therefore have the same dimension. Thus
trace T'(x;, x5°)=0.

Lemma 2.4.a shows that (T'(x,, x%°) | V5,) for {x,, x,>=1 and (T(x{’, x,)| V3,)
for <wx,, x,>=1 are examples of Clifford systems. In general, a Clifford system
is a tuple (P, ::+, P,) of symmetric endomorphisms on a finite dimensional
Euclidean vector space W such that

holds. With every Clifford system is associated a totally symmetric triple pro-
duct

{xyz} = <x’ y>z+<y’ z}x—I—(z, x>y
+ 2 KP, YOPa+<P,y, $)Pat<Pyz, x)P,y)]

which satisfies (1.1) to (1.3). Such triple systems are called formal FKM-
triples. If m>0 and 5 dim V —m—1>0, a formal FKM-triple also satisfies
(1.4), i.e., it is isoparametric; in this case it is called an isoparametric triple
system of FKM-type. These triple systems are studied in [5], the correspond-
ing hypersurfaces in [6].

Theorem 2.5. a) Let V be an isoparametric triple system of algebra type
relative to (e,, €;). Put Vi=Re, DV 1, Vi,=Vy(e, &) and V,=Re, BV 3,. Then
(2.9 dim V; = dim V, = m,+1>2, dim V,, = 2m,;>0
(2.10) T (1, 25)%012 = <y, 210K, Xy,

"2

(2.11) 2% x2>,z=; KT (21, X5)15, 2020 T (21, 25)21

= %y, %) §<T(x(lr)’ %5) %1, %120 T(%(7, 25) 15

where x\) and x3 are arbitrary orthonormal bases of V, and V,
(2.12) {xiawipni} = 912, X101, —3[<1 x12>x12_§ Pty %120P,%10]

where P, = T(x,, x5°)| Vi, with <x;, x> = 1 or P, = T(x{", x,) | V1,

with {x,, x,) = 1.
b) Conversely, let V,, Vi, and V, be euclidean vector spaces and T: VX V,—
End V', be a bilinear map such that T(x,, x,) is self-adjoint for every x;EV,.
If, in addition, there exist positive integers my, m, such that (2.9) to (2.11) are

satisfied, then T can be uniquely extended to a triple system on the orthogonal sum
V=V,®V,, DV, such that V becomes an isoparametric triple system with con-
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stants my, m, which is of algebra type relative to e, e, for all e;€V; with {e;, e;)=1.

Proof. a) As already mentioned, V satisfies (2.1.a) to (2.1.g) and (2.9).
Hence, by Lemma 2.2., it also satisfies (2.3) to (2.7). Obviously (2.3) and
(2.10) are identical. By multiplying (2.4) with <{x,, x,> and (2.5) with <x,, x>
we get {xy, x2><{3(12x12x1}2: {xrxipni} =<5, {11570} 0, {Hip¥ipxs} >, Now

{x10%15%:} 2—2<T(x12)x1, x5 x5 and the analogous expression for {x;,x;,%,}, imply

{xgy X5 r=2() <T(x1, ))xIZy x0)" = oy, X1 2 <T(x(') X)%1, X100

from which we obtain (2.11) by differentiating with respect to x;,. To derive
(2.12) we note that (2.4) with <x,, x,>=1 is equivalent to

My
<T(x12)x12, X1y = 6<%y, x12>2——3 ,2=0<P X125 x12>2

where P,=T(x;, x5)| V). Another differentiation with respect to xj, gives
(2.12). Using (2.5) instead of (2.4) we get the same expression for {w;x;,x;,}
with P,=T(x{", x,)| V3.

b) We define {x;,%,,%,,} by (2.12) and remark that this makes sense because
of (2.11). The remaining triple products are defined by (2.1.b) to (2.1.g) and
Lemma 2.1. To prove (1.3) it suffices to show (2.4) to (2.7). Assume
<oy, 2, >=1; then we have 6{x,, ;)" —T(%15)%5, X15>=3 '2 T (30y, 257)0y, X100 =
3 Z T (x5)%1, #8752 =3 {21 215%:} 5, {X1%1o%1} 0, Which shows (2.4). By a similar

computation (2.5) follows. To prove (2.6) we may again assume <w;, ¥ >=1.
We get T (o1, %5) %15, T(21, x57)0100==Yo <[ T(y, %) T(2x1, x57)+ T(1, x5°) T(2xy, %))+
Xz X130 =L, &5 D15, %1,> by Lemma 2.4.a. Hence {T(x;, ,)x15, T(%1)%15>—
6<x15, x12><T(x,, X3) %12, X120=—3 E <T(x1, x('))xlz, 21,0 T (%1, %5)%15, T'(%y, x(zr))x12>

= — 3{Xy, X1 Z <T(x1) ))xm X120 g, wf > = —3 <&y, x12><T(x1, xz)xlz» X120,

which implies (2.6). We note that (2.7) is satisfied if and only if the restriction
of the triple product to V7, satisfies (1.3). But this follows from the definition
of the triple product on Vy,: it is the dual triple (see 1.5) of a formal FKM-
triple as defined above. Since the latter satisfies (1.3), the former satisfies (1.3)
too. Therefore our triple product on V satisfies (1.3).

Obviously, dim V=2(m,+1-+m,). To prove the second equation of (1.4)
we apply Lemma 2.3. We get trace T(x;, x;)=0 for i=j, x,€V, because of
Lemma 2.4.b. Further, traceT(x;)=2<x;, ;> (2+m,+ 1+ 2m)) =<2x;, x>+
(3+42m,+m,). By definition, we have

T(%12)y10 = 2{%15, X100 V1o+4 <12, y12>x12—Z [<P X1z, X10P, ry12+2<P %12y y12>P ,%1]

and therefore trace (T (%) | Vyp) =<2, 212 )(4m,+4—2(m,+1)) because trace P,=0
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and <{P,xy, Py = <&y, 0. Thus trace T'(xy,) = 2{xy5, %150 (2(my+ 1)+ 2m,+
2—(my+1))=2<n3, %,,5(3+2m;+m,). 'This shows that the triple product on V'
also satisfies (1.4). Hence V is an isoparametric triple system.

Finally, for e;&V; with {e;, ¢;>=1 we conclude from (2.1) that (e, ;) are
orthogonal tripotents with V,=V,(e;, €;) and Vi(e;, €,)=0=Vy(ey, €,).

2.2 Let V=V,®V,PV, be an isoparametric triple system of algebra type.
From (2.1.g) we derive that (Vy,, {---}) is a subtriple of (V, {-:}) which we
abbrevifte by V. We also put T(xy,, Y12)="T (%12, ¥12) | V1. In this section we
study ¥ more closely.

Theorem 2.6. The triple system V is the dual triple of a formal FKM-
triple. In particular, it satisfies (1.1) to (1.3). Put M2 =m— (my+1) and
My: =m,, then

(2.13)  dim V=2(m,+m,+1)
(2.14)  trace (1, y15) = 2(3+ 27, 4-7,) 15, Y12 -

Proof. The first assertion follows from (2.12) and the definition of a dual
triplein (1.5). Further, by (2.9), we have dim V,,=2m,=2(m,— (m,+1)-+m,+1)
and by (1.4) and Lemma 2.3.c we get trace T (X1, y12)=2{%15, Vi2>(3-+2m,+m,
—2(my+1)) =201, Y1 )(14-2m;—mp) =215, y1,0(3-+ 20, +-110).

Corollary 2.7. Vs an isoparametric triple system if and only if m,>m,+1.

We will see later that V is not always an isoparametric triple system, i.e., there
are examples with m; <m,+1. However, we have

Lemma 2.8. Let V be an isoparametric triple system of algebra type. Then
my,<m;.

Proof. By (2.3) we know that V;—End V,, x,— T(x,, e;) induces a re-
presentation of the Clifford algebra of (¥}, <-, +>). Hence the assertion follows
from the table of the degrees of the irrducible representations of these Clif-
ford algebras (see [1] or [5] 2.2).

Another proof of Lemma 2.8 runs as follows. Let V' be of algebra type
relative to (e, ;). Then e,V 1, with ey, e,,> is a maximal tripotent by [3]
(2.13) and Lemma 5.4 and has the following Peirce spaces (see [4])

Viey,) = (Vu@ V)N Vien) BV 1N Vyew)

Vi(ey) = (Vu®Vs) N Vi(en) BV N V1(312)@(Vf2 OSRey,) .
Moreover, dim (Vy; @ V) N Viep)=dim(Vy, BVyu)NVi(ep). We put n:=
dim(V1: N Vi(ep) and  get trace T'(ep)=3(dim Vy, +#n+ 1) +dim V), +
(dim Viz—n)+dim V {,— 1 =4(my+ 1)+ 2m, + 2n-+2 = 2(34m,+2m,+ n) which,
by (1.4), equals 2(3+-2m,+m,) and therefore m,+n=m,. This proves m,<m,.
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Remark. By Lemma 2.8 we know m,<m,. In sections 3, 4 and 5 we
will discuss the following three cases separately:

a) m,>0, i.e., m>m,+1,

b) #M,=0, i.e., m=m,+1, and

c) m=1,ie., m=m,.

2.3. An isomorphism between isoparametric triple systems (V, {---}y) and
(W, {---}) is an orthogonal map ¢: V' — W such that ¢ {xxx},= {$px, %, px}w
holds for every x&V. One says that V and W are equivalent if V is isomorphic
to Wor to W', ie., if there exists an orthogonal map ¢: V'— W such that

o {xxx} = {px, px, pa}y or ¢ {xwx},=9x, xDpx— {Ppx, Px, Ppx}y.

Lemma 2.9. Let V and W be isoparametric triple systems of algebra type
and assume my(V)Y<my(V). Then V and W are equivalent if and only if V and
W are isomorphic.

Proof. Assume V and W’ are isomorphic. Then my(W')=my(V)<my(V')
=m,(W') and since my(W")=m(W), m(W')=my(W) we have m(W)<my(W),

which contradicts Lemma 2.8. The lemma now follows easily.

ReEMARK. If we assume that V' and W are isoparametric triples of algebra
type such that 7 and W’ are isomorphic we get, by the same argument as in
the proof above, that m(W)=m,(W). Theorem 5.17 shows that in this case
W is homogeneous, in particular, W is of algebra type relative to every pair of
orthogonal tripotents, hence [3] Corollary 5.19 implies that 17’ cannot be of
algebra type. This proves that the assumption m,(V)<<my(V) in the lemma
above is not necessary.

We have the following characterization of isomorphisms leaving invariant
corresponding Peirce spaces.

Theorem 2.10. Let V=V PV, PV, be an isoparametric triple system of
algebra type and ¢;: V;— W, j=1, 12 and 2, orthogonal maps from V ; onto some
euclidean vector spaces W;.

a) For x,&€W,, i=1, 2, we define

(2.15) Ty (%1, %) | Wy, = 1o Ty(p1 %1, 7'%,) b1

Then there exists a unique extension of Ty(x;, x,)xy, to a triple product on W=
WD WD W, such that W becomes an isoparametric triple system of algebra type
with m(W)=mV) and ¢=,D 1D, an isomorphism from V to W.

b) If W=W ,®W,,®W, is already an isoparametric triple system of algebra
type, then =D PP, is an isomorphism if and only if (2.15) is satisfied.

Proof. a) It is easy to check that (2.9) to (2.11) are satisfied with m,(V)=
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m,(W). Hence the first part of a) follows from Theorem 2.5.b. Further, define
on W an isoparametric triple system {---} ~ by {xyz}~=¢({p ", 7'y, ¢p~2}y);
then {---}~ is again of algebra type and we have W;=W, Obviously,
{wwpx} “= {x,2,%,,} ; therefore the uniqueness statement of Theorem 2.5
implies {:-}~={--'}y, i.e., ¢ is an isomorphism.

b) If ¢ is an isomorphism, then, obviously, (2.15) is satisfied. If (2.15)
is satisfied, the assertion follows from a).

3. The case m,>m,+1

In this section we consider isoparametric triple systems of algebra type
with m;>m,+1. We already know that in this case the subsystem V7, is the
dual of an FKM-triple and we will show that even V is the dual of an FKM-
triple. The proof makes use of the following theorem which characterizes
when an isoparametric triple of algebra type is the dual of an FKM-triple.

Theorem 3.1. Let V=V,@V, DV, be an isoparametric triple system of
algebra type relative to (e, e;). Then V is the dual of an FKM-triple if and
only if there exists a bilinear map h: V, X V,— V, which satisfies for all x,, y,EV,

(3.1) h(xy, ;) = <{x,, X300,

(3.2) <h(xz, ¥2), h(x2> yz)> = {5, X <yz, yz>
(3.3) T(h(%x5 V3), Va)thiy = {3 V20T (1, %3 015 for all up, eV, .

In this case, let x° -+, x™, m=my,, be an orthonormal basis of V,, then V' is an
FKM-triple relative to (P, -+, P,) where

P; = —Tl(e, xf)—|—2xfei"—f—2e1(xj)*—i_() [h(x", &7)(x')*+-a"h(x", 27)*] .

Proof. We apply [5] Theorem 5.4 for c=e,, g=Id and conclude that V"’
is an FKM-triple iff there exist a bilinear map h: V,X V,—V,@V;, such that
the following conditions hold

a)  h(xy, %)=, Xp0€;, XEV,

b) <A(xz, ¥2), (%2 ¥2)> =<2y 20XY2, Y2>» % Y. EV,

c) ¥,0h(xz ¥2)=0, x5, y,EV,

d) {Ayz (%2 ¥2), Uy}, V1> =<0y, V1) for y,€V,, <y, y>=1 and

Uy, V12 € Vip=V(e1) N Va(32).
Obviously, (3.1) and (3.2) are identical with a) and b). By (2.10) the condition
c) is equivalent to A(x,, y,)EV,, ie., h: V,xV,—V,. Finally, d) is satisfied
iff (3.3) is satisfied since T'(e;, x,)u,, €V, by (2.1.h).

Theorem 3.2. Let V be an isoparametric triple system with m,>m,+1.
Then there are equivalent :
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(1) V is of algebra type.
(2) V is the dual of an FKM-triple and m,=1, 3 or 7.

Proof. The implication (2)=>(1) follows from [5] Theorem 7.4. (Note
that my(V)=my(V").)

We assume now (1) and choose an isometry f,: V,—V,. Then U=V, and
P(u, v)=T(u, fz'0)|Vy, u, vEV,, fulfill the assumptions of [5] Theorem 8.8.
Hence, by [5] Corollary 8.9, there exist a composition algebra (<, ) with
dimp #>2, ie., #=C, H, or O, and isometries F;: V,—#, j=0, 1, 2, such that
T(%y, 2,) | Vie="T(e,, FTY(Fy(%1)* Fpo fo(,))), %, EV, %, E V.

We put A=A, =A,, ¢,=F,, ¢p,= Fyof, and Ty: ~—End V,: a—T(e;, F7'a).
Then T(¢p1a, ¢p7'b)=Ty(a-b), a, b~ and Theorem 2.10 shows that we may
replace V' by the isomorphic triple system W= A4,@V,PA, which has the
property {ab,x} = To(a-b)y.

It is now easy to prove that I (and hence V) is the dual of an FKM-triple.
We consider the bilinear map h: AxA—A: (a, b)—>ab where b denotes the
canonical involution of 4. Well-known properties of < show that 4 satisfies

a) h(a, a)=<a, ay 1, where 1 is the unit element of <

b) <k(a, b), h(a, b)>—<a, aX<b, >

c) T(h(a, b)y, by uy,=T(ab «b)u,,=<b, b>T(a)u,=<b, bOT(1, ay)uy,.

Hence (3.1) to (3.3) of Theorem 3.1 are fulfilled and the theorem follows.

ReEMARK. Let V be an isoparametric triple of algebra type with m,>m,+-1.
Then V is the dual of an FKM-triple and m,=1, 3 or 7, but not (m,, m,)=
(1, 1), (2, 1), (4, 3), or (8, 7).

4. The case m,=m,}+1

In this section we classify isoparametric triple systems of algebra type with
my=m,+1. We will see that such triples are built up from composition triples
where in this paper (in contrast to [8]!) a composition triple is a triple system
(~+): XX XX X—X on a finite-dimensional euclidean vector space (X, <, +>)
which permits composition, i.e., {(x, y, 2), (%, ¥, 2)>=<x, )<y, ¥)<2, 2> holds
for every x,y, 2€X. Let L(x, yY)EEnd X be defined by L(x, y)z=(x, y, 2)
and let L(x, y)* denote the adjoint of L(x, ¥). Then (---) is a composition
triple if and only if L(x, y)*L(x, y)=<x, x)<{y, y>Id which is equivalent to
L(x, y)L(x, y)*=<x, x>y, y>Id. Hence (--*) is a composition triple if and only
if (-++)*, where (x, y, 2)*=L(x, y)*2, is again a composition triple. We call
(--+)* the dual of (--+).

In the following lemma we construct an isoparametric triple system on the
orthogonal sum of four copies of X. To distinguish them, the summands are
written as Xe;, Xe,, Xe,, and Xe,,.
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Theorem 4.1. Let (--+) be a composition triple on X with dim X >2. De-
ﬁne V1=X€1, V2=Xe2) V12=X612@X512 and

4.1 T(xey, ye,)(2er,Dwe,) = (%, ¥, w)*e,D(x, v, 2)e, -

Then T can be uniquely extended to an isoparametric triple system on V=V ,PH
V1.@V, which is of algebra type and has (my(V), my(V))=(2, 1), (4, 3) or (8, 7).

Proof. For every yeX with {y, y>=1 we can define an algebra “_| " on
X by x| z=(x, y, ). From the defining identities of a composition triple it
follows that this algebra permits composition: <{x_| z, x_| 2>=<x, x><{z, 2>. It
is therefore well-known (see e.g., [7]) that dim, X=1, 2, 4 or 8 where we have
ruled out the first case by the assumption dim X >2.

We are going to apply part b) of Theorem 2.5. First note that, by de-
finition, T'(xe,, ye,) is a self-adjoint endomorphism. Using the notation of
Theorem 2.5 we get (m,, m;)=(2, 1), (4, 3) or (8, 7), thus, in particular, (2.9)
holds. The theorem will follow if we can verify (2.10) and (2.11). To prove
(2.10) we have <{T(xe,, ye,)(2e,+we,,), T(xe,, ye,)(ze,~+wepy>=<,(x, v, 2), (%, y, 2)>
+<L(%, y)*w, L(x, y)*w>=<x, x>y, y>({z, 2>+<w, w)), since L(x, y)*L(x, y)
=<, )y, y>Id implies L(x, y)L(x, y)*=<x, x)y, y>Id. Hence (2.10) follows.
To verify (2.11) we may assume <x;, x,>=1=<x, x,>. Let y™e¢, be an
orthonormal basis of V,=Xe,. Then <{z, 2>"V2T(xe,, yMe,)ze,(resp. {w, w>~ /2.
T(xe,, y“le;)wey,) is an orthonormal basis for Xey, (resp. Xé,) by (2.10) for 20
(resp. w=0) and we get

> {T(xe,, YVe,)(ze,+-we ), zen+uey)>T(xey, yWe)(2e,+wey,)
= 20, LT (xe,, yPey)zey,, we,yT(xey, yey)ze,

+2 30, LT (xey, v Ve wey,, 2ep>T(xey, ye)we,

= Kz, 2D>we,+2lun., wrze, .

Because we get the same result if we start with an orthonormal basis in V),
the formula (2.11) follows.

The isoparametric triple system constructed in Lemma 4.1 will be called
the isoparametric triple system associated with the composition triple system (---).

Theorem 4.2. Let V be an isoparametric triple system of algebra type with
my=my+1. Then V is isomorphic to an isoparametric triple system associated
with a composition triple.

Proof. We choose ai»€V{; with <af;, ai;p)=1. We may apply [4] and
have m,+1=dim Vy(ai;)=dim V,+dim (V,(ai:;) N V1;). But dimV,=m,+1=m,
whence dim V(ai;) N Vi;=1. We therefore can find an ai €V 13, at, arzy=1
which satisfies {af:aiarz} =3a,. We apply [3] Lemma 4.5.b and get
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{an:an:ai?} =3ai;. As an easy consequence we see that e,=\(ai,+ai;) and
€,,=X\(ai>—ar) are orthogonal minimal tripotents of V.

We form the Peirce decomposition of V relative to (ey, €),) and denote
the corresponding Peirce spaces by 1A/ Then V,@V,C 172 by [4]. But
dim (V,®V;) =2(m,+1) = 2m; = dim Ve by [3] Corollary 5.5. Hence V@V,

19'12 and V=V, N Vi(ew)D V1N V@), where Vi, N Vi(€)=Re,D I?u@ Vlo
and Vi, N Vi(e,)=Re P Vi-+V, Because {Vmemf/m} C VN V=0 we con-
clude V;y=0= VZO by [3] Corollary 5.12. We now choose x, €V}, x,€V, and
x12€Vu=Relz@ 1«/\,1_1’ &y, xp>=1. Then x,, %, EVy(x1,)=[V(ers) DRe] S Ry,
by [3] Lemma 2.12.d. But then {x,x,x,} € Vi(%1,)="V(er;) by [3] (2.5) and [3]
Theorem 5.15. We have thus proved T(x,, xz)Vu-— 1722, hence, by symmetry,
T(,, xZ)szc u- In particular, we have dim Vll—d1m sz—ml—mz—}—l—dlmV
We may therefore choose isometries ¢;: V22—> Vi i=1, 2 and ¢y,: sz Vn and
define a triple system (+++) on Veo by (x, ¥, 2)={p:%, ¢.y, P2}, which permits
composition because of (2.10). Using Theorem 2.10 it is now easy to check
that 7 is isomorphic to the triple system associated with (--+).

We will now investigate the isomorphism problem for isoparametric triple
systems associated with composition triples. Two composition triples (X, (--+)")
and (X, (-++)) are said to be isotopic if there exist orthogonal maps F;: X— X,
i=0, 1, 2, 3, such that Fy(x, y, 2)"=(Fix, F,y, F33). They are called equiv-
alent if ()~ is isotopic to (+++) or to (+++)*.

Theorem 4.3. Isoparametric triple systems associated with equivalent com-
position triples are isomorphic.

Proof. Let (X, (---)7) and (X, (---)) be isotopic and define

¢;: V,-=Xe,-—>V,-=Xe,-:xe,~—>(F;x)e; fori = 1,23nd
P12t Vm — Vit 2e,Pwey, — (Fi2)enD(F0)é,, .

Then ¢y, {xe;, ye,, zer,Dwer} = {pi(xer), Pyez), Pr(zenPDwey)} follows. There-
fore ¢ = Dp;,P¢, is an isomorphism by Theorem 2.10. To prove the
theorem it now suffices to show that the isoparametric triples ¥ and V'*
associated with (-:-) and (--+)* are isomorphic. We define ¢,,: Xe,,dpXe),—
Xe,DXe,,: ze,Pwe,— we,Pzé, Using the definition (4.1) of the triple sys-
tem associated with (-+) resp. (:-+)*, a trivial verification shows ¢, T(xe,, ye;) |V,
=T *(xe,, ye;)dy,. Hence, again by Theorem 2.10, the triple systems V and V'*
are isomorphic.

ReMARK. The results below show that isoparametric triple systems asso-
ciated with composition triples are equivalent (which, by Lemma 2.9, is the
same as isomorphic) if and only if the composition triples are equivalent.
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The classification of isotopy classes of composition triples (over arbitrary
fields) was carried out by K. McCrimmon. As a special case of [8] Theorem
7.6 we get

Theorem 4.4. Every composition triple is isotopic to one of the following
triples on a real composition division algebra A with unit (i.e., =R, C, the qua-
ternions H, or the octonions O):

a) (a, b, c)=abc for ~=R, C

b) (a, b, c)=abc or ach or bac for ~—=H

c) (a, b, c)=(ab)c, a(bc), (ac)b, a(cb), (ba)c or b(ac) for A=0.

These triples are pairwise nonisotopic.

Corollary 4.5. Every composition triple is equivalent to exactly one of the
following triples defined on A:

a) (a, b, c)=abc for ~=R, C

b) (a, b, ¢c)=abc or acb for ~=H

c) (a, b, c)=(ab)c, a(bc) or (ac)b for A=0.

Proof. Since equivalence is a weaker equivalence relation than isotopy it
remains to consider the composition triples of Theorem 4.4. Let (a, b, ¢) be
respectively (ab)c or a(bc) or (ac)b. Then it is easy to show that (a, b, ¢)* is
(ba)c, b(ac), a(cb) respectively hence is isotopic to (ba)c, resp. b(ac), resp. a(ch).
This implies the corollary.

Up to now we have proved that each isoparametric triple system of alge-
bra type with my=m,+1 is isomorphic to a triple system associated with one
of the following composition triples defined on a real composition division
algebra ~:

abc for 4 =C
abc or ach for 4 = H
(ab)c, a(bc) or (ac)b for 4= 0.

In the sequel we will show that these isoparametric triples are pairwise non-
isomorphic.

Lemma 4.6. Let V be the isoparametric triple system associated with the
composition triple (-++) on A=C, H, or O.

a) If (a, b, c)=(ab)c, then V' is an FKM-triple.

b) If (a, b, ¢)=(ac)b and A=H or O, then V' is not an FKM-triple.

c) If (a, b, c)=a(bc) and A=0, then V' is not an FKM-triple.

Proof. By Theorem 3.1, V' is an FKM-triple if and only if there exists
a bilinear map k: Ae, X Ae,— Ale,: (ae,, be,)— h(a, b)e, satisfying (3.1) to (3.3),
where (3.3) in the case under consideration is equivalent to
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(*) (h(x, ¥), ¥, 2) = <y, (1, %, 2) for all x, y, zE€A4.

a) We put A(x, y)=xy. Then (3.1) and (3.2) follow and (*) is easily verified.
This proves a).

In the cases b) and c) we show that (*) yields a contradiction: In the case
b) (*) is equivalent to (k(x, y)z)y=<{y, y>zx which holds if and only if A(x, y)z
=(zx)y. For z=1 this implies A(x, y)=xy and thus we have (xy)z=(zx)y
which gives yz=z¥ for all y, 2 H or O, a contradiction. In the case c) we
conclude similarly A(x, y)(y2) =<y, y>xz, hence A(x, y)=xy and (xy)(yz)=
{y, y>xz. Substituting x=wy shows <y, yw(y2)=<y, y>(wy)z, ie., A is
associative, a contradiction.

In [5] we introduced the following special Clifford systems. For #=H, O
let (x,=1, x,, ***, x,) be an orthonormal basis of #. We identify R** with
the orthogonal sum V=A®APAPA and define the definite (m, m—1) family
on V by

Py(aBbPDcPd) = aP—bPchH—d
Pj(aPbDcPd) = xpPx;aPx;dPx;c  for 1<j<m.

The indefinite (m, m—1)-family (Q,, ---, O,,) is given by

0, =P,
Oi(aPBbBcBd) = x;bPx,aPx;d Bxjc for 1<j<m.

It was proved in [5] § 6:

Theorem 4.7. The FKM-triples corresponding to the definite and indefi-
nite (4, 3)- resp., (8, 7)-family are of algebra type, but not isomorphic (and hence
not equivalent).

Since the isoparametric triples of Theorem 4.7 satisfy the assumption of
this section they are isomorphic to a triple system associated with a composi-
tion triple:

Lemma 4.8. a) The FKM-triple corresponding to the indefinite (m, m—1)-
family is isomorphic to the triple system associated with the composition triple
(a, b, c)=a(bc) for A= H, resp. O.

b) The FKM-triple corresponding to the definite (4, 3)- resp., (8, 7)-, family
is isomorphic to the triple system associated with the composition triple (a, b, ¢)=
(ac)b for A=H, resp. O.

Proof. a) The results of [5] §6 imply that the decomposition of V' con-
structed in the proof of Theorem 4.2 can be realized as V,= {a@0POP0; ac A},
V,= {0D0P0Pb; b=~} and V= {0PcPOD0; ce A} P {0POPIP0; d =4} .
By definition of the triple product of an FKM-triple we get {x@0@0P0,
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0p0P0P y, 0POP 2P0} =0PwPH0P0 with w= (g} &,y YO &, )x = (2)x=

%(yZ). Hence the corresponding composition triple is isotopic to (a, b, c)=a(bc).
The case b) follows similarly.

Finally, we want to recall the following special examples of homogeneous
isoparametric triple systems, defined in [3] § 1.5: V'=Mat(2, 2; #) for 4=C, H
with <x, y> =14 trace(xy'+%'y) and {wxx} =6x%'x. The corresponding con-
stants (m,, m,) are (2,1) for #/=C and (4, 3) for /==H. We can now state the
main theorem of this section:

Theorem 4.9. Let V be an isoparametric triple system. Then V is of al-
gebra type with my=m,+1 if and only if V is isomorphic to exactly one of the
triple systems associated with the following composition triples:

a) A=C, (a, b, c)=abc, (my, my)=(2, 1).

In this case V is isomorphic to Mat (2, 2; C) which is a realization of
theFKM-triple (2, 1) and V' is isomorphic to the FKM-triple (1, 2).

b) A=H, (4, b, c)=abc, (m,, m;)=(4, 3).

In this case V is isomorphic to the FKM-triple corresponding to the in-
definite (4, 3)-family. Further, V' is isomorphic to the FKM-triple (3, 4).
c) A=H, (a, b, c)=ach, (m,, my)=(4, 3).
In this case V is isomorphic to the FKM-triple corresponding to the de-
finite (4, 3)-family. Moreover, V is also isomorphic to Mat (2, 2; H).

d) A=0, (a, b, c)=(ab)c, (m;, my)=(8, 7).
In this case V' is isomorphic to the FKM-triple (7, 8).

e) A=0, (a, b, c)=a(bc), (m,, my)=(8, 7).

In this case V is isomorphic to the FKM-triple corresponding to the in-
definite (8,7)-family.

f) A=0, (a, b, c)=(ac)b, (m,, my)=(8, 7).

In this case V is isomorphic to the FKM-triple corresponding to the
definite (8, 7)-family.

Proof. If V is of algebra type with m,=m,+-1, then we already know that
V is isomorphic to a triple system associated with one of the composition
triples in a)-f). Hence it remains to show that these triples are pairwise non-
isomorphic and to prove the various realizations.

From Lemma 4.6.a. we derive the statement about V" in the cases a), b)
and d) since there is only one FKM-triple of type (1, 2), (3, 4) and (7, 8).
Theorem 4.7 and Lemma 4.8 imply that, in the cases b), c), e) and f), V" is an
FKM-triple as stated. They also show that b) and c) and e) and f) are pair-
wise nonisomorphic. Further, e) and f) are not isomorphic to d), because of
Lemma 4.6.b) and c).

Finally, Mat(2, 2; A), 4=C, H, is of algebra type and hence isomorphic
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to the case a) for #/=C. In the case #=H it is easy to compute the corre-
sponding composition triple; we thus get c).

RemMARks. 1) It has been shown in [5] §6 that the FKM-triple corre-
sponding to the indefinite (4, 3)-family is equivalent to the FKM-triple (3, 4)
but is not isomorphic to the FKM-triple corresponding to the definite (4, 3)-
family. Moreover, it has been proved that the FKM-triple (7, 8) and the two
(8, 7)-families are pairwise inequivalent.

2) As a corollary of Theorem 4.9 we get that a triple system associated
with a composition triple on 4 with (a, b, ¢)=(ac)b or (a, b, c)=a(bc) is of FKM-
type. This can also be shown directly, as indicated by the following. We use
our standard representation of V =~e,@P Ae,,P ~e,P~e, as introduced above.
Let (%, -**, x,,) be an orthonormal basis of < with x,=1. In case T(ae,, be,)ce,
=(ac)beé,, we define

hjo = x(xjelz@—xjélz) = —hOI ) 1<j <m 5

hjk = )\,(x]'xkel@xjxkez) , 1S], kﬁm ,

hj; = e=nNeDey), 0<j<m,
and in case T'(ae,, be,)ce;,—=a(bc)e;, we put

hj(,: h(xjelz@—x,-e]z) = _hoj’ 1SjSm,

b = NMx% 6, Dx;%465) 1<j, k<m,

h;; = e =\(e,De,), 0<j<m.
Then (hj,) is an FKM-family (see [5] § 4) relative to y,=e=2x\(e;D(—e,)), y;=
Maje,@Pxéy,), 1<j<m. This is seen by a straightforward but lengthy com-
putation using standard facts about composition algebras and the following
description of the Peirce spaces of y; (see [3] §5, [4]):

V3(é) = Re@ Vl_g ) Vl(é) - VI.I@ VIE@VZ_Z ’
and in the first case

Vi(y,) = Rhy;D {ae,DX,ax;e,; ac A}

Vi(35) = (VS (Ry;®Rhy;))D {ae,®(—x;a%,)e,; a EA}
and in the second case

Vy(y;) = Rhy;®D {ae,Dae,; ac A}

Vi(y5) = (VO (Ry;DRhy,))D {ae, D —ae,; ac A} .

5. The case m;=m,

5.1. We first prove some elementary results and reduce the classification prob-
lem to a problem for the real division algebras R, C, H or O.
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Lemma 5.1. Let (V, {---}) be an isoparametric triple whick is of algebra
type relative to e,, e, Then the following are equivalent

1) m,=m,,

2) each element of V)(e,, e,) is a scalar multiple of maximal tripotent,

3)  {xigxipni} =305, X101, for all 2, EV .

Proof. (1)<(3): Choose ei,&V1, with e, e1.p=1. From [4] we get
my+1=dim V;(ei;)=dim Vy,+dim V(ei;) N V1z. But dim Vy; =m,+1 whence
Vy(eiz) NV 12=0 if and only if m;=m,. Since we always have V1,SRe,,C V(el,)
we see that m,=m, is equivalent to {x7,x7,y,}=<x1s Vio¥12+2{x12, X120V1a
for every x1,€V5,. This is just another formulation of (3). Obviously (2) and
(3) are equivalent.

As in [3] we put {xe,y} =xoy and {xe,y} =x*y.
Corollary 5.2. For x5,V 3, and my=m, we have
xiao(xiz0x7y) = {wiz Xipn]s = Xip(¥1*X77) .

Proof. From Lemma 5.1 it follows that {x{,x},x73}=<x}s, #j.0%7. On
the other hand we get {x3,x7.073} =3<¥1z, *1:D%7; —(x320(x320%15) & (a7
from [4] (2.26)’, (2.27)". Since xi*(x1.*x1;)=2x1.0(xi;0x7;) by [3] (5.20), the
corollary easily follows.

Theorem 5.3. Let (V, {--'}) be an isoparametric triple with m,=m, which
is of algebra type relative to e,, e, Then there exist a real composition division
algebra A with unit and isometries ¢: Vi —>A, ¢po: Vis— A such that

T, )t D) = $7H(R)$- () DI ()b ut)
where “‘—" denotes the canonical involution of A.

Proof. We choose af, €V iz, gnEV 1, |aiz|=|¢n|=1 arbitrarily and fix
it in the sequel. We put ai;: =¢i1*ai, and define

(1) ynlzn: =(yTi*aiz)*(211*am).

Since Vi*Vi,CVi; and Vi*V 1, C V1, (1) defines an algebra on V1. We
will show that this algebra is a real composition division algebra with unit g7;.
We first prove that ¢i; is the unit of the algebra defined by | : we first note
that <ar, ar;>=<qn, gn.<aiz, aizy=1 because of (2.10). We apply this and [4]
(2.35) and get ¢ | 2ni=an*(an*2ni)==27. Similarly one has yh*gn=
(yri*af,)*ai;=y11. Next we show that | admits composition:

{ynLen, yn Lz

= {(yni*aiz)*(2n1*an), (yri*atz)*(211%at2))
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= {(yrikai)*((yni*aiz)*(11%aiz)), 2nikai)
= {yni*aiz, yn*a {eni%al:, 2n%aiz)

= {yn1, y11.)<&11, 211y where we have used Corollary 5.2 and (2.10).

This proves that | defines on V'1; the structure of a real composition division
algebra with unit ¢i;. 'The opposite of this algebra will be denoted by #, its
unit by 1 and its product by xy=L(x)y. Then xy==& | y where £: =2<{x, 1>+
l1—x=: Ix, ie., I is an isomorphism of the two algebras. Note that I?=id.
We define now ¢p=id, . (u*): =u+a~, ¢_(v7): =I(v"*a"), denoting a*=
aiz, and have to prove
(2)  P-(xxut)=2xp.(u*) for x&V,u €V,
)  Pi(xxv)=xp_(v7) forxeVn, v EV L.
Obviously, I¢_(x+u*)=(x+u*)*a* and I(%p,(u*))=x_| I(u**a~)==(x+a™)*[(2<u",
a*yqn—utxa")ka =24u", a*dx—(xxa*)*u* (because of ¢gri*a~=a* and Corol-
lary 5.2)=2<u*, a*D>a—2{a*, u"px+(x+u*)*a* by linearization of Corollary 5.2.
This proves (2).
Finally,
Ip(xxv7) = I((x%v~)*a") and I(xp-(v7))
=X _| (v7*a") = (Zxa™)x((v™*a)*a")
— (Bra*)x(2a", vdat — ko) = 2a”, v DR (BRatr(giRv)
= 2{a”, v r8—2{a", gnxv )X+ (X%(qii*v”))*a”
= (®x(quxo7))ra* = (2, giipv7va" —(wx(grkoT)ka”
= 2<x, grpv™*a" —24, grpv T ka - (gnk(xxvT))xa”
= (gri(xxv7))kat = 2 wxv™, a*)qn—(xkv")xa” = I((xxv7)*a").

This proves (3) and hence the lemma.

Corollary 5.4. We have m: =m,=m,=1, 2, 4, or 8 and the Clifford-
algebra for (V' 11, <+, D) operates irreducibly on Vy, for m=4, 8.

Proof. Every composition algebra has dimension 1, 2, 4 or 8. The sec-
ond assertion follows from the theory of representations of a Clifford algebra
(see e.g., [1] or [5]).

ReMARK 5.5. In what follows we always identify Vi, Vi, Vi; and Vi
with the same real composition division algebra 4 (i.e., #=R, C, the quater-
nions H or the octonians O) such that T'(x, e,)(u*@v~)=xv"Pxu* for all
xe€Vn=A, uteV 3=~ and v~ €V;=A. In this realization we always have
T(x, €)?|Viy=<x, x>Id. Moreover, we know that T(e, y), yEV5n=4+,
interchanges V{, and V71, and from [4] (2.16.a) we get (T(x, y) Vo) =

€ e e _ _
_7 [T(.x’, e)T (ey, ) Vi+ T(en ¥) T(x, &)01z), €=+, xE€Vi, yE V5 We
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thus may write (for a€Vy}, bEVE): T(ey, ¥)(a D) =f(y)0Df(y)*a and

T(x, y)(a®b) =[R(x, y)b— 12(L()(y)*a+ [ y)L(Z)a)| D[R(x, y)*a-+Yo(L(%)f(y)b
+f(y)*L(x)b] with endomorphisms f(y), R(x,y) of the real vector space A.
Obviously, f(y) is linear in y and R(x, y) is linear in x and in y.

We next express the property T(x;, x,)*=<wx,, %,><{x,, ¥,>Id in terms of
L(x), f(y) and R(x, y).

Lemma 5.6. The property T(x), x,°=<w;, %0y, *,>1d is equivalent to

(1) o)) *=<y, y>1d,

(2) 0=L(x)R(x, y)*+R(x, y)L(%)

(3) O=f(y)R(x, y)*+R(x, y)f(y)*

(4) R(x, y)*R(x, y)=—Y4(f()*L(x)—L(®)f(y))’
for all x, yeA.

Proof. Put x=ae,+=x, x,=Be,+y, xEVii=A, y&V5==A, then T(x,, x,)°
= |, |%|%,]%1d is equivalent to

[aBT (e, &)+ aT (e, y)+BT (e x)+T(x, )]

= &?Bld+a?T(e,, y)*+ 6| x| d+T(x, y)*+a’B[T (e, &) T(es, ¥)
+ (e, y)T(er, &)1+ BT (e, &)1 (es x)+T(er, x)T(er, €5)]
+aB[T(e, e)T(x , y)+T(x, y)T(er, €)]
+aB[T(es, y)T(ez, %)+ T(er x)T(er, ¥)]+a[T(er, y)T(x, y)
+T(x, y)T(er, Y)]+BIT(ex %)T(%, y)+T(x, y)T(en )]

= (a®+|x|*)(B+ 1 y1*)1d .

This gives the following list of identities

L.1) (e, )= ly|*d

L.2) T(x, y) =I|x|*|y|’Id,

(L.3) T(ey, e)T(er, y)+T(er, y)T(er, €)= 0,

(L4) T(e, e,)T(ey x)+T(ey x)T(e1, ;) =0,

(L.5) T(ey, &)T(x, y)+T(, ¥)T(er, &)+ T(e1, )T (e, %)+ T(e x)T(er, y)=0

(L.6) T(ew, »)T(x, y)+T(x, y)T(ery y) =0,

(L.7) T(ey x)T(x, y)+T(x, y)T(ey x) = 0.
It is easy to see that (L.1) is equivalent to (1) and that (L.3), (L.4) and (L.5)
are trivially satisfied. Further, a simple computation shows that (L.6) is equiv-

alent to (3) and (L.7) is equivalent to (2). Thus only (L.2) remains to be trans-
lated. But |x|%| y|*(aPb)

= T(x, y)"(a®b) = {R(x, y)[R(x, y)*a+(LEf(3)b+/(y)*L(x)b]
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— V(L)) * -+ ) LE) R, y)b— Yo (L=)f(y)*a-+f(y)L(%)a)]}
@ {R(x, y)*[R(x, y)b—(L()f(y)*a+Ay)L(%)a)]
+ Yo (L@ ) +A ) L)) [R(x, y)*a+Ya(LES )b+ (9)*L(*)b)]}

whence

(i) R(x, )R(x, y)*+ V(L))" +A9)L#))*= 2’| y|"Id

(i) R(x 3)*R(x, y)+Ya(LEM)+Ay) L)'=« |*| y|’1d
and two more equations which are consequences of (2) and (3). It is easy to
verify that (ii) is equivalent to (4). Finally, (i) follows from (1), -+, (4).

REMARK. (i) is equivalent to R(x, y)R(x, y)*=—14(L(x)f(y)*—f(y)L(%))%.

We derive some immediate corollaries of Lemma 5.6.

Corollary 5.7. ker R(x, y)={a=~; f(y)*L(x)a=L(X)f(y)a}, in particular
R([f(y)ala, y)a = 0.

Procf. This is an immediate consequence of (4) of Lemma 5.6.

Corollary 5.8. [L(®)R(x, y)][LE)f(M]=ILESDI*ILER(, )] for
x, yEA.

/)

Q

Proof. Follows immediately from (2) and (3) of Lemma 5.6.

Corollary 5.9. Without loss of generality we may assume f(y)l=y for all

yeA.

N

Proof. Let A(y): =f(y)l. Then % is an isometry of 4. Put T(x,, x,): =
T(x,, h7%(x,)). By Theorem 2.10, we can pass to an isomorphic triple which
still satisfies the assumptions of Remark 5.5, but in addition has f(y)1=y for all
yeA.

5.2. In this section we prove that the cases m=4, 8 do not appear. We start
with some general results.

Lemma 5.10. Let A=H (resp. O) be the real composition division algebra
of quaternions (resp. octonions) and A€Endg A. If L(x)A=AL(X) for all x&A
then A=0.

Proof. Put a: =A1, then Ax==%a for all x€4. In particular, we get A=0
if a=0. Hence without loss of generality we may assume <a, a>=1. Then

(yx)a=(xy)a=A(%y)=x(Ay)=x(ya) for all x, yEA. For y: =a we get (ax)a
=ux, whence ax=xa. Therefore a=-+1 and jx=x7y for all x, y=A. By as-
sumption, A is not commutative so a=0 and thus 4=0
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We use the notation introduced in the last section and get

Lemma 5.11. a) dim ker R(x, y)=0, 4, or 8§,

b) ker R(x, y) is invariant under L(X)f(y),

c) ker R(x, y) is spanned by the eigenvectors of f(y)*L(x)

d) L(®)f(y) has no real eigenvalue on the orthogonal complement of
ker R(x, y).

Proof. Let A :=L(X)R(x, y), and B : =4 (L(%)f(y)—f(»)*L(x)). Then
A*=—A4, B*=—Bj further, AB=—BA by Corollary 5.8 and 42=B? by (4) of
Lemma 5.6. Thus ker A=ker B=: V, and V' is invariant under 4 and B.
As A is skew-adjoint on Vi there exists a two dimensional subspace U CVy
which is left invariant by 4. Let xU, x#0. Then U is generated by x
and Ax. But {Bx, x>=0 and {Bx, Ax)>=—<{ABx, x>=<{BAx, x>=—{Ax, Bx)
=—<{Bx, Ax> whence {Bx, U>=0. Also {BAx, x>=0 and {BAx, Ax>=0;
therefore BU is orthogonal to U and is two dimensional. Hence U@BU is a
four dimensional subspace of V. Repeating this construction (if possible)
we see that the dimension of V'y is a multiple of 4. This proves a). b)is an
immediate consequence of Corollary 5.8. Since [f(y)*L(x)]*=L(%)f(y) we con-
clude from b) and Corollary 5.7 that ker R(x, y) is spanned by eigenvectors of
f(»)*L(x). On the other hand L(®)f(y) is a multiple of an orthogonal map and
is therefore self-adjoint on the sum of all eigenvectors. This implies c) and d).

We next investigate the endomorphisms Q(y, 1) where Q(y, 2)x :=R(x, y)=z.

Lemma 5.12. a) O(y, 1) is skew-adjoint,

b) y&ker O(y, 1)
c) ker Xy, )={a&A; f(y)*a=ay}.

Proof. a) OK(y, x, x>=<R(x, ¥)1, x)=LL(®)R(x, y)1, 1>=0.
b) O(y, 1)y=R(y, y)1=0 by Corollary 5.7.
c) acker Q(y, 1) is equivalent to R(a, y)1=0.
By (4) of Lemma 5.6, this is equivalent to f(y)*a—a-f(y)1=0. This proves the
assertion

Corollary 5.13. Assume dim A>2. Then

a) ker Q(1, 1) has even dimension >2,

b) leker Q(1, 1) and x,ker Q(1, 1) for some x,EA, Zy=—=x, |x|=1.
Moreover, f(1)1=1 and f(1)x,=—x,.

c) ker Q(1, )Cker R(1, 1)

d) If f(1)Ff(1)*, then dim A=8, dim ker R(1, 1)=4 and the multiplicity
of the eigenvalues 1 and —1 of f(1) is odd.

Proof. a) and b) are immediate consequences of Lemma 5.12. We know
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acker Q(1, 1) iff f(1)*a=a. As 1€ker Q(1, 1) we see that ker Q(1, 1) is span-
ned by orthonormal vectors a,, -, a,, @y=1, a,=—a, for r=+1 satisfying
f(1)*1=1 and f(1)*a,=—a, for r=1. Hence, ker Q(1, 1) is spanned by eigen-
vectors of f(1)*, whence ker Q(1, 1)Cker R(1, 1) by c) of Lemma 5.11. Assume
f(D)%=f(1)*; then dim ker R(1, 1)=0 or 4 by Corollary 5.7 and Lemma 5.11.
But R(1, 1)1=0 by Corollary 5.7 and Corollary 5.9. Hence dim ker R(1, 1)=4.
Since f(1) = f(1)* we get dim #=8. We know ker O(1, 1)Cker R(1, 1), thus
dimker Q(1, 1)=2 or 4. From c) of Lemma 5.12 we conclude that the
multiplicity of the eigenvalue —1 is one if dimker Q(1, 1)=2 and three if
dim ker O(1, 1)=4. This proves the lemma.

We put A% :={xeA; f(l)x==¢Ex}, €=-4. Then ker R(1,1)=A"DA" by
Lemma 5.11.

Lemma 5.14. Assume R(1, 1)=0 and xE A, =x.

a) kerR(x, 1)={at€A"; xatcA P la 4 ;xa A"},
b) L(x)(ker R(x, 1) N A*)=ker R(x, 1) N A%, if x=0,

c) le&ker R(x, 1)oxesA",

d) ker O(1, )=R1p~A",

e) R(x, 1) is skew-adjoint and commutes with f(1).

Proof. We note that A=A*@A~ and f(1)=f(1)* because R(1, 1)=0.
d) follows from c) of Lemma 5.12. To prove c) we use that 1&ker R(x, 1)
is equivalent to 0=R(x», 1)1=0Q(1, 1)x. This implies x€R1P~~ by d). But
<%, 1>=0 and c) follows. To verify a) we use (4) of Lemma 5.6 and get

(1) a€ker R(x, 1) iff f(1)(xa)=—xf(1)a.
We next linearize (2) of Lemma 5.6 and get

(2) R(x, 1)=—R(x, 1)*.
From (3) of Lemma 5.6 we now derive

(3) fDRG, 1)=R(x, DA).
This implies e) and f(1)ker R(x, 1)=ker R(x, 1); therefore ker R(x, 1)=
(ker R(x, 1) N A*)P(ker R(x, 1)N<~). Applying (1) gives a). Finally, from (2)
and (2) of Lemma 5.6 we derive that ker R(x, 1) is left invariant by L(x); hence
b) follows from a).

We are now able to rule out the cases m=4%, 8.

Theorem 5.15. 4 is commutative.

Proof. Assume A=H or #=0. We distinguish two cases.
1 Case: R(1, 1)=0. We know that ker Q(1, 1) has even dimension by Corol-
lary 5.13. By our assumption we may apply Corollary 5.13 and Lemma 5.14.d
and thus see that <~ has odd dimension. As < has even dimension and
A=A"DA" we conclude that also #* has odd dimension. From e) of Lemma
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5.14 we get that R(x, 1) leaves invariant #° and is skew-adjoint on 4°. Hence
A*Nker R(x, 1)%0 for &=+ and all x€4. Choose x4, {x, 1>=0, |x|=1
and let U® denote the orthogonal complement of ker R(x, 1)N4® in <. Put
d, :=dim ker R(x, 1) N #<* then d=d,=d_ and 0%dim ker R(», 1)=2d by Lem-
ma 5.14.b. From Lemma 5.11.a we conclude that d is even. Moreover, by
construction the skew-adjoint endomorphism R(x, 1) is bijective on U®. Hence
dim U® is even. But dim U®4-d=dim #4° is odd, a contradiction.

2 Case: R(1,1)%0. Let N :={xe~; R(x, 1)=0}. By assumption 1€ N,
whence dim N <dim #—1. a) dim N=dim #—1. Here we have a linear form
§: A— R such that R(», 1)=¢(x)R(1, 1) for all x&4. From (2) of Lemma 5.6
we conclude that R(1, 1) and hence R(x, 1) is skew-adjoint. Therefore by
applying (2) of Lemma 5.6 once again, we get

EFILER(L, D—R(, DLEF)]
— L(®)¢(*x)R(1, 1)—E(x)R(1, 1)L(x)
— L(®)R(x, 1)—R(x, 1)L(x) = 0.

But §=0, consequently L(x)R(1, 1)=R(1, 1)L(x) for all : &4. Therefore
R(1, 1)=0 by Lemma 5.10, a contradiction. b) dim N<dim #—2. In this
case we choose a subspace U C# such that N4+ U=#, UNN=0, 1leU. Ob-
viously, dim U>2. We next show #=O0 and rank R(x, 1)=4 for all x€ U,
x=0. By assumption R(1, 1)#=0 and by Corollary 5.7 R(1, 1)1=0. Lemma
5.11 thus implies rank R(1, 1)=4 and dim #=8. Hence the rank of R(x, 1)
is 4 or 8 for all x of an open and dense subset of <. It thus suffices to prove
det R(x, 1)=0 for x&4. To verify this we first note that f(1)= f(1)* by Cor-
ollary 5.7 and the assumption. Therefore the multiplicity of the eigenvalue 1
or of the eigenvalue —1 of f(1) is one by Corollary 5.13.d. Assume first that
1 has multiplicity one. We consider the map k: 4— A, h(a) :=f(1)a-a and
compute its defferential d h(u)=f(1)u-a+f(1)a-#. Now let a=1 and assume
d h(u)=0 for u=u,14u’', <u’, 1>=0. Then f(1)u=—u by Corollary 5.9. But
—a=—ul+u’ and f(u=u,l+4f(1)u’, thus u,14f(1)u'=—u,1+4u’, whence
u=u' and f(1)u’'=u’. This implies #'=0. Therefore A is locally invertible
near 1 and Corollary 5.7 implies det R(x, 1)=0 for an open neighborhood of 1.
But then det R(x, 1)=0. Assume now that —1 has multiplicity one. With-
out restriction we may assume f(1)i=—7. We consider again the map h(a)=
f(1)a-a and compute the kernel of its defferintial at the point a=i. We get
d;h(u)=0 iff (f(1)u)t=im which is equivalent to f(1)u=(i)i. Let u=u,l4-ui+u’
with <1, " >=0=<, u’>. Then #=ul—ui—u" and f(1)u=ul—ui+f(1)u’.
Moreover (i%)i=(ugi+u,1+u't)i=—u,l +wi—u’ and ul —ui+f(1)u'=—ul+
wi—u’' follows. Hence u=u’ and f(1)u'=—u’'. This implies #'=0. Hence &
is locally invertible near 7. By Corollary 6.7 we get det R(x, 1)=0 in an open
neighborhood of 7. But then also det R(x, 1)=0 in 4. We thus have proved
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that rank R(x, 1)<4 for all x4 and consequently rank R(x, 1)=4 for all

x€U. Now let x&€U with |x|=1; then L(X)f(1) is orthogonal, leaves invariant
the four dimensional kernel of R(x, 1), is self-adjoint on ker R(x, 1) and has
no real eigenvalue on the orthogonal complement of ker R(x, 1) by Corollary
5.7 and Lemma 5.11. We conclude that for x& U, |x|=1, the map L(%)f(1)
has only 1 or —1 as real eigenvalues and the sum of the multiplicities of 1 and
—1is 4. The “contituity of eigenvalues” [13] § 14 shows that the multiplicity
of 1 and of —1 is a locally constant function on the sphere of U. Hence these
multiplicities are the same for all x€U, |x|=1, and thus are equal to the cor-
responding multiplicities of f(1)=L(I)f(1). Moreover, L(%)f(1) and L(—&)f(1)
have the same multiplicities. Therefore —1 and 1 have multiplicity 2. This
is a contradiction to e) of Corollary 5.13. This proves the theorem.

5.3. In this section we classify all isoparametric triples of algebra type with
my=m,=m. As shown above we may realize such a triple as described in
Remark 5.5. Theorem 5.15 then implies that we only have to consider the
cases /=R or C.

Lemma 5.16. Let A=R or C. Then R(x, y)=0 and f(y)a=ya for all
a, x, yeA.

Proof. R(x, y)=0: By Corollary 5.7 we have ker R(y, y)==0 for all ye#4.
Thus Lemma 5.11 shows R(y, y)=0 and hence only #=C remains to be con-
sidered. Let y=al-+ 87, then 0= R(y, y)=aB(R(1, i)+ R(, 1)). Therefore
R(z, 1)=—R(1, 7) is skew-adjoint by (2) of Lemma 5.6. Moreover, Q(1, 1)=0
by Lemma 5.13, thus R(7, 1)1=0 and consequently R(z, 1)=0.

f(y)a=ay: Since R(x, y)=0 we have QO(y, 1)=0. Therefore Lemma 5.12
implies f(y)*a=ay. The assertion follows easily.

The last lemma implies that in the situation we are considering there ex-
ist —up to isomorphism— at most one triple for m=1 and at most one triple
for m=2. TFor each case we give an example and thereby prove Theorem 5.17
below.

Let V :=Mat(2, 3; R),{A4,B) :=trace AB' and {AAA} :=6A4A4'A.
Then (V, {-:+}) is an isoparametric triple, of FKM-type with m;=m,=1 (see [3]
1.5). A Peirce decomposition with respect to the pair of orthogonal tripotents

e, €, defined by ;= <(1) 8 8), eZ=<8 (l) 8), shows VltZ:{(E(Zz((J){ 8), aER} and

{Vi, e, Vi3}=0. Using Lemma 1.1 it is easy to check that the dual triple is
of algebra type. Thus Mat (2, 3; R)’ is “the” isoparametric triple of algebra
type with m;=m,=1.

Finally, let U=u(2; H) :={A€Mat(2, 2; H); A'=—A4}, {4, B>=
Y Re trace(AB'+ A'B) and {44A}=6A4AA4'A. As a subtriple of Mat (2, 2; H)
(see [3] 1.5) U fulfills (1.1) to (1.3) and it is easy to check that (1.4) is also
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satisfied with m=m,=2. A Peirce decomposition with respect to the piar of
orthogonal tripotents e,, e,, defined by el=<6 8), e2=(8 ?), shows that the triple
is of algebra type relative to e, e,, Thus (2, H) is “the” isoparametric triple
of algebra type with m,=m,=2.

Theorem 5.17. Let (V, {-:'}) be an isoparametric triple with m,=m, which
is of algebra type relative to e,, e, Then (V, {---}) is isomorphic to Mat (2, 3; R)’
—if my=m,=1—and isomorphic to u(2, H)—if my=m,=2. In both cases the
triple is homogeneous.
Summing up our results on isoparametric triples of algebra type we have

Theorem 5.18. Let (V, {--:} be an isoparametric triple. Then V is of
algebra type iff
1) V' is of FKM-type and my=1, 3 or 7, in case my>m,+1.
or 2a) V is isomorphic to an FKM-triple of type (2, 1), (4, 3) or (8, 7).
or 2b) V' is isomorphic to an FKM-triple of type (1, 2), (3, 4) or (7, 8),
or 3) V isisomorphic to u(2, H) or to Mat(2, 3; R)’.

Corollary 5.19. Let (V, {--:}) be an isoparametric triple of algebra type.
Then (V, {--*}) is either equivalent to an FKM-triple or it is isomorphic to w(2, H).

Finally, we compare our results with the work of H. Ozeki and M. Take-
uchi. In our notation they proved the following. (For a definition of condi-
tion (A) and (B) see [9].)

Theorem 5.20 ([9] Theorem 2). Let V be an isoparametric triple. Then
the following are equivalent:

a) V' satisfies condition (A) and (B),

b) V is the dual of an FKM-triple and m(V)=1, 3 or 7.

A comparison with our results shows

Theorem 5.21. Let V be an isoparametric triple of algebra type (i.e. V'
satisfies condition (A).) Then V' fails to satisfy condition (B) iff V is isomorphic
to exactly one of the following 4 triples: Mat (2,2; H), w(2, H) ard the two FKM-
triples (8, 7).

6. Isoparametric triples of generic algebra type

We finally consider triples of generic algebra type, i.e., isoparametric triples
which are of algebra type relative to each pair of orthogoanl tripotents.

Lemma 6.1. Let V be an isoparametric triple of generic algebra type and
e, e, any pair of orthogomal tripotents. If m > my+1, then the triple V=
Vil &), {--}) is also of generic algebra type with my(V)=m,—(m,+1) and
my(V)=ms.
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Proof. By Theorem 2.6 and Corollary 2.7 we know that V=(Vy, {--})
is an isoparametric triple with #7,=m,—(m,+1), M,=m,>0. Hence there
exist orthogonal tripotents ¢, ¢,E 1% by [3] Corollary 4.9. Obviously, ¢, ¢, are
also orthogonal tripotents of V. It now suffices to prove Vi(c;)C V), j=1, 2.
By the assumptions we may apply [4] Theorem 4.8 and get Vy(c;)C Ve, €).
Hence V(c,) T Vy(c,) C Vyy, and V() C V(o) © Vyp.  The lemma is proved.

We call an isoparametric triple V' homogeneous if there exists a subgroup
T'C Aut V which operates transitively on the corresponding hypersurfaces in the
sphere of V. We use the notation introduced at the end of section 4.

Lemma 6.2. Let V be an isoparametric triple of algebra type.

a) If V is homogeneous, it is of generic algebra type.

b) If my=m,, then each triple is of generic algebra triple.

c) If m=m,+1 then the following triples represent the equivalence classes
of triples of generic algebra type:

Mat(2,2; C) and Mat(2,2; H).

Proof. a) is obvious and it implies b) using Theorem 5.17, since both
(2, H) and Mat (2, 3; R) are homogeneous. It also implies c¢) since the cases
b), d), e) and f) of Theorem 4.9 are not of generic algebra type which follows
from [5] Theorem 6.19,b, Corollary 6.12, Theorem 6.17 and Theorem 6.15.

Theorem 6.3. Let (V, {--:}) be an isoparametric triple of algebra type.
Then V is of generic algebra type iff V is homogeneous. More precisely, V is iso-
morphic to exactly one of the following triples

a) the dual of an FKM-triple of type (1, my), my>1,

b) Mat(2, 2; C), resp., Mat(2, 2; H). These triples are of FKM-type
(2, 1), resp. (4, 3).

c) Mat(2, 3; R)', resp. w(2, H). Here Mat(2, 3; R) is the dual of the
FKM-triple of type (1, 1). The triple w(2, H) and its dual are not of FKM-
type.

Proof. By Lemma 6.1 we may consider a maximal descending chain of
isoparametric triples V,D - DV, where V, is the V,-space of V,_, relative
some pair of orthogonal tripotents and where m,(V})=my(V,_,)—(m,+1),
my(Vi)=m,. Applying Lemma 2.8 shows m,(V,)=m, or my(V,)=m,+1. Hence
m(Viy)=(n+1—k)(m,+1)—1 or my(V,)=(mn+1—k)(m,+1). If n>1, ie., m>
m,+1, it follows from Theorem 3.2 that V,, k<<n, is the dual of an FKM-
triple and m,=1, 3 or 7. But the cases m,=3 or 7 are ruled out by Lemma
6.1 and [5] Theorem 7.6 and in the case m,=1 the triple is homogeneous by
[12] or [6], § 6. The remaining cases have been settled in Lemma 6.2.
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