VANISHING THEORMS FOR TYPE (0,q) COHOMOLOGY OF LOCALLY SYMMETRIC SPACES II

FLOYD L. WILLIAMS

(Received February 25, 1981)

1. Introduction

Let G/K be a Hermitian symmetric space where G is a connected noncompact semisimple Lie group and $K\subset G$ is a maximal compact subgroup. We fix a discrete subgroup Γ of *G* which acts freely on *GjK* and for which the quotient $X=\Gamma\backslash G/K$ is compact. Let $E_{\tau}\to G/K$ be a homogeneous C^{∞} vector bundle over G/K induced by a finite-dimensional irreducible representation τ of *K.* Then *E* has a holomorphic structure and one can define a presheaf by assigning to an open set *U* in *X* the abelian group of Γ-invariant holomorphic sections of E_{τ} on the inverse image (under the map $G/K \rightarrow X$) of *U* in G/K . Let \rightarrow *X* be the sheaf generated by this presheaf and let $H^q(X, \theta_{\tau})$ denote the qth cohomology space of X with coefficients in θ_{τ} . In this paper we continue the program initiated in [23] of obtaining some general vanishing theorems for the spaces $H^q(X, \theta_{\tau})$ by the application of recent representation-theoretic results. This allows for a unified view-point and one by which, in particular, the classical vanishing theorems of [3], [4], [5], [6], [7], [12], and [13] may be deduced.

Following Hotta and Murakami [4] we represent $H^q(X,\ \theta_\tau)$ as a space of automorphic forms. Then its dimension can be expressed by a formula of Matsushima and Murakami [14] in terms of certain irreducible unitary re presentations *π* of G, the multiplicity of *π* in L² (Γ\G), and the *K* intertwining number of π with $Ad^q_{\pi} \otimes \tau$ where Ad^q_{π} is the *q*th exterior power of the adjoint representation of *K* on the space of holomorphic tangent vectors at the origin of *GjK.* Based on results of Kumaresan [9], Parthasarathy [17], and Vogan [21], we have been able to obtain in [23] and [24] a clearer understanding of the structure of the unitary representations *π* of *G* in the Matsushima-Murakami formula; also see Theorem 3.3 of the present paper. We apply this new knowledge in conjunction with the Matsushima-Murakami formula to deduce the main result of this paper, which is Theorem 4.3. We can deduce, in particular, results of [23] from Theorem 4.3 *without assuming the linearity of G.* Thus we drop the linearity assumption in the present paper, which was enforced **in [23].**

2. Unitary representations intertwining $\chi^{\pm} \otimes \tau_{\Lambda+\delta_n}$

In this section G will denote a non-compact connected semisimple Lie group with finite center and $K \subset G$ will denote a maximal compact subgroup of G. However, proceeding more generally, we shall *not* assume that *GjK* is Hermitian symmetric (until later). Let $\mathfrak{g}_0\small{=}\mathfrak{k}_0\small{+}\mathfrak{p}_0$ be a Cartan decomposition of the Lie algebra \mathfrak{g}_0 of G , where \mathfrak{k}_0 is the Lie algebra of K and \mathfrak{p}_0 is the orthogonal complement of f_0 relative to the Killing form (,) of g_0 . Let g, f , p denote, respectively, the complexifications of g_0 , f_0 , \mathfrak{p}_0 . We shall assume throughout that $\mathfrak k$ contains a Cartan subalgebra $\mathfrak h$ of $\mathfrak g$; i.e. we assume G and K have the same rank. This will be the case in particular when G/K is Hermitian. Let Δ be the set of non-zero roots of (g, h) , let Δ_k , Δ_n denote the compact, non-compact roots respectively in Δ , let $\Delta^+ \subset \Delta$ be an arbitrary choice of a system of positive roots, let $\Delta_k^+ = \Delta^+ \cap \Delta_k$, $\Delta_n^+ = \Delta^+ \cap \Delta_n$, and let $2\delta = \langle \Delta^+ \rangle$, $2\delta_k = \langle \Delta_k^+ \rangle$, $2\delta_n = \langle \Delta_n^+ \rangle$, where we write $\langle \Phi \rangle = \sum_{\alpha} \alpha$ for $\Phi \subset \Delta$. Let $\mathcal F$ denote the integral linear forms Λ on \mathfrak{h} ; i.e. $\Lambda \in \mathfrak{h}^*$ (the dual space of \mathfrak{h}) satisfies: $\frac{\Delta(\Lambda, \alpha)}{(\alpha, \alpha)}$ is an integer for each α in Δ . We define

(2.1)
$$
\mathcal{F}'_0 = \{ \Lambda \in \mathcal{F} | (\Lambda + \delta, \alpha) \neq 0 \text{ for } \alpha \text{ in } \Delta \text{ and } (\Lambda + \delta, \alpha) > 0 \text{ for } \alpha \text{ in } \Delta_k^* \} .
$$

Let \mathfrak{g}_α be the (one dimensional) root space of $\alpha{\in}\Delta$. Given $\Lambda{\in}\mathcal{F}_0'$ $\Lambda{+}\delta_\pi$ is the highest weight with respect to Δ_k^+ of an irreducible representation $\tau_{\Lambda+\delta_n}$ of $\mathfrak k.$ The Killing form of g_0 induces a real inner product on p_0 and since p_0 is even dimensional (because G and K are of equal rank) the spin representation σ of $\mathfrak{so}(p_0)$ has a decomposition $\sigma = \sigma^+ \oplus \sigma^-$ into two irreducible representations σ^{\pm} . Let

$$
\chi^{\pm} = \sigma^{\pm} \circ (\mathrm{ad}_{\mathfrak{k}_0})|_{\mathfrak{p}_0}
$$

where $(\text{ad}_{t_0})|_{\mathfrak{p}_0}$ is the adjoint representation of \mathfrak{k}_0 on \mathfrak{p}_0 . Then $\chi^{\pm}\otimes \tau_{\Lambda+\delta_n}$ always integrates to a representation of *K* (which we shall denote by the same symbol) for $\Lambda \in \mathcal{F}_0$ even though $\tau_{\Lambda+\delta_n}$ may not. Let Ω denote the Casimir operator of G and let \hat{G} denote the equivalence classes of irreducible unitary representations (π, H_{π}) of G on a Hilbert space H_{π} . Given $\Lambda \in \mathcal{F}'_0$ we shall want to pin down the structure of a $(\pi, H_{\pi}) \in \hat{G}$ such that $\pi(\Omega) = (\Lambda, \Lambda + 2\delta)$ l and such that $\text{Hom}_K(\pi, \, \mathcal{X}^\pm \otimes \tau_{\Lambda + \delta}) = 0.$ Here H^*_π also denotes the space of K finite vectors in *H** which is regarded as a *UQ* module where *UQ* is the universal enveloping algebra of g; thus $\pi(\Omega)$ is well-defined. We shall need the following additional notation. If $\theta \subset \mathfrak{g}$ is a parabolic subalgebra we shall write $\theta = m+u$ for its Levi decomposition where m and u denote the reductive and nilpotent parts respec tively of θ , $\Delta(m)$ for the roots of m, $\theta_{u,n}$ for the set of non-compact roots in the nilpotent radical u, *M* for the closed Lie subgroup of G whose complexified Lie algebra is m, and we shall write $2\delta_{u,n} = \langle \theta_{u,n} \rangle$. Let $c: \mathfrak{g}_0 \rightarrow \mathfrak{g}_0$ denote the Cartan

involution for the Cartan decomposition $g_0 = \mathbf{f}_0 + \mathbf{p}_0$ above. Let *F* be a finitedimensional irreducible g module and let $\theta=\mathfrak{m}+\mathfrak{u}\supset \mathfrak{h}$ be a c stable parabolic subalgebra of $\mathfrak g$ such that the space F^* of $\mathfrak u$ invariants is a one dimensional unitary M module. $\;\;\text{If}\;\lambda \!\in\! \mathfrak{m}^*$ is the differential of F^\ast then $\lambda(\Delta(\mathfrak{m}))\!=\!0$ and we shall write $A_{\theta}(\lambda)$ for the unique (up to equivalence) irreducible g module with minimal t type $\lambda |_{\mathfrak{h}} + 2\delta_{\mu,\mathfrak{n}}$. This means that $A_{\theta}(\lambda)$ is the only irreducible g module such that (i) $A_{\theta}(\lambda) \vert_{\mathbf{r}}$ contains the irreducible \mathbf{t} module with Δ_{k}^{+} -highest weight $\lambda\left| \right._{\mathfrak{h}}+2\delta_{\mathfrak{u},\mathfrak{n}}$ and (ii) the $\Delta_{\mathfrak{k}}^*$ -highest weight of any irreducible \mathfrak{k} submodule of $A_{\theta}(\lambda)|_1$ is of the form $\lambda|_1 + 2\delta_{\mu,n} + \sum_{\alpha \in \mathbb{Z}} n_{\beta} \beta$ where $n_{\beta} \geq 0$. For the existence $P = v$ _{u,n} and construction of the g modules $A_{\theta}(\lambda)$ the reader may consult [16], [25]. One knows that the special t type $\lambda |_{\mathfrak{h}} + 2 \delta_{u,n}$ occurs exactly once in $A_{\theta}(\lambda)|_{\mathfrak{k}}$. Now let W be the Weyl group of $(G, 0)$ and let W_K be the subgroup of W generated by reflections corresponding to compact roots. For $\Lambda \in \mathcal{F}'_0$ let

$$
(2.3) \t\t\t P(\Lambda) = {\alpha \in \Delta | (\Lambda + \delta, \alpha) > 0}
$$

be the system of positive roots corresponding to the regular element $\Lambda + \delta$, let

(2.4)
$$
Q_{\Lambda} = {\alpha \in \Delta_n^+ | (\Lambda + \delta, \alpha) > 0}
$$

$$
P_n^{(\Lambda)} = P^{(\Lambda)} \cap \Delta_n, \quad 2\delta^{(\Lambda)} = \langle P^{(\Lambda)} \rangle, \quad 2\delta_n^{(\Lambda)} = \langle P_n^{(\Lambda)} \rangle
$$

and for $w_1 \in W$, $\tau_1 \in W_K$ let

$$
\begin{array}{lll} \text{(2.5)} & \quad & \Phi_{w_1}^{(\Lambda)} = w_{\rm l} (-P^{(\Lambda)}) \cap P^{(\Lambda)}\,, & \Phi_{w_1} = w_{\rm l} (-\Delta^+) \cap \Delta^+ \\ & & \\ & \Phi_{\tau_1}^{\rm k} = \tau_{\rm l} (-\Delta_{\rm r}^+) \cap \Delta_{\rm r}^+\,. \end{array}
$$

Proposition 2.6. Let $\tau \in W_K$ and let $w \in W$ be such that $\Delta_k^{\dagger} \subset wP^{(\Delta)}$. Then $\Phi_{\tau}^{(\Lambda)}{}_{w} = \Phi_{\tau}^{k}{}_{-1} \cup (\Phi_{\tau}^{(\Lambda)}{}_{w} - \Phi_{\tau-1}^{k}), \ \Phi_{\tau}^{(\Lambda)}{}_{u} - \Phi_{\tau-1}^{k} = {\alpha \in P_{n}^{(\Lambda)} | w^{-1} \tau \alpha \in -P^{(\Lambda)}}$. Also

Proof. If $\alpha \in \Phi_{\tau-1}^k$ then $\alpha \in \Delta_k^+ \subset P^{(\Lambda)}$ and $\tau \alpha \in -\Delta_k^+ \subset w$. $P^{(\Lambda)} \Rightarrow \Phi_{\tau^{-1}}^k \subset \Phi_{\tau^{-1}w}^{(\Lambda)}$ and hence $\Phi_{\tau^{-1}w}^{(\Lambda)} = \Phi_{\tau^{-1}}^k \cup (\Phi_{\tau^{-1}w}^{(\Lambda)} - \Phi_{\tau^{-1}}^k)$. If $\sum_{\tau=1}^{\infty} \Phi_{\tau-1}^k$ then $\alpha \in P^{(\Lambda)}$, $w^{-1}\tau \alpha \in -P^{(\Lambda)}$ and we claim $\alpha \notin \Delta_k^*$. For otherwise $\tau \alpha \in \Delta_k^+$ since $\alpha \notin \Phi_{\tau}^k$ -i. Then $\tau \alpha \in wP^{(\Lambda)} \Rightarrow w^{-1}\tau \alpha \in P^{(\Lambda)}$ is a contradiction. Thus we must have $\alpha \in P^{(\Delta)} - \Delta_k^+ = P^{(\Delta)}_n$; i.e. $\Phi^{(\Delta)}_1{}_{w} - \Phi_{\tau-1}^k$ ${\alpha \in P^{\langle \Lambda \rangle}_n | w^{-1} \tau \alpha \in -P^{\langle \Lambda \rangle }}$. Conversely ${\alpha \in P^{\langle \Lambda \rangle}_n | w^{-1} \tau \alpha \in -P^{\langle \Lambda \rangle }} \subset \Phi^{ \langle \Lambda \rangle}_{\tau} {}_{w} - \Phi^{k}_{\tau-1}$ since Φ_{τ}^k - $\Gamma \subset \Delta_k^+$ and since $\Delta_k \cap \Delta_n = \phi$. Clearly $\Phi_{w}^{(\Lambda)} \subset P_{n}^{(\Lambda)}$ since $\Delta_k^+ \subset wP^{(\Lambda)} \cap \Phi_{w}^{(\Lambda)}$ $P^{(\Lambda)}$ Q.E.D.

Using Proposition 2.6 we can now state the following theorem whose proof is given in [24] (see Theorem 2.15 there).

Theorem 2.7. Let $\Lambda \in \mathcal{F}_0'$ in (2.1), let $P^{(\Lambda)}$ be the corresponding positive system in (2.3), and let σ \in W be the unique Weyl group element such that $\sigma \Delta^+$ $\!=$ $\!P^{(\Lambda)}.$

Let $(\pi, H_*)\in G$ be such that $\pi(\Omega)$ = $(\Lambda, \Lambda+2\delta)$ l and such that $\text{Hom}_K(\pi, \chi^{\pm} \otimes$ $(\tau_{\Lambda + \delta_n})$ \neq 0. Then there is a pair $(\tau, w) \in W_K \times W$ and a c stable parabolic sub*algebra* $\theta = m + n$ of g containing a Borel subalgebra $\mathfrak{h} + \sum_{\alpha \in \Delta_1^+} g_\alpha$ where $\Delta_1^+ \supset \Delta_k^+$ such that that

(i) $H_* = A_{\theta}(\lambda)$ and the minimal $\mathfrak k$ type $\lambda \left| \right._{\mathfrak h} + 2\delta_{u,n}$ (which characterizes H_*) $\textit{has the form} \ \lambda\mid_{\mathfrak{h}}+2\delta_{u,n}$ $=$ $\Lambda+\delta_{n}+\tau^{-1}(w\delta^{(\Lambda)}-\delta_{k})$

 $\tilde{f}(\text{ii}) \quad (\tau, \, \textit{w}) \; \textit{satisfy} \; \Delta^*_k \, \textit{\textsf{C}} \, \textit{w} P^{(\Lambda)}, \, \tau (\Lambda + \delta - \delta^{(\Lambda)}) \!=\! \textit{w} (\Lambda + \delta - \delta^{(\Lambda)}) \!=\! \Lambda + \delta - \delta^{(\Lambda)},$ $\Phi^{(\Lambda)}_w$, $\Phi^{(\Lambda)}_{\tau}{}_{w} - \Phi^{k}_{\tau-1}$, and $\{\alpha \in P^{(\Lambda)}_{n} | \tau\alpha \in -P^{(\Lambda)}_{n}\}$ are contained in $\{\alpha \in P^{(\Lambda)}_{n} | (\Lambda + \delta - \delta^{(\Lambda)}, \alpha) = 0\}$, and $(-1)^{|\Phi_{\sigma}|} = \pm (-1)^{|\Phi^{(\Lambda)}_{w}|} = \pm (-1)^{n+|\theta_{u,n}|}$ where $|S|$ denotes *the cardinality of a set S and* $n=\frac{1}{2}$ dim_{*R*} G/K^{1} (see (2.5)); *also* $\Phi_{\tau-1}^k \subset \{\alpha \in \Delta_k^+\}$ $(\Lambda + \delta - \delta^{(\Lambda)}, \alpha) = 0$

(iii) the relative Lie algebra cohomology $H^{j}(\mathfrak{m}, \, \mathfrak{m} \cap \mathfrak{k}, \, \mathcal{C})$ (for the trivial *module <code>C=the complex numbers) is non-zero for j=n* $-$ $|\theta_{u,n}|$ $-$ $|\$ *{* α \in $P_n^{(\Lambda)}$ \mid $w^{-1}\tau\alpha$ \in </code> $-P^{(\Lambda)}$. Hence the latter number is even.

REMARKS, (i) If *F* is the finite-dimensional irreducible g module with P^(Λ)-highest weight $Λ + δ - δ^(Λ)$ then $H_α$ in Theorem 2.7 satisfies

$$
\operatorname{Hom}_K(H_\pi, \wedge^i p \otimes F) = H^i(\mathfrak{g}, \mathfrak{k}, H_\pi \otimes F^*) = H^{i-|\theta_{\mathfrak{u},n}|}(\mathfrak{m}, \mathfrak{m} \cap \mathfrak{k}, C) \quad \text{for } i \geqslant 0
$$

(ii) $\Lambda + \delta_n + \tau^{-1}(w\delta^{(\Lambda)} - \delta_k)$ is the only t type which occurs both in π/K and in $\chi^{\pm} \otimes \tau_{\Lambda + \delta_n}$

(iii) If $\sigma_1 \in W$ is the unique Weyl group element such that $\sigma_1 \Delta_1^+ = P^{(\Lambda)}$ then $\sigma_1 \lambda$ | $\beta = \Lambda + \delta - \delta^{(\Lambda)}$ (see [24]).

(iv) The proof of Theorem 2.7 leans heavily on the recent unpublished results of D. Vogan [21]. Vogan's results depend in part on the important theorem of S. Kumaresan [9] which specifies the structure of an irreducible t component of Λ p that can occur in an irreducible unitary g module H_{τ} when $\pi(\Omega)=0.$

(v) $\Phi_{\sigma} = \Delta_{n}^{+} - Q_{\Lambda}$.

3 Unitary representations intertwining Ad* *®τ^A*

We now assume that for G, *K* in section 2, the quotient *GjK* admits a *G* invariant complex structure; i.e. *GjK* is a Hermitian symmetric domain. We choose the positive system Δ^+ above to be compatible with the complex structures on *GjK*. This means that

$$
\mathfrak{p}^{\pm} = \sum_{\pm \alpha \in \Delta_n^+} \mathfrak{g}_{\alpha}
$$

where $\mathfrak{p} = \mathfrak{p}^+ \oplus \mathfrak{p}^-$ is the splitting of $\mathfrak p$ into the spaces of holomorphic and anti-

¹⁾ Hence $|\theta_{u,n}| = \dim u \cap \mathfrak{p}.$

holomorphic tangent vectors p^+ , p^- respectively at the origin in G/K . The spaces p^{\pm} are K and $\mathfrak k$ stable abelian subalgebras of g. The condition of the compatibility of Δ^+ with a G invariant complex structure is equivalent to the following: every $\alpha \in \Delta_n^+$ is *totally positive*; i.e. for each α in Δ_n^+ we have $\alpha + \beta \in \Delta_n^+$ for any $\beta \in \Delta_k$ such that $\alpha + \beta \in \Delta$. If $\mu \in \mathfrak{h}^*$ is integral and Δ_k^+ dominant we write (τ^μ , *Vμ)* for the corresponding irreducible of representation of f (or of *K* if $(\tau_{\mu}, V_{\mu}) \in \hat{K}$). Let L^{\pm} denote the representation space of χ^{\pm} . Then we have

$$
\sum_{(-1)^{j}=\pm 1} \bigoplus \Lambda^{n-j} \mathfrak{p}^+ = L^{\pm} \otimes V_{\delta_n}
$$

as K modules. Here note that dim $V_{\delta_n} = 1$ by Weyl's formula since $(\delta_n, \alpha) = 0$ for $\alpha \in \Delta_k^+$ in the Hermitian symmetric case. Again $n=\frac{1}{2}$ dim_{*R*} G/K= $\dim_{\mathbf{C}} G/K = |\Delta^*_n|$. We now prove the following Hermitian analogue of Theorem 2.7.

Theorem 3.3. Let Λ , $P^{(\Lambda)}$ σ be as in Theorem 2.7 where Λ is the Δ_k^+ -highest *weight of* $(\tau_{\Lambda}, V_{\Lambda}) \in K$. Let $(\pi, H_{\pi}) \in \hat{G}$ be such that $\pi(\Omega) = (\Lambda, \Lambda + 2\delta)1$ and *such that* $\text{Hom}_K(H_\tau, \wedge^q \mathfrak{p}^+ \otimes V_\Lambda) \neq 0$ where $q \geq 0$ is fixed. Then there is a pair $(\tau, w) \in W_K \times W$ and a c stable parabolic subalgebra $\theta = m + u$ of θ containing a *Borel subalgebra* \mathfrak{h} + $\sum_{\alpha \in \Delta_1^+} \mathfrak{g}_{\alpha}$ where $\Delta_1^{\dagger} \supset \Delta_k^{\dagger}$ such that H_{α} , (τ, w) , θ satisfy con $ditions$ (i), (ii), (iii) of Theorem 2.7 where in (ii) \pm is chosen according as $(-1)^{n-q}$ $=\pm 1.$ *If* $A_{\Lambda,\tau,w} = {\alpha \in P_n^{(\Lambda)} | w^{-1} \tau \alpha \in -P^{(\Lambda)}}$ (see Proposition 2.6), then q satisfies $q=$ $|A_{\Lambda,\tau,w}|-2|Q_\Lambda \cap A_{\Lambda,\tau,w}| + |Q_\Lambda|$ where Q_Λ is given by (2.4).

Proof. Suppose that $\text{Hom}_K(H_\pi, \Lambda^q \mathfrak{p}^+ \otimes V_\Lambda) \neq 0$. Writing $q = n - (n-q)$ and using (3.2) we have for $(-1)^{n-q} = \pm 1$ the *K* module inclusion $\Lambda^q \mathfrak{p}^+ \otimes V_{\Lambda} \subset$ $L^{\pm} \otimes V_{\delta_n} \otimes V_{\Lambda} = L^{\pm} \otimes V_{\Lambda + \delta_n}$ so that $\text{Hom}_K(H_{\sigma}, L^{\pm} \otimes V_{\Lambda + \delta_n}) \neq 0$ since $H_{\sigma}|_K$ and Λ^4 **p**⁺ \otimes V_A contain a common *K* type V_μ . Thus Theorem 2.2 applies. Tbe Δ^*_k -highest weight μ satisfies $\mu = \Lambda + \langle Q_1 \rangle$ where $Q_1 \subset \Delta^*_n$ such that $|Q_1| = q$. Let $Q_2 = \Delta^*_n - Q_1$ so that $\mu = \Lambda + 2\delta_n - \langle Q_2 \rangle$. Define $Q_3 = (Q_\Lambda - Q_2) \cup -(Q_2 \cap Q'_\Lambda)$ $Q \triangleleft Q_{\Lambda} \cup -Q'_{\Lambda}$ where $Q'_{\Lambda} = \Delta_{\pi}^{+} - Q_{\Lambda}$. Then one easily checks that

(3.4)
$$
|Q_3| = |Q_2| - 2|Q_2 \cap Q_\Lambda| + |Q_\Lambda| \text{ and}
$$

$$
\langle Q_3 \rangle = \langle Q_\Lambda \rangle - \langle Q_2 \rangle.
$$

Let $Q_4 = P_n^{(\Lambda)} - Q_3$. One has $\delta_n + \delta_n^{(\Lambda)} = \langle Q_\Lambda \rangle$ so that using (3.4) $\mu = \Lambda + \delta_n + \delta_n$. $\langle Q_2\rangle{=}\Lambda{+}\delta_{\rm z}{+}\zeta_{\rm z}{-}\zeta Q_{\rm A}{\rangle}{+}\zeta Q_3{\rangle}{=}\Lambda{+}\delta_{\rm z}{+}\delta_{\rm z}^{\rm (A)}{-}\zeta Q_4{\rangle}.$ On the other hand by remark (ii) above $\Lambda + \delta_s + \tau^{-1} (w \delta^{(\Lambda)} - \delta_s)$ is the only ${\bf f}$ type occurring both in $\pi|_I$ and $\chi^{\pm}\otimes \tau_{\Lambda+\delta_{n}}$ which means that $\mu{=}\Lambda{+}\delta_{n}{+}\tau^{-1}(w\delta^{(\Lambda)}{-}\delta_{k}){=}\Lambda{+}\delta_{n}{+}\delta^{(\Lambda)}_{n}{-}\zeta Q_{4}\rangle$ and hence $\tau^{-1}(w\delta^{(\Lambda)}-\delta_k)=\delta^{(\Lambda)}_n-\langle Q_4\rangle$. Therefore $\langle Q_4\cup\Phi^k_{\tau^{-1}}\rangle$ (see (2.5)) = Thus by (5.10.2) of Kostant [8] $Q_4 \cup \Phi_{\tau}^k$ -1= $\Phi_{\tau}^{(\Lambda)}$ _{*r*}. Then Q_4 = $\Phi_{\tau}^{(\Lambda)}$ _{*r*}-1=

 $A_{\Lambda,\tau,w}$ (by Proposition 2.6) and since $Q_4 = P_n^{(\Lambda)} - Q_3$, $Q_2 = \Delta_n^+ - Q_1$ we get $|A_{\Lambda,\tau,w}| = 1$ $n-\left|Q_3\right| = n-\left|Q_2\right| + 2\left|Q_2\cap Q_A\right| - \left|Q_A\right|$ (by (3.4)) = $\left|Q_1\right| + 2\left|Q_2\cap Q_A\right| - \left|Q_A\right|$ $=$ *q*+2| $Q_2 \cap Q_1$ | - | Q_1 |. But by definition of Q_3 we have $Q_2 \cap Q_3 = Q_1 - Q_3 =$ $Q_{\Lambda} \cap Q_4 = Q_{\Lambda} \cap A_{\Lambda,\tau,w}$ and hence $|A_{\Lambda,\tau,w}| = q+2|Q_{\Lambda} \cap A_{\Lambda,\tau,w}| - |Q_{\Lambda}|$ This proves Theorem 3.3.

In the statement of Tbeorem 3.3 no conditions are imposed on $\Lambda \in \mathcal{F}'_0$. However suppose for example that we impose the following condition: we assume every $\alpha \in P_n^{(\Lambda)}$ is totally positive. Then we have the following refinement of Theorem 3.3.

Corollary 3.5. Let (τ_A, V_A) , $P^{(\Lambda)}$, σ , (π, H_{π}) be as in Theorem 3.3 with q fixed. Suppose in addition that $P^{(\Lambda)}$ is compatible with a G invariant complex *structure on* G/K *; i.e. assume every non-compact root in* $P^{(\Lambda)}$ *is totally positive. Then there is a Weyl group element w and a c stable parabolic subalgebra* $\theta = m + u$ *satisfying the conditions of Theorem* 2.7 where in (i), (ii), (iii) $\tau \in W_K$ may be *assumed equal to the identity element (thus for example* H_{τ} *is characterized by the minimal* \mathbf{f} type $\Lambda + \delta_n + w\delta^{(\Lambda)} - \delta_k$ and $j=n-\lfloor \theta_{u,n} \rfloor - \lfloor \Phi^{(\Lambda)}_w \rfloor$ and in (ii) \pm is *chosen according as* $(-1)^{n-q} = \pm 1$. *q satisfies q* = $|\Phi_{w}^{(\Delta)}| - 2|Q_{\Lambda} \cap \Phi_{w}^{(\Delta)}| + |Q_{\Lambda}|$.

Proof. Choose (τ, w) , $\theta = m+u$ as in Theorem 2.7 or Theorem 3.3. Since every non-compact root in $P^{(\Lambda)}$ is totally positive and since $\tau \in W_K$ we have $\tau P_n^{(\Lambda)} = P_n^{(\Lambda)}$. This implies that

$$
(3.6) \t\t A_{\Lambda,\tau,w} = \tau^{-1} \Phi_w^{(\Lambda)}
$$

Also one has $\tau Q_{\Lambda} = Q_{\Lambda}$ and hence by (3.6)

$$
\tau(Q_{\Lambda} \cap A_{\Lambda,\tau,\mathbf{w}}) = Q_{\Lambda} \cap \Phi_{\mathbf{w}}^{(\Lambda)}
$$

Thus in Theorem 3.3 we have $q = |A_{\Lambda,\tau,w}| - 2|Q_{\Lambda} \cap A_{\Lambda,\tau,w}| + |Q_{\Lambda}| =$ $2|Q_{\Lambda} \cap \Phi_{w}^{(\Lambda)}| + |Q_{\Lambda}|$. Also by (3.6) we see that in statement (iii) of Theorem 2.7 we have $j = n - |\theta_{u,n}| - |A_{\Lambda,\tau,w}| = n - |\theta_{u,n}| - |\Phi_w^{\Lambda}|$. To complete the proof of Corollary 3.4 we must show that in statement (i) of Theorem 2.7 $\tau^{-1}(w\delta^{(\Lambda)}-\delta_k)$ $=w\delta^{(\Lambda)}-\delta_k$. Now since the positive system $P^{(\Lambda)}$ is compatible with a G in variant complex structure on G/K we have $(\delta_n^{(\Lambda)}, \alpha) = 0$ for α in Δ_k^+ so that $\pm \delta_n^{(\Lambda)}$ is Δ_k^* -dominant. Also since $\Delta_k^* \subset wP^{(\Lambda)}$ we have $(w\delta^{(\Lambda)}, \alpha)=(\delta^{(\Lambda)}, w^{-1}\alpha)>0$ for α in Δ_k^+ so that $w\delta^{(\Delta)}-\delta_k$ is Δ_k^+ -dominant. Similarly $\Lambda+\delta-\delta^{(\Delta)}$ is $P^{(\Delta)}$ domi nant (since $(\Lambda + \delta, \alpha) > 0$ for α in $P^{(\Lambda)}$) and in particular $\Lambda + \delta - \delta^{(\Lambda)} + w \delta^{(\Lambda)} - \delta_k$ $A = \Lambda + \delta_n - \delta_n^{(\Lambda)} + w \delta^{(\Lambda)} - \delta_k$ is Δ_k^+ -dominant. Moreover $\tau^{-1}(\Lambda + \delta - \delta^{(\Lambda)} + w \delta^{(\Lambda)} - \delta_k)$ δ_k) = Λ + δ - δ^(Λ) + τ⁻¹(wδ^(Λ) - δ_k) (since τ⁻¹(Λ + δ - δ^(Λ)) = Λ + δ - δ^(Λ) by statement (ii) of Theorem 2.7)= $\Lambda + \delta_n - \delta_n^{(\Lambda)} + \tau^{-1}(w\delta^{(\Lambda)} - \delta_k) = \lambda \left[\frac{1}{2} + 2\delta_{u,n} - \delta_n^{(\Lambda)} \right]$ which is also Δ_k^+ -dominant since $-\delta_n^{(\Lambda)}$ is Δ_k^+ -dominant. But since only one transform of $\Lambda + \delta - \delta^{(\Lambda)} + w \delta^{(\Lambda)} - \delta_k$ under the Weyl group W_K can be Δ_k^* -dominant we conclude that $\Lambda + \delta - \delta^{(\Lambda)} + w \delta^{(\Lambda)} - \delta_k = \tau^{-1}(\Lambda + \delta - \delta^{(\Lambda)} + w \delta^{(\Lambda)} - \delta_k) = \Lambda + \delta - \delta^{(\Lambda)}$

 $-\delta_k$) and hence $w\delta^{(\Lambda)} - \delta_k = \tau^{-1}(w\delta^{(\Lambda)} - \delta_k)$ as desired.

Proposition 3.8. *Suppose in Theorem* 3.3 *the parabolic subalgebra θ=m+n is* g *itself.* Then $\Lambda = \delta^{(\Lambda)} - \delta$ and $q = n - |Q_\Lambda|$.

Proof. $\theta = \theta$ means that $u=0$, $m = \theta$. Then $\theta_{u,n} = \phi$ and $\Delta(m) = \Delta$. Recalling that $\lambda(\Delta(m))=0$ (see section 2) we have $\lambda(\Delta)=0$ and hence $\lambda|_b=0$. By remark (iii) following Theorem 2.7 $\sigma_1\lambda|_p = \Lambda + \delta - \delta^{(\Lambda)}$; hence $\Lambda + \delta - \delta^{(\Lambda)} = 0$ $\Rightarrow \Lambda = \delta^{(\Lambda)} - \delta$. Also since $\theta_{\mu,n} = \phi$ the equality of t types $\lambda | \phi + 2\delta_{\mu,n} = \Lambda + \delta_n + \delta_n$ $\tau^{-1}(w\delta^{(\Lambda)}-\delta_k)$ in (i) of Theorem 2.7 reduces to $0=\delta_n^{(\Lambda)}+\tau^{-1}(w\delta^{(\Lambda)}-\delta_k)$, since $\Lambda = \delta^{(\Lambda)} - \delta = \delta^{(\Lambda)}_n - \delta_n$ and so $\Lambda + \delta_n = \delta^{(\Lambda)}_n$. But this says that (see (2.5)) and hence $\Phi_{\tau^{-1}w}^{(\Delta)} = P_n^{(\Delta)} \cup \Phi_{\tau^{-1}}^k$ by (5.10.2) of [8]; i.e. or $A_{\Lambda,\tau,w} = P_n^{(\Lambda)}$ by Proposition 2.6. Then by Theorem 3.3 $q = | A_{\Lambda,\tau,w} | -2 | Q_\Lambda \cap$ $A_{\Lambda,\tau,w}$ + $|Q_{\Lambda}|$ = $n-2|Q_{\Lambda}|$ + $|Q_{\Lambda}|$ = $n-|Q_{\Lambda}|$.

Proposition 3.9. Let $\Lambda \in \mathcal{F}'_0$ be such that every non-compact root in $P^{(\Lambda)}$ is *totally positive. Let*

$$
\mathfrak{p}^{(\Lambda)+} = \sum_{\alpha \in P_n^{(\Lambda)}} \mathfrak{g}_{\alpha}
$$

be the $\mathfrak k$ module of holomorphic tangent vectors for the corresponding G invariant *complex structure on G/K compatible with* $P^{(\Lambda)}$; *cf.* (3.1). Suppose $w \in W$ is a Weyl group element such that $\Delta_k^+ \subset wP^{(\Delta)}$. Then we have a t module inclusion

Proof. In the proof of Corollary 3.5 we observed that indeed $\delta_n^{(\Lambda)}+w\delta^{(\Lambda)}-\delta_k$ is Δ_k^* -dominant. Of course

$$
(3.11) \t\t\t \delta_n^{(\Lambda)} + w\delta^{(\Lambda)} - \delta_k = 2\delta_n^{(\Lambda)} - (\delta^{(\Lambda)} - w\delta^{(\Lambda)}) = \langle P_n^{(\Lambda)} - \Phi_w^{(\Lambda)} \rangle.
$$

Write $P_n^{(\Lambda)} - \Phi_w^{(\Lambda)} = {\alpha_1, \dots, \alpha_l}, t = n - |\Phi_w^{(\Lambda)}|$, and let

(3.12) *X = XaiΛ~ ΛXa^t* where %αy egαy -{0} .

We claim that $\chi \in \wedge^i \mathfrak{p}^{(\Lambda)+}$ is a Δ^*_k -highest weight vector. By (3.11) χ is clearly a weight vector of the weight $\delta_n^{(\Lambda)}+w\delta^{(\Lambda)}-\delta_k$. Let $\beta \in \Delta_k^+$ be arbitrary and choose $\chi_{\beta} \in \mathfrak{g}_{\beta}$ — {0}. We must show that

(3.13)
$$
\mathrm{ad}_{\chi_{\beta}}\chi=\sum_{j=1}^t\chi_{\alpha_j}\wedge\cdots\wedge[\chi_{\beta},\,\chi_{\alpha_j}]\wedge\cdots\wedge\chi_{\alpha_t}=0\,.
$$

If $\beta + \alpha_j$ is not a root $[\chi_\beta, \chi_{\alpha_j}] = 0$. Assume $\beta + \alpha_j$ is a root. Then $\beta + \alpha_j \in P_n^{(\Lambda)}$ since $\alpha_j \in P_n^{(\Lambda)}$ is totally positive. On the other hand $\alpha_j \notin \Phi_w^{(\Lambda)}$ implies $w^{-1} \alpha_j \in$ $P^{(\Lambda)}$. Also by hypothesis $\Delta_k^+ \subset wP^{(\Lambda)}$ so $w^{-1}\beta \in P^{(\Lambda)}$. Hence $w^{-1}(\beta+\alpha_j)=$

); i.e. $\beta + \alpha_j \in P_n^{(\Lambda)} - \Phi_w^{(\Lambda)}$ which implies that $\beta + \beta_j =$ some α_i , $i \neq j$. Then $[\chi_\beta, \chi_{\alpha_i}] =$ a multiple of χ_{α_i} . We conclude that (3.13) is valid and $U(\mathbf{t})\chi$ is a \mathbf{t} submodule of $\wedge^t \mathfrak{p}^{(\Lambda)+}$ t-equivalent to $V_{\delta_n^{\Lambda}} \chi_{+\omega \delta}(\Lambda)_{-\delta_k}$.

Corollary 3.14. Let Λ, $P^{(Λ)}$, and w be as in Proposition 3.9. Then we h ave the k module inclusion ${V}_{\Lambda+\delta_n+w}$ s $^{(\Lambda)}$ - $_{\delta_k}{\subset} {V}_{\Lambda+\delta-\delta}$ ($^{(\Lambda)}$) \otimes ${V}_{\delta_n^{(\Lambda)}+w}$ s $^{(\Lambda)}$ - $_{\delta_k}{\subset} {V}_{\Lambda+\delta-\delta}$ ($^{(\Lambda)}$) \otimes $t{=}n{-}|\,\Phi_u^{\text{{\tiny (}\Lambda)}}|$.

Proof.
$$
\Lambda + \delta_n + w \delta^{(\Lambda)} - \delta_k = \Lambda + \delta_n - \delta^{(\Lambda)}_n + \delta^{(\Lambda)}_n + w \delta^{(\Lambda)} - \delta_k
$$

$$
= \Lambda + \delta - \delta^{(\Lambda)} + \delta^{(\Lambda)}_n + w \delta^{(\Lambda)} - \delta_k.
$$

Corollary 3.15. Let $(\tau_A, V_A) \in \hat{K}$ where $\Lambda \in \mathcal{F}'_0$ and every non-compact *root in* $P^{(\Lambda)}$ is totally positive. Let $(\pi, H_{\pi})\in \hat{G}$ be such that $\pi(\Omega)$ =(Λ, Λ+2δ)l *and* $\text{Hom}_K(H_{\pi}, \wedge^q \mathfrak{p}^+ \otimes V_{\Lambda}) \neq 0$. Let $\mu = \Lambda + \delta_n + w \delta^{(\Lambda)} - \delta_k$ be the minimal \mathfrak{k} type *of H_{*}* given by Corollary 3.5. Then relative to the positive system $\bar{P}^{(\Lambda)}=P_{k}^{(\Lambda)} \cup$ $-P_{n}^{(\Lambda)} = \Delta_{k}^{+} \cup -P_{n}^{(\Lambda)},$ H_{π} is a highest weight \frak{g} module with highest weight μ .

Proof. We have \mathfrak{k} module inclusions $V_{\mu} \subset H_{\pi}$ and (by Corollary 3.14) $V_{\mu} \subset V_{\Lambda+\delta-\delta}(\Lambda) \otimes \Lambda^t \mathfrak{p}^{(\Lambda)+1}$ where $t = n - |\Phi_{w}^{(\Lambda)}|$ and where $\Lambda + \delta - \delta^{(\Lambda)}$ is $P^{(\Lambda)}$ $\delta^{\Delta}(\Delta \setminus \delta)$ dominant. Since $|(\Lambda + \delta - \delta^{\Delta}) + \delta^{\Delta}(\Lambda)|^2 - |(\delta^{\Delta}(\Lambda) \setminus \delta^{\Delta}(\Lambda)|^2 = |\Lambda + \delta|^2 - |(\delta, \delta)|^2 = 0$ $\pi(\Omega)$ Corollary 3.15 follows from Lemma 3.7 of [6] or from the proof of Lemma 2 of [4].

The fact that any $(\pi, H_{\pi}) \in \hat{G}$ as in Corollary 3.15 has to be a $\bar{P}^{(\Lambda)}$ -highest weight α module is also proved in [23] (see the proof of Lemma 2.4 there) by different means.

4. Vanishing theorems

In this section we again assume, as in section 3, that *GjK* is a Hermitian symmetric domain and that the positive system Δ^+ is compatible with the G invariant complex structure on *GjK.* We fix a discrete subgroup Γ of *G* which acts freely on G/K and for which the quotient $X=\Gamma\backslash G/K$ is compact. Let $\tau = \tau_{\Lambda} \in \mathbb{R}$ be a fixed finite-dimensional irreducible representation of *K* acting on a complex vector space V_A where $\Lambda \in \mathcal{F}'_0$ is the Δ^+_k -highest weight of τ . The induced C^{∞} vector bundle $E_{\tau} \rightarrow G/K$ has a holomorphic structure. To prove this one usually assumes that G is a real form of a complex Lie group $G^{\textbf{\textit{C}}}$ (i.e. G is linear). Since we are not imposing the latter assumption on G we appeal to the more general criteria of [19], [20] for the existence of holomorphic structures on homogeneous bundles. The induced sheaf $\theta_{\tau} \rightarrow X$ of abelian groups over X given in the introduction will also be denoted by θ_{Λ} . Let Ad⁴ denote the adjoint representation of K on $\wedge^q \mathfrak{p}^+$. Then as in [4] the sheaf cohomology *H*^{q}(*X, θ*_Δ) can be identified with the space $A(\mathrm{Ad}_{+}^{q} \otimes \tau_{\Lambda},$ (Λ, Λ+2δ), Γ) of auto morphic forms of type $(Ad^q_+ \otimes \tau_\Lambda, (\Lambda, \Lambda + 2\delta), \Gamma)$; i.e.

VANISHING THEOREMS FOR TYPE $(0, q)$ COHOMOLOGY II 103

(4.1)
$$
H^{q}(X, \theta_{\Lambda}) = \{f: G \to \wedge^{q} \mathfrak{p}^{+} \otimes V_{\Lambda} | f \text{ is } C^{\infty}, f(\gamma a) = f(a), f(a k^{-1}) = (\mathrm{Ad}_{q}^{+} \otimes \tau_{\Lambda})(k)f(a) \text{ for } (\gamma, a, k) \text{ in } \Gamma \times G \times K \text{ and} \Omega f = (\Lambda, \Lambda + 2\delta)f \}.
$$

By the formula of Matsushima-Murakami [14] we therefore have

(4.2)
$$
\dim H^{q}(X, \theta_{\Lambda}) = \sum_{\substack{(\pi, H_{\pi}) \in \hat{G} \\ \pi(\Omega) = (\Lambda, \Lambda + 2\delta)1}} m_{\pi}(\Gamma) \dim \text{Hom}_{K}(H_{\pi}, \Lambda^{q} \mathfrak{p}^{+} \otimes V_{\Lambda})
$$

where $m_{\pi}(\Gamma)$ is the multiplicity of π in the right regular representation of *G* on $L^2(\Gamma \backslash G)$. Using (4.2) we immediately deduce from Theorem 3.3 the following main theorem.

Theorem 4.3. Let $\Lambda \in \mathcal{F}_0'$ in (2.1) be the Λ_k^* -highest weight of $(\tau_{\Lambda}, V_{\Lambda}) \in \hat{K}$. Let $\sigma \in W$ be the unique Weyl group element such that $\sigma \Delta^+ = P^{(\Lambda)}$ where $P^{(\Lambda)}$ is the *system of positive roots in* (2.3). Suppose that $H^q(\Gamma \backslash G | K, \theta_\Lambda)$ \neq 0. Then there is *a pair* (τ, w) *in* $W_K \times W$ and a c stable parabolic subalgebra $\theta = m + u$ of g containing *the Borel subalgebra* \mathfrak{h} + \sum g_a *for some positive system* $\Delta_1^+ \supset \Delta_k^+$ (*cf. earlier* $\mathit{notation}$) such that $\alpha \in \Delta^{\perp}_+$

(i) $q = |A_{\Lambda,\tau,\mathbf{w}}|-2|Q_{\Lambda}\cap A_{\Lambda,\tau,\mathbf{w}}| + |Q_{\Lambda}|$ where $A_{\Lambda,\tau,\mathbf{w}}=$ { $\alpha \in P_n^{(\Lambda)}|w^{-1}\tau\alpha \in$ $-P^{(\Lambda)}$ *} and where* Q_{Λ} *is given by* (2.4)

(ii) $\Delta_k^+ \subset wP^{(\Lambda)}$ (so that by Proposition 2.6 $A_{\Lambda,\tau,w} = \Phi_{\tau-1}^{(\Lambda)}(w) - \Phi_{\tau-1}^k$), $\tau(\Lambda + \delta - \sigma)$ $\delta^{(\Lambda)}$)=w($\Lambda + \delta - \delta^{(\Lambda)}$)= $\Lambda + \delta - \delta^{(\Lambda)}$ *, and* $A_{\Lambda,\tau,w}$, $\Phi_{w}^{(\Lambda)}$ *, and* $\{\alpha \in P_{n}^{(\Lambda)} | \tau\alpha \in -P_{n}^{(\Lambda)}\}$ *are all contained in* $\{\alpha \in P_n^{(\Lambda)} | (\Lambda + \delta - \delta^{(\Lambda)}, \alpha) = 0\}$; $\Phi_{\tau}^{\ell} \cap \mathbb{C}$ $\{\alpha \in \Delta_k^+ | (\Lambda + \delta - \delta^{(\Lambda)}, \alpha) = 0\}$ α *)*=0}; see notation of (2.5)

(iii) the relative Lie algebra cohomology $H^j(\mathfrak{m}, \mathfrak{m} \cap \mathfrak{k}, C) \neq 0$ for $j =$ $n-|\theta_{u,n}| - |A_{\Lambda,\tau,w}|$ (hence the latter is an even number) where, as above, $\theta_{u,n}$ is the *set of non-compact roots in the nilradical* \mathfrak{u} *of* θ *and* $n = \frac{1}{2}$ dim_{*R*} G/K (iv) For $(-1)^{n-q} = \pm 1$ we have $(-1)^{|\Phi_{\sigma}|} = \pm (-1)^{|\Phi_{\mu}^{(n)}|} = \pm (-1)^{n+|\sigma_{\mu,n}|}$.

As has been noted $\Phi_{\sigma} = \Delta_{\pi}^{+} - Q_{\Lambda}$, and if $\sigma_{1} \in W$ is the unique Weyl group element such that $\sigma_1\Delta_1^+$ $=$ $P^{(\Lambda)}$ then (Λ $+$ δ $\delta^{(\Lambda)}$, σ_1 (Δ (m)) $=$ 0 where Δ (m) is the set of roots for the reductive part m of *θ.* From Corollary 3.4 we obtain

Corollary 4.4. Let $\Lambda \in \mathcal{F}_0'$ in Theorem 4.3 satisfy the condition that every *non-compact root in* $P^{(\Lambda)}$ *is totally positive. Then if* $H^q(\Gamma \backslash G | K, \theta_{\Lambda}) \! \neq \! 0$ *we can choose* $w \in W$ *satisfying* $\Delta_k^+ \subset wP^{(\Delta)}$ *and a c stable parabolic subalgebra* $\theta = m + \mu \supset$ $b+$ 9* *such that*

$$
\alpha \in \Delta_1^+ \supset \Delta_k^+ \n(i) \quad q = |\Phi_w^{(\Lambda)}| - 2|Q_{\Lambda} \cap \Phi_w^{(\Lambda)}| + |Q_{\Lambda}| \n(ii) \quad H^{n - |\theta_{u,n}| - |\Phi_w^{(\Lambda)}|} (m, m \cap I, C) \neq 0 \n(iii) \quad \Phi_w^{(\Lambda)} \subset {\alpha \subset P_n^{(\Lambda)} | (\Lambda + \delta - \delta^{(\Lambda)}, \alpha) = 0}.
$$

Statement (iv) *of Theorem* 4.3 *holds.*

Consider for example the special case when Λ is actually Δ^+ -dominant. Then $P^{(\Lambda)} = \Delta^+$ so that Λ indeed satisfies Corollary 4.4. Also in this case $Q_{\Lambda} = \Delta_n^+$ so that $Q_{\Lambda} \cap \Phi_w^{(\Lambda)} = \Phi_w^{(\Lambda)}$. Thus by (i) of Corollary 4.4 $H^q = 0 \Rightarrow$ $q = |\Phi_{w}^{(\Lambda)}| - 2 |\Phi_{w}^{(\Lambda)}| + n = n - |\Phi_{w}^{(\Lambda)}|$ and hence by (ii) $H^{q - |\theta_{u}, n|}(\mathfrak{m}, \mathfrak{m} \cap \mathfrak{k}, C) \neq 0$. Thus we have proved the following conjecture of R. Parthasarathy.

Corollary 4.5. Suppose the Δ_k^* -highest weight Λ of τ is actually Δ^+ -dominant. *Then if* $H^q(\Gamma \backslash G/K, \theta_\Lambda)$ \neq 0 so is $H^{q-\lfloor \theta_u, n \rfloor}(\mathfrak{m}, \mathfrak{m} \cap \mathfrak{k}, C)$ for some c stable parabolic *subalgebra θ=*m+u *of Q.*

(a.) Our argument shows moreover that in Corollary 4.5 q = $n \mid$ $w(-\Delta^+)\cap \Delta^+ \mid$ *(b.)* for some $w \in W$ with $\Delta_k^{\dagger} \subset w\Delta^{\dagger}$, $w(-\Delta^{\dagger}) \cap \Delta^{\dagger} \subset {\alpha \in \Delta_n^{\dagger}} (\Lambda, \alpha)=0$; $w\Lambda = \Lambda$. Let $l(w) = |w(-\Delta^+) \cap \Delta^+|$ (=length of w) and let

$$
(4.6) \t\t n_{\Lambda} = |\left\{ \alpha \in \Delta_n^+ \middle| (\Lambda, \alpha) > 0 \right\}|.
$$

Then $|\{\alpha \in \Delta_n^+ | (\Lambda, \alpha) = 0\}| = n - n_{\Lambda}$ so that by (b.) $l(w) \leq n - n_{\Lambda}$ and by (a.) $q=n-l(w)\geqslant n_A$. That is

Corollary 4.7 (Hotta-Murakami [4]). *Suppose A is A⁺ -dominant. Then H*^q($\Gamma \backslash G/K$, θ_{Λ})=0 for $q < n_{\Lambda}$ in (4.6). More generally for $H^q(\Gamma \backslash G/K, \theta_{\Lambda})$ \neq 0 $q=n-l(w)$ for some $w \in W$ satisfying $w(-\Delta^+) \cap \Delta^+ \subset \{\alpha \in \Delta^+_n \, | \, (\Lambda, \alpha)=0\}$, $w\Lambda=\Lambda$.

We define

(4.8)
$$
R = R(Q) = \min \{ |\theta_{u,n}| | \theta = c \text{ stable parabolic subalgebra of } g, \theta = g \}
$$
.

Again note that for $\theta = \theta$ u=0 and hence $|\theta_{u,n}| = \dim u \cap \phi = 0$. The values $R(G)$ have been computed by Vogan for general symmetric spaces. Specializing his results to the Hermitian case we have the following table for the irreducible Hermitian symmetric spaces.

In Theorem 4.3 $H^j(\mathfrak{m}, \mathfrak{m} \cap \mathfrak{k}, C) \neq 0$ for $j=n-|\theta_{u,n}|-|A_{\Lambda,\tau,w}|$ by (iii); hence *j* ≥ 0 . That is $|A_{\Lambda,\tau,w}| \leq n-|\theta_{u,n}|$ and if $\theta \neq \theta$ $|A_{\Lambda,\tau,w}| \leq n-R(G)$. Thus ap plying Proposition 3.8 we get

Proposition 4.10. Suppose in Theorem 4.3 that either $\Lambda + \delta^{(\Lambda)} - \delta$ or $q+n-\left|Q_{\Lambda}\right|$. Then $A_{\Lambda,\tau,w}$ there satisfies $|A_{\Lambda,\tau,w}|\leq n-R(G)$. Similarly w in $Corollary 4.4 satisfies $| \Phi_{w}^{(\Lambda)} | \leq n - R$$

Note that, in general, by Theorem 4.3 we always have $\left|A_{\Lambda,\tau,w}\right|, \, \left|\Phi_{w}^{(\Lambda)}\right| \leq$ $\left|\left\{\alpha \in P_n^{(\Lambda)}\middle| (\Delta + \delta - \delta^{(\Lambda)}, \alpha) = 0\right\}\right|$. In Corollary 4.7 $q = n - l(w)$ for $H^q \neq 0$. By Proposition 4.10. $l(w) \le n - R(G)$ if either $\Lambda + 0$ or $q+0$; i.e. $q=n-l(w) \ge R(G)$ which establishes

Corollary 4.11. Suppose Λ is Δ^+ -dominant. If $\Lambda \neq 0$ then $H^q(\Gamma \backslash G | K, \theta_{\Lambda})$ $=0$ for $0 \leqslant q < R(G)$. If $\Lambda = 0$ then $H^q(\Gamma \backslash G | K, \theta_{\Lambda}) = 0$ for $1 \leqslant q < R(G)$.

In particular we see that since for *G* in Table 4.9 rank of $G/K \le R(G)$ the following weaker version of Corollary 4.11 holds.

Corollary 4.12. *If G|K is irreducible then* $H^q(\Gamma \backslash G/K, \theta_\Lambda) = 0$ for $0 \leq q < \theta$ *rank fo G/K,* Λ Δ ⁺-dominant, Λ \neq 0. *The* (0, *q*) *Betti number of* $\Gamma \backslash G/K$ *vanishes for* $1 \leqslant q$ *<rank of G/K.*

Corollary 4.12 is of course well-known; see Theorem 4.2 of [6] and Theorem 4 of [4]. In the case where *GjK* is irreducible a slight improvement of Corollary 4.11 is given by Theorem 3.5 of [23]. Another extreme case is the case $Q_A = \phi$; def. i.e. $(\Lambda + \delta, \alpha) < 0$ for $\alpha \in \Delta_n^*$, $P^{(\Lambda)} = \Delta_1^* = \Delta_n^* \cup -\Delta_n^*$. If $H^* \neq 0$ then from Corollary 4.4 $q = |\Phi_w^{(\Lambda)}|$ for some $w \in W$ such that $\Delta_k^+ \subset w \Delta'_+$, $\Phi_w^{(\Lambda)} \subset {\{\alpha \in -\Delta_n^+ \mid \lambda \in \mathcal{C}_m\} \}$ $(\Lambda+2\delta_n, \alpha)=0$ } and (by (ii) of Corollary 4.4) $H^{n-q-1\theta_n,n}(\mathfrak{m}, \mathfrak{m}\cap \mathfrak{k}, \mathcal{C})\neq 0$ for some *c* stable parabolic $\theta = m + u$. By Proposition 3.8 $\theta \neq g$ unless $\Lambda = -2\delta_n$ or *q*=*n*. Barring the latter two cases we have $|\Phi_{w}^{(\alpha)}| \le n - R(G)$ by Proposition 4.10 so that $q \leq n-R(G)$. This gives

Corollary 4.13. Suppose $(\Lambda + \delta, \alpha)$ < 0 for α in Δ_n^* . If Λ \neq -2 δ_n then $H^q(\Gamma \backslash G | K, \theta_{\Lambda}) = 0$ for $q > n - R/(G)$. If $\Lambda = -2\delta_n$ then $H^q(\Gamma \backslash G | K, \theta_{\Lambda}) = 0$ for *n*—R(G)<q<n. In any case we always have $H^q(\Gamma \backslash G | K, \theta_\Lambda) = 0$ for $q > |\ \{\alpha \in K\}$ $-\Delta_{+}^{n} |(\Lambda+2\delta_{n}, \alpha)=0$

The last statement of Corollary 4.13 is statement (i) of Theorem 3.12 of [23]. However in [23] *G* is assumed to be linear. We now indicate how the main result of [23] (Theorem 2.3) can be deduced with the aid of Corollary 3.5; see Theorem 4.16.

Proposition 4.14 Let $\Lambda \in \mathcal{F}'_0$ and let $w \in W$ be a Weyl group element which

satisfies $\Delta_k^+ \subset wP^{(\Lambda)}$, $w(\Lambda + \delta - \delta^{(\Lambda)}) = \Lambda + \delta - \delta^{(\Lambda)}$, and $\Phi_w^{(\Lambda)} \subset \{\alpha \in P_n^{(\Lambda)} \mid (\Lambda + \delta - \delta^{(\Lambda)})\}$ ^(Λ), α)=0} (cf. (ii) of Theorem 4.3) Then $\Lambda + \delta - \delta^{(\Lambda)} + w\delta^{(\Lambda)}$ is a regular element (i.e. $(\Lambda + \delta - \delta^{(\Lambda)} + w\delta^{(\Lambda)}, \alpha) \neq 0$ for every α in Δ) and the corresponding positive *system*

(4.15)
$$
P' = {\alpha \in \Delta | (\Lambda + \delta - \delta^{\text{(A)}} + w\delta^{\text{(A)}}, \alpha) > 0} \text{ coincides with } wP^{\text{(A)}}.
$$

Also $P_n^{\text{(A)}} - \Phi_n^{\text{(A)}} = P' \cap P_n^{\text{(A)}}.$

Proof. For $\alpha \in \Delta_k^+$ $(\Lambda + \delta - \delta^{(\Lambda)} + w \delta^{(\Lambda)}, \alpha) = (\Lambda + \delta - \delta^{(\Lambda)}, \alpha) + (\delta^{(\Lambda)}, w^{-1}\alpha)$ >0 since $w^{-1}\Delta_k^+ \subset P^{(\Lambda)}$. Suppose $\alpha \in P_{n}^{(\Lambda)}$. If $(\Lambda + \delta - \delta^{(\Lambda)}, \alpha) = 0$ then $(\Lambda + \delta)$ $\delta - \delta^{(\Lambda)} + w \delta^{(\Lambda)}, \alpha = (\delta^{(\Lambda)}, w^{-1} \alpha) \pm 0.$ Assume $(\Lambda + \delta - \delta^{(\Lambda)}, \alpha) > 0.$ Then α $\phi_n^{(\Lambda)}$ since by hypothesis $\Phi_{n}^{(\Lambda)} \subset {\alpha \in P_n^{(\Lambda)} \mid (\Lambda + \delta - \delta^{(\Lambda)}, \alpha) = 0}$. Thus we must have $w^{-1}\alpha \in P^{(\Lambda)}$. Since $\Lambda + \delta - \delta^{(\Lambda)}$ is $P^{(\Lambda)}$ -dominant $(\Lambda + \delta - \delta^{(\Lambda)}, \alpha) + (\delta^{(\Lambda)}, \alpha)$ $w^{-1}\alpha$) >0 . Thus we have shown $(\Lambda + \delta - \delta^{(\Lambda)} + w\delta^{(\Lambda)}, \alpha) \neq 0$ for $\alpha \in P^{(\Lambda)}$ which proves $\Lambda + \delta - \delta^{(\Lambda)} + w \delta^{(\Lambda)}$ is regular. Let $\alpha \in P^{(\Lambda)}$ be arbitrary. Then $(\Lambda + \delta - \delta^{(\Lambda)})$ $(\delta^{(\Lambda)}+w\delta^{(\Lambda)}, w\alpha)$ = $(w^{-1}(\Lambda+\delta-\delta^{(\Lambda)}+w\delta^{(\Lambda)}), \alpha)$ = $(\Lambda+\delta,\alpha)$ (since $w^{-1}(\Lambda+\delta-\delta^{(\Lambda)})$ $w = A + \delta - \delta^{(A)}$ which is positive. That is $w\alpha \in P' \Rightarrow wP^{(A)} \subset P' \Rightarrow wP^{(A)} = P'$. Now $\Phi_{\omega}^{(\Lambda)} = w(-P^{(\Lambda)}) \cap P^{(\Lambda)} = -P' \cap P^{(\Lambda)}$ and since $\Phi_{\omega}^{(\Lambda)} \subset P_{n}^{(\Lambda)}$ the last equation implies that $P_n^{(\Lambda)} - \Phi_w^{(\Lambda)} = P' \cap P_n^{(\Lambda)}$ since $\Delta = P' \cup -P'.$

REMARK. In Proposition 4.14 (and hence in Theorem 4.3) the condition $\Phi_{\omega}^{(\Lambda)} \subset {\alpha \subset P_{n}^{(\Lambda)}} | (\Lambda + \delta - \delta^{(\Lambda)}, \alpha) = 0$ is automatically satisfied. Indeed for $\alpha\!\in\! \Phi_{\pmb w}^{(\Lambda)}\!\subset\! P_{\pmb n}^{(\Lambda)}\,0\!\leqslant\! (\Lambda+\delta\!-\!\delta^{(\Lambda)},\,\alpha)\!=\!(w^{\text{-}1}\!(\Lambda+\delta\!-\!\delta^{(\Lambda)}\!) ,\,w^{\text{-}1}\alpha)\!=\!(\Lambda+\delta\!-\!\delta^{(\Lambda)}\!,$ (since $w^{-1}\alpha \in P^{(\Lambda)}$) and so $(\Lambda + \delta - \delta^{(\Lambda)}, \alpha) = 0$.

Theorem 4.16, *Assume that G is linear and its complexίfication G^c is simply connected.* (In particular if $\Lambda \in \mathfrak{h}^*$ is Δ^*_k -dominant integral the irreducible finite*dimensional representation of* ϊ *defined by* Λ *integrates to a representation of K.)* Let $\Lambda \in \mathcal{F}'_0$ be such that every non-compact root in $P^{(\Lambda)}$ is totally positive. If $H^q(\Gamma \backslash G | K, \theta_{\Lambda})$ \neq 0 then there is a parabolic subalgebra θ_1 $\!=$ \mathfrak{m}_1 $\!+\mathfrak{u}_1$ of $\mathfrak g$ which *contains the specific Borel subalgebra* \mathfrak{h} + $\sum_{n=1}^{\infty}$ *g*^{*a*} *such that* $q=2|\theta_{1,n}\cap Q_{\Lambda}|+1$ $|\Delta_n^* - Q_\Lambda| - |\theta_{u_1,n}|$. Also $(\Lambda + \delta - \delta^{(\Lambda)}, \Delta(m_1)) = 0$.

Proof. If $H^q(\Gamma \backslash G/K, \theta_\Lambda) \neq 0$ then by (4.2) $\text{Hom}_K(H_\pi, \Lambda^q \mathfrak{p}^+ \otimes V_\Lambda) \neq 0$ for some $(\pi, H_{\pi})\in \hat{G}$ such that $\pi(\Omega)=(\Lambda, \Lambda+2\delta)$ l. By Corollary 3.5 H_{π} has minimal \mathfrak{k} type $\mu = \Lambda + \delta_n + w \delta^{(\Lambda)} - \delta_k$ for some Weyl group element w such that $\Delta_k^{\pm} \subset wP^{(\Lambda)}$ and $q=|\Phi^{{(\Lambda)}}_w|-2|\mathcal{Q}_\Lambda\cap\Phi^{{(\Lambda)}}_w| + |\mathcal{Q}_\Lambda|$; $w(\Lambda+\delta-\delta^{{(\Lambda)}})=\Lambda+\delta-\delta^{{(\Lambda)}}$ By Corollary 3.15 H_{τ} is a highest weight g module with highest weight μ relative to the positive system $\bar{P}^{(\Lambda)} = P_k^{(\Lambda)} \cup -P_n^{(\Lambda)} = \Delta_k^+ \cup -P_n^{(\Lambda)}$. Also $\mu + \delta_k - \delta_n^{(\Lambda)} =$ $\Lambda + \delta_n - \delta_n^{(\Lambda)} + w \delta^{(\Lambda)} = \Lambda + \delta - \delta^{(\Lambda)} + w \delta^{(\Lambda)}$ is regular by Proposition 4.14 (see remark following Proposition 4.14). Thus since *G* is assumed to be linear we can apply Parthasarathy's Theorem A of [17] to conclude the following:

 $\mu = \Lambda_0 + \langle \theta_{u_1,n} \rangle$ for some parabolic subalgebra $\theta_1 = m_1 + \mathfrak{u}_1$ of $\mathfrak g$ where \sum_{λ} θ_α and where $\Lambda_0 \in \mathfrak{h}^*$ is $P^{(\Lambda)}$ -dominant integral, and $(\Lambda_0, \Delta(\mathfrak{m}_1)) =$ Moreover by (3.49) of [17] $\theta_{u_1,n} = P' \cap P_n^{(\Lambda)}$ where P' is the positive system de fined by the regular element $\mu + \delta_k - \delta_n^{(\Lambda)}$. Hence by Proposition 4.14 $\theta_{u_1, n} =$ *n n n n n n**n**n******n n n**n******n n**n******n n**n******n n n******n n n n n n******n n n n n******n n n n n******n n A*₀⁺*δ*^{*(Λ)*}+*wδ*^(Λ)-δ^{*k*} (by $\Delta(m_1))$ =0. We also have $\vert \theta_{u_1,\textit{n}} \vert$ =n- $\vert \Phi^{\left(\Lambda\right)}_{\textit{w}} \vert$ so that q = $\vert \Phi^{\left(\Lambda\right)}_{\textit{w}} \vert$ -2 $\vert Q$ $+|Q_{\Lambda}|=2|Q_{\Lambda}\cap\theta_{u_{1},n}|-|\theta_{u_{1},n}|+|\Delta_{n}^{+}-Q_{\Lambda}|.$

REMARK. If additional information on the Weyl group element σ_1 above (where $\sigma_1 \Delta_1^+ = P^{(\Delta)}$) were available the preceding proof might not require the appeal to Theorem A of [17]. For example if it were known that $\langle P_n^{(\Lambda)} - \sigma_1 \Delta(m) \rangle$ $^{\circledR}$ $=$ $\delta_n^{A\prime}$ + w $\delta^{A\prime}$ \sim δ_k for θ = m+n¹ in Theorem 4.3 then Theorem 4.16 would follow (even for G non-linear) by taking $\theta_1 = \sigma_1 \theta$. However **®** is true only when certain additional restrictions on Λ are imposed.

Another classical vanishing theorem for the spaces $H^q(\Gamma \backslash G / K, \ \theta_{\Lambda})$ is the following one of Hotta and Parthasarathy; see Proposition 1 of [5].

Theorem 4.17. Let $\Lambda \in \mathcal{F}_0$ be the Δ_k^+ -highest weight of $(\tau_{\Lambda}, V_{\Lambda}) \in K$. Sup*pose that* $(\Lambda + \delta - \delta^{\Lambda \Lambda})$, α) > 0 for every α in $P_n^{\Lambda \Lambda}$. Then $H^q(\Gamma \backslash G/K, \theta_{\Lambda}) = 0$ for $q+|Q_{\Lambda}|$.

Here *G* is not assumed to be linear. Theorem 4.17 follows from a trivial application of Theorem 4.3. Namely if $H^q(\Gamma \backslash G/K, \theta_\Lambda) \neq 0$ then $q = |A_{\Lambda, \tau, w}|$ - $2|Q_{\Lambda} \cap A_{\Lambda,\tau,\mathbf{w}}| + |Q_{\Lambda}|$ where $A_{\Lambda,\tau,\mathbf{w}} \subset {\alpha \subset P_{n}^{(\Lambda)}} |(\Lambda + \delta - \delta^{(\Lambda)}, \alpha) = 0$. But $(\Lambda + \delta - \delta^{\Lambda \Lambda}), \alpha) > 0$ for $\alpha \in P_n^{(\Lambda)}$ by hypothesis so $A_{\Lambda, \tau, w} = \phi$. Thus $q = |Q_\Lambda|.$

References

- [1] A. Borel: *On the curvature tensor of the Hermitian symmetric manifold,* Ann. of Math. 71 (1960), 508-521.
- [2] A. Borel and N. Wallach: Continuous cohomology, discrete subgroups, and re presentations of reductive groups, Ann. of Math. Studies, 94, Princeton Univ. Press and Univ. Tokyo Press, 1980.
- [3] E. Calabi and E. Vesentini: *On compact locally symmetric Kdhler manifolds,* Ann. of Math. 71 (1960), 472-507.
- [4] R. Hotta and S. Murakami: *On a vanishing theorem for certain cohomology groups,* Osaka J. Math. 12 (1975), 555-564.
- [5] R. Hotta and R. Parthasarathy: *A geometric meaning of the multiplicities of integrable discrete classes in L² (Γ\G),* Osaka J. Math. 10 (1973), 211-234.

- [6] R. Hotta and N. Wallach: *On Matsushima's formula for the Betti numbers of a locally symmetric space,* Osaka J. Math. 12 (1975), 419-431.
- [7] M. Ise: *Generalized automorphic forms and certain homomorphic vector bundles,* Amer. J. Math. 86 (1964), 70-108.
- [8] B. Kostant: *Lie algebra cohomology and the generalized Borel-Weil Theorem,* Ann. of Math. 74 (1961), 329-387.
- [9] S. Kumaresan: *On the canonical k types in the irreducible unitary g modules with non-zero relative cohomology,* Invent. Math. 59 (1980), 1—11.
- [10] Y. Matsushima: *On the first Betti number of compact quotient spaces of higher dimentional symmetric spaces,* Ann. of Math. 75 (1962), 312-330.
- [11] : *A formula for the Betti numbers of compact locally symmetric Riemannian manifolds,* J. Differential Geom. 1 (1967), 99-109.
- [12] Y. Matsushima and S. Murakami: *On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds,* Ann. of Math. 78 (1963), 365-416.
- [13] \longrightarrow : On certain cohomology groups attached to Hermitian symmetric spaces, Osaka J. Math. 2 (1965), 1-35.
- [14] : *On certain cohomology groups attached to Hermitian symmetric spaces* (II), Osaka J. Math. 5 (1968), 223-241.
- [15] S. Murakami: Cohomology groups of vector-valued forms on symmetric spaces, Lecture notes, Univ. Chicago, 1966.
- [16] R. Partharathy: *A generalization of the Enright-Varadarajan modules,* Compo sitio Math. 36 (1978), 53-73.
- [17] : *Criteria for the unitarizability of some highest weight modules,* Proc. Indian Acad. Sci. 89 (1980), 1-24.
- [18] : *Holomorphic forms on Γ\G/K and Chern classes,* to appear.
- [19] J. Tirao and J. Wolf: *Homogeneous holomorphic vector bundles,* Indiana Univ. Math. J. 20 (1970), 15-31.
- [20] J. Tirao: *Square integrable representations of semisimple Lie groups,* Trans. Amer. Math. Soc. **190** (1974), 57-75.
- [21] D. Vogan: *Manuscript on the classification of unitary representations with relative Lie algebra cohomology,* Dept. Math., M.I.T.
- [22] ---------- Cohomology of Riemannian locally symmetric spaces, a lecture given at Brown Univ. and the Univ. of Utah.
- [23] F. Williams: *Vanishing theorems for type* $(0,q)$ cohomology of locally symmetric *spaces,* Osaka J. Math. 18 (1981), 147-160.
- [24] Remark on the unitary representations appearing in the Matsushima-*Murakami formula,* Lecture Notes in Math. 880: Non-Commutative Harmonic Analysis, from the Marselle Conference, June 1980, Springer-Verlag.
- [25] G. Zuckerman: *Unitary representations in complex homogeneous spaces,* Manu script, Dept. Math. Yale Univ.

Department of Mathematics University of Massachusetts Amherst, Mass. 01003 U.S.A.