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1. Introduction

Let £(X) denote the group of homotopy classes of self homotopy equivalences
of a space X, whose group structure is induced by map-composition. Very little
is known about this group in case X is a simply-connected CW complex with
three cells which is not an H-space. In this article we shall calculate £(X) for
the real and complex Stiefel manifolds of orthonormal 2-frames in n-space,

V, ,=0(n)|O(n—2) and W, ;= U(n)|Un—2).

2. Statement of the results

As is well known, W, , and V, , are sphere-bundles over spheres:

S?n—s l 5 .2 z > S2n—l’ Sn—z R V”,z z 3 S”_l
and have the following cell-structures (see James-Whitehead [9]);
W”,z — (Szn-s Ue2n—1) U 84"'4, Vn,z — (Sm—z lﬁ] en-—l) U 3
] p p

where 0 in W, , is the non-zero element 7,,_3Em,,_,(S* %) for odd z and 0 for
even 7, and  in V,, is 2 ¢,_, for odd # and O for even n. The characteristic
element X of the bundle, XEm,,_,(O(2n—2)) for W, , and XEx,_,(O(n—1)) for
V, 1 is reduced to &, EEm,,_,(0O(2n—3)) for W, , and EEx,_,(O(n—2)) for V, ,,
if n is even.

We shall prove

Theorem 2.1. Let n be odd, n=5. Then there exists a split exact sequence
1= (W, ) lx(Ker S) = EW, ) — Z,— 1,
where S is the suspension homomorphism S: ,,_,(S* %) — m,,_5(S™ 3.

Theorem 2.2. Let n be even, n=6. Then there exists a split exact sqeuence
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1 = 74y (S )+ 74 o(S* %) [Ker S > EW, ) = Z,— 1,
where S is the same as in Theorem 2.1. The action of —1E Z, is given by
(@, b) = (—a, —(—tan-3)b) for a€my,_(S*), bEm,,_(S* %)/Ker S.

Theorem 2.3. Let n be odd, n+3, 5,9 and let Tor G denote the finite part
of an abelian group G. Then E(V, ;) is isomorphic to Tor my,_y(V, 5) for n=3 mod
4 and, for n=1 mod 4 there is an exact sequence

1 Tor y_o(Vas) = EVna) = Zy— 1.

Theorem 2.4. Let n be even, n=6 and n+8. Then there exists a split exact
sequence

1 = 73y o(S* )4 720-o(S* ) H — E(WV, ) > Zyx 2, —> 1,
where H is the subgroup generated by J(En,-,) and the Whitehead product [75_,, t,_5]
(which s trivial for n=0 mod 4). The action of (—1, 1), (1, —1)EZ,X Z, is given
by
(—1,1)+(a, b) = (—(—tu-1)a, —b), (1, —1)+(a,b) = (—a, —(—¢,-)b)
for acm,,_(S*7Y), beEm,, (S H.
Remark. We can show that there exist exact sequences
152, EWsp)—=>Z,—> 1, 1 > (Z) > EWVs,) > Z,— 1,
1 (Z) - EWV,,) > DZ)xZy,— 1,
1> Zy+Zy— EVsy) = (Z) = 1,
where D(Z) denotes the generalized dihedral group.

3. Twisted homotopy operations and isotropy groups

Throughout this note we work in the category of based 1-connected CW
complexes. Consider a situation shown by the following commutative diagram

7} u
B— A —X

i 7 v
P /p
C —E=C,—> SB
d q
T=C,— SC
where C, is the cofibre of § and B, 4 and C are co H-groups.
Let n: C— CV C denote the comultiplication. The principal structure map



SELr HoMoToPY EQUIVALENCES OF STIEFEL MANIFOLDS 81

p: E— SBV E induces p": T*E— S?BV E and n induces a homotopy equivalence
n': TC— SCV C, where TC is the reduced torus over C, C X S'/*x S', and T4E
the space obtained from TE by shrinking i(a) X S* to a point for each ac 4. The
coaction of SC on T, T—SCV T, induces the action [SC, X]x [T, X]—[T, X]
which we denote by the dot.

Given an extension w: T—X of v, let I(w) denote the isotropy group of w
under the above action, that is, I(w)={y€[SC, X]: v-w=w}. Further we con-
sider another kind of isotropy group

IY(w) = {y<[SC, X]: v-w="} ,

in which == indicates a homotopy under 4. We blur the distinction between a
map and the homotopy class it represents.
Barcus-Barratt [2] and Rutter [23] have defined the homomorphisms

V(u, 0): [S4, X] — [SB, X]
and
V(v, p): [SE, X]— [SC, X] if @ is a suspension,
such that Im V(u, 0)=I(v) and Im V(v, p)=I(w). Similarly we may define
Vi(‘v: p): [S?B, X] — [SC, X]
by setting
(Tp)*p"*{B, v} =n"*{V'(v, p)B, p*v} for BE[S?B, X],

where Tp: TC—TE is the induced map. Note that, if 4= then V'(v, p)=
v(v, p)-

Lemma 3.1. If w is an extension of v to T, then Im V'(v, p)=14(w).

Lemma 3.2 (Functoriality). Suppose f is induced by the top square in the
commutative diagram

2.8

e'l ie
g u
A——>A—X

P’ i’l f 11/7{’

C— Cy—>C,
Then we have V'(v, fp"\B=V"(f, p') (S?g)*B.

As a dual counter-part of the operation in [16], we may define a secondary
homotopy operation
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¥ = ¥¥(v, p): Ker V(x, 0) — Cok Vi(v, p)
having the following property (the detail is worked out in [19]).

Theorem 3.3. The image of ¥ coincides with I(w)/I*(w), where w is an
extension of v.

Corollary 3.4. If V(u,0) is monic or V' (v, p) is epic, then I(w)=Im V'(v, p).

We say that the iterated cofibration ji is stable if there exists ¢: C—SBV 4

such that the composite C5SBV A—A is null-homotopic and pp=(1Vi)c+1p,
where 7,: E—>SBV E is the injection. Let ¢': SC—S?BV 4 be the map induced
by ¢. The following theorem is dual to Theorem (4.2) of James-Thomas [11].

Theorem 3.5. Vi(v, p)B=c"*{B, vi}.

4. Sphere-bundles over spheres

Let S"5T%.8" be a S™-bundle over S",n>1, and let X(T) €x,_,(O(m+1))
denote the characteristic element of this bundle. Let 6, ,(S™) be the image
of X(T) under =,_,(O(m+1))—m,_,(S™). James-Whitehead [10] have shown that
T has a cell-structure shown in the following diagram

0
S, g
li
gni PLo g P, g
Ty
Cp:T___> Sm+n

Lemma 4.1. Under the above notation we have

1) I=ji, wj=p; hence, pp==0.

2) If = admits a cross-sections, then there is £ Ex,_,(O(m)) such that £ goes to
X(T) under r,_(O(m))—n,_, (O(m+1)), and

P = i J(E)+[irtn, t2tn] and [s, ] = 14 J(E)

where §* 5 Cy=S8"\/ S™ <% S™ denote the injections.
3) (G. Whitehead [27; p. 289]) Let H be the Hopf invariant and let | be the
Hopf-Whitehead ] homomorphism. Then
HJ(XT)) = +5"9.

4) (I. M. James [8]) We have Sp==(St)J(X(T)).
5) (I. M. James [6]) ji is stable with [it,, iy,] as ¢, where 2<m=<n—1.
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REMARK. James proved 5) for m<<n—1. The assertion for m=n—1 and
0=2¢,, can be seen by inspection of cohomology with coefficients in Z,.

5. Proofs of Theorems 2.1 and 2.2

In this section X(W,,) is abbreviated as X. The self homeomorphism g:
W, ,—W,, given by

g(zh *tty By Wy 0y wn) == (21) Y Zn; w,, R wn) )
where 2, and w, are complex numbers such that >|z,|*=1=>"|w,|? induces
k k

maps of degree (—1)" and (—1)*"! on cells ¢! and S*3. We say that a self
homotopy equivalence of W, , is of type (e, &) if it induces maps of degree ¢, and
e, on cells ¢! and S? 73 respectively.

Lemma 5.1. Let X': S*72x S*%— 83 be the adjoint of X. Then, for odd
n=3, X'(tg0-2X (—ta4-3)) s mot homotopic to (—ey,_5)X .

Proof. It is obvious that the map obtained from X'(¢y,_, X (—¢3.-3)) by the
Hopf construction represents —J(X). But, we see from Lemma 4.1, 3) that
HJ(X)=14n-5. SInce [ty,_, ts—2]04n-5=[%2n-2, t2a-2]F0 by Hilton [3], it follows
that

(—ean-2)J(X) = —J(X)+ [t2-25 ton-2l HJ(X) —J(X),

thereby our assertion.

Lemma 5.2. For odd n=5, there is no homotopy equivalence W, ,—~W, , of
type (1, —1).

Proof. We show that, if a homotopy equivalence f: W, ,—~W, , is of type
(1, €), E=-1, then there exists a homotopy equivalence f': W, ,—>W, , of type
(1, €) such that z f’==. Assuming this, we infer from naturality of the clutching
function X’ that f'X'(z(2), 2)=X'(7(2), f'()) and hence (Ety,—3)X " =X"(¢55-5%
(E¢gn-3)). Thus, by Lemma 5.1, é+—1.

Now let f be of type (1, €). Since the assertion is trivial if €=1, we may
assume E=—1. Then fj=j(f|E), p(f| E)=p and fl=I(—:,,-3), which implies
7 fj=nj by p=mnj. Thus there is a: §**—>S§*! with # f=qa+m, where the dot
denotes the coaction. We shall show that z,a'=a for some o' €, (W, ,);
then f'=(—a’)- f is what we wanted by naturality of the coaction.

Let » denote 5,,-5. Since a=Sa” for some o’ €n,, 5(S*?%), it suffices to
prove that na”/=0. (Sp)zj=0 yields a BEn,,_,(S™ %) with (Sp)r=Bq. Since
qf =(—t4-4)9==qg and wg=(—1y,_,)m, we have

(Sm)m==(S7) (—tan-1)7==(S7)wg=Bgg=B(—tun-4)q
=Bqf =(Sn)z f=S(na")-[(Sn)7],
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which means that S(ya”) € I((Sy)z).

We now see that (Si)*: [SC,, S*%]—[S*% S*~%] is monic with image
generated by 2¢,,_,. It follows from Lemma 4.1, 4) and 3.3.1 of Rutter [23] that
the image of

V((S7)p, P) = V(*, p) = (Sp)* = (JX)*(Si)*: [SC,, S?*-2] — [S*~, S¥~7]
is generated by

(] X)*(Ztn—z) = 2] (X)‘|‘[‘2n»2, ‘Zn—z]H] (X) = [ﬂzn—z, lz»—z] ’

since 7y, _(0(2n—2))=(Z,)? or (Z,)* by Kervaire [12]. Thus, by the relation
[4s 4] E nurai(S¥HY), k>1, proved in [17], we have S(ya’/)=0 in view of
I((Sn)7)=Im V((Sn)p, p). This implies na’’=0 by [95u-3, tz4-5]=0 (see Hilton
13)).

We now proceed to prove Theorem 2.1. It is known (see e.g. [21]) that
&(C,)=Z,x Z, is generated by g|C, and g’, where g'|e**"* and g’|S*3 are of
degree 1 and —1 respectively. Since 7,,_,(W, ,) is finite by p. 494 of Serre [25],
we may infer from the exact sequence

w85 L5 () L m (W) T m(SUY) (k= 6n—10)

that jy: 74,-4(C,) =>74-o(W, ) is epic. Thus, since p is of infinite order, we
obtain an exact sequence

1= I(ly, ;) = wa-s(Wa2) > EW,) = 2, 1

by Lemma 5.2 and Theorem (6.1) of Barcus-Barratt [2] (cf. [21),] [24]), where g
gives a splitting. Now, since 7y, (W, ,)=0, we see from Corollary 3.4 that I(1,_,)
coincides with the image of

Vi(j’ P): ”2n(Wn,2) - 7l'4n—4(Wn,2) .

Observe that Iy : 7,,(S*"%) — m,,(W, ;) is epic. Hence, by Theorem 3.5 and
Lemma 4.1, 5), we have

Vs PYLaman(S* %) = [Laman(S™7°), ji]
= l*[ﬂzﬂ(82”_3), LG_3] - l*Ker S y

which completes the proof of Theorem 2.1.
Note that the action of —1€7Z, is given by ar——gya for a€n, (W, ,)/
1 Ker S.

RemMARK. Using the fact [SC,, W, )]=[lym,,(S* %) (Sp)=Z;, we may infer
by the same argument as in the proof of Lemma 6.4 invoking Lemma 3.2 that
V(s Pxman(S™7) (SP)=V'(jy P)lsman(S™ ).
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V(j: [i1tzn—1, iz‘zn—s]) (an 052) = V( {iin jiz} ’ [ilLZn—l) iz‘zn-s]) (al’ Olz)
= —[ot, jio]+[jir, @]

where n: §*75—8§%"5\/ §% "5 s the comultiplication. Therefore,

V(j> P) (Sx720-1,0) = O—[5402,1, 5] = [5,{In4n-5 = L J(E)74n-s by Lemma 4.1
V(s P) (T475,(S?"73),0) = 0— L [5,(S?* %), tp,-5] = [xKer S,
V(7 P) (0,1xm20-3) = Lsm2n-3SJ(E)4-[Fi1, Limizn-—s]
= Linan-3SJ(E) I8, nan—s
= Li2a-3SJ (&) +-1sc J(E) 445 -
But
S(220-3SJ(E)) = mam-2ltan-15 t2a-1] = [ﬂ%n—z» tzn-2] =0,
S(J(E)nn—s) = SI(Enzn—z) = —JWEnam—2) =0,

since 7y,_,(0(2n—2))==Z by Kervaire [12], where k: 7,(O(2n—3))—m,(O(2n—2)).
This shows that Im V(j, p)=14Ker.S. As in the previous case g gives a splitting.

ReMARK. We may show, using 74(O(5))=0 and [7%, ¢;]=0, that there exists
an exact sequence 1—Zy—E(W, ,)— (Z,)°—1.

6. Proofs of Theorems 2.3 and 2.4

In this section we take B=A=S""? and C=S8*"*. We denote a Z,-Moore
space K'(Z,, r) by K,. There is the Puppe sequence

2t 1, P, 2¢
Sr S’ K S+t > S+l ...
Lemma 6.1. For n odd, n=5,[SK,_;, V, J|=Z,+Z, are generated by I(S7)
and jij(Sp), where 7: K,_,—S"™3 and 4: S"—>K,_, are, respectively, an extension
of 7,-3 and a coextension of ,_, with respect to 2¢: S""2—S""2,

This follows from Theorem 4.1 of Araki-Toda [1] and the isomorphism j,:
[SKn—Zy Kﬂ—z]g[SKﬂ—Z) Vn,z]'

Lemma 6.2 (cf. 4.15 of Araki-Toda [1]). 7,. (K, AK,)==Z, is generated by
i, \i, and m, . (K, \K,)==Z, is generated by Coext (i, A1) (or Coext(1 A\1,)) with
2 Coext(i, A1)=(1, \i,)p,+,, where the coextension is taken with respect to 2: K,
=K,ANS8->K,,,.

Proof. The first half follows from the Kiinneth and Hurewicz theorems
and, for the second half it suffices to use (4.2) of Araki-Toda [1] in the Puppe
sequence of 1x A2, and to observe that {1 A2¢, 7, A1, 2¢,4.} = (5, A1)n,4

Lemma 6.3. For n=3 mod 4, n=11, there exists T Em,,_(S""°) such that
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Lemma 5.3. For even n, n=6, £ is a generator of ms,_,(O(2n—3))==Z; and
4J(&)= [W%n-a; tan-3]F0.

Proof. James-Whitehead [10] have shown that £ goes to [tp;-1, 34-1] Of
order 2 via the composite (see Kervaire [12])

7z2,,_2(0(2n—3))—h_-> oo O2n—2))=Z—> 3o O(2n— 1)):22—[» Tan—s(S?Y) .

It follows that £ is a generator and that Ker % is generated by 4£ which is the
image of %3.—; under 8: 7y, _,(S* %) —>m,,_,(O(2n—3)). Thus the assertion follows
from Lemma (5.1) of Hsiang-Levine-Szczarba [4].

Lemma 5.4. For even n, n=6, the image of the canonical homomorphism
E(W, ) —=E(S™ 1V S73) is generated by tyy—1\V (—tgn-3)-

Proof. Since [93.—4, t2s—4] &0 by Hilton [3], we see from Lemma 4.1, 3) and
from the exact sequence

9
Ton-oO(21—3)) = 730 _(SP4) —> 73, (O(2n—4))

N J
7[4"_7(S2n—4)

that HJ(£)=0 and hence (—t5,_3)J(E)=—J(&). By Cor. 1.14 of [21], E(S*'V
S$?73) is isomorphic to (Z,)* with generators tz,—;V (—tsn-3), (—t2s-1) V tau—3 and
{imn—stirtzn1, Taton3} .

By Lemma 4.1, 2) we have p=i, J(§)+ [f1t24-1, Zst2s-3]. Thus, using Lemma
5.3, we can show that ¢,,_; V (—tz,-3) is the only element & of &(S*~'V $?"~%) that
satisfies kp=~=-+p.

Let n be even and let us prove Theorem 2.2. Since p is of infinite order and
T an-a(ST IV 87 ) =5, 704 (ST )+ Ly 4 f(S? %) =75 ( W, 5), it follows from
Lemma 5.4 and Theorem (6.1) of [2] that there is an exact sequence

1 =7y (W, 2)Im V(j, p) > EW, ;) > Z, —> 1.
Now we shall compute V(j, p): [S*V S* 2, W, ;] >7sn-o( W, z). It is readily

seen that [S?\/ 872 W, ,] is generated by $ys,—1, L472,(S* %) and l47m,,-;. Note

that V(j, p)=V(J, 1 J(€))+V(J, [f1ten-1 t2tzs-3]). Using properties described in
3.3 and 3.4 of Rutter [23] we have, for a,Em,, (W, ,) and a,Emz,_o( W, 2),

V0 ] (E)) (s o) = V({ji, ik, (+V JE) (e, @)
= V({x, i JE}, m)V({is iz, *V JE)) (a1, o)
= (Sn)*(V(j&1, *)ats, V(jiz, J(E))tz)
= SJ(E)*
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[tny ta] = S37, [Mn-1y tn-1] = 2877, [9h-2, tn-s] = 4ST0.

Proof. Since we have HJ(£)=0 in the proof of Lemma 5.4, it suffices to
take for 7 a desuspension of J(£). We note that [73, ;]=0 by (5.13) of Toda
[26].

Lemma 6.4. Let [7,-,] denote a generator of n,(V, ,)=Z, with my[n,-]=
Nu-1, Where n is odd, n=5. Then [[n,-,], [][=0 and Im V(j, p) is trivial.

Proof. First we show that Im V(j, p) is generated by [[7,-.], []. In view
of Lemma 6.1 we have only to compute V(j, p)j#(Sp) and V(j, p){(S7). Apply-
ing Lemma 3.2 to the diagram

K”BP”3

l 124
* ——> S"2—e——mV,,
| o A
/j
N 4—) n—2 n 2
we have
V(s P)j(SP) = V(j, P) (S*Pa-2)* i
= V'(j, 1op)j# = [j#, ji] by Theorem 3.5 and Lemma 4.1
= [[77”—1]: l] by 7’:]"7 = Mn-1
Now observe that the generalized Hopf invariant H(p) of p lies in
T s(S(K -3 A Ky —3)) = gy (K, s AK,_3). It follows from Theorem 3.4.3 of

Rutter [23], Lemma 6.2 and the relation J(X)=—[t,-1, ts-1] (see James-Whitehead
[10]) that

v(js p)U(S7) = 1(S7) (Sp)+[1(S7), /1SH(p)
= 1(87) (57) [ta-1, tu—1]+[1(S7), jISH(p)
= Ly[ni-2, ta-2] +[1(S7), /1SH(p) ,
[1(S7), /1S Coext(1Ai,_q) = [I, /1S A1)S Coext(1Ai,_s) .

But the commutative diagram

1 i 1A2
Sn—z/\Sns /\ Sn ZAK”SAP 3Sn ZASnZ BS” 2/\Sn2
2eN1 lC t(LAz,-
H 20A1 1 AMint oext(1Ati-o)

S”—ZAK,, 3—“’“‘_>S _2 3_—>K,,_2/\K,,_3
71

n—2 77/\1 n—3
S /\K _3*“’_‘%S /\K -3
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together with the relation 2:A\1=2+1g, _ =25,-5721-5P2-5 reveals that 2¢A 1=
izn-572m-5 and hence 2(5 A1) Coext (1 Ai,-3)=1,,-¢n3s—6. Thus we see from (4.2")
of Araki-Toda [1] that

(m A1) Coext (1A\Z,_3) = L-pu-s -
This implies that

[1(S7), j1S Coext (1 \iy—5) = +[L, j1S7m-5 = £}, jIS(A Affu-3)
= [, j#n-2] = [}, -]l -

We see from Lemma 6.3 that, for the transgression 9: 74 (S*™Y)—=>my_ (S"7?) of
the fibration 7,

O[Mu-1s tnor] = 20,0287 = 48T = i3, ty-s] for n=3 mod 4

which implies /y[75—2, t,-,]=0. It follows that V(j, p)/(.S7) lies in the subgroup
generated by [[%,-), {].

The fact that [[5,-,], /]=0 can be deduced from the following proposition,
setting ¥="P,s,t,, and noting 27,_,(O(n—1))=0 (see Kervaire [12]) for n=1 mod
4, and taking B=s,t,, s=k=1 for n=3 mod 4 where H,P;s3,= 0553, = 03p354t,=0,
in which §;: 7(S") =7 (V,11,4) denotes the homomorphism induced by a section.

Proposition. Let r be odd and let ¢<2r—3.

1) Suppose that v Ex,,,(S™*) is of order 2 and that S: ., —(S") =744, (S™)
is monic. Then, for aEn(V,.,,) with po=EH,Y, we have [a, L,t,]=0.

2)  Suppose that 21,B=1,, 0t for aEx (V,imm) and BER(Vyimrs mir) and
that [SH\P,, .3, t,]=0. Then we have [a, I,,-1,]=0.

Here we use the homomorphisms in the homotopy exact sequence

D

o> Ty (Vi-to-) i" Tx(Vio) = (Vi) — Tgr(Victyp-r) =
Proof. We need the formula
[ety Lu-rty] = ly-1Puct
due to I.M. James [9], where P,: 7 (V,1mm) —=>Tgrr-1(S") is the composite
2O+ mO()) — 72y A(O0) —L> 741y i(S7)
Note that S 'P,a=(—1)""'P,pja=(—1)"[p1, t,+m-1]. We see from [18] that

S0,y = 2v+4-[SHY, t,41] = [SH\Y, t,41]
= [P, 1] = SPyx .

Thus our assumption implies that 8,7 =P,a, hence /,P,a==0. This proves 1).
To prove 2) we introduce the diagram
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m 0
T o(Vemm) — gr1(S7) —— m,,(S71)

A H,
m-+k Cmt+k
-1
”q(Vr»mw,mH)“‘_’ (877 — Ty s(Vismik minr)
l m-+k
s 6m+k+s

”q( Vr—i—m»l-ki-s,m»bk—i-s)

which is commutative by a result of James [5]. Since the characteristic element
of the fibration V,,,,—>S"* is 2¢,, it follows from the assumption that

6I‘SPm+I«zB = ZLrOPm+k18 = 2Lf0Pm+k+slsB
== 2Pm+k+sls/8+ [Ln Lr]S’HIPm+k+slsB
= Pm+k+slk+sa+[SH1Pm+kB, l’f] = Pma )

which yields that /,P,,a=0, hence /,,_,P,a=0.

ReEMARK. From the comparison of the above computation of V(j, p)j7(Sp)
with the one using Theorem 3.4.3 of Rutter [23] we may infer that

H{p)=Coext (1 Ai,-3) mod (t,-2A\t,_3)024-5 -

Lemma 6.5. Let n be odd, n+5,9. Then

1) the free part of my,—o(V, ,) is generated by w3 (d[t,—y, t,-1]) where d=1or 2
according as n=1 or 3 mod 4, and the finite part coincides with Ker g,

2) (James [7]) the order of the attaching map p is 4d, and

3) ix[nn-2 tu-z]=4p for n=3 mod 4, n=7.

Proof. Using the EHP sequence we see that m,, (8" )=Z~+S%r,,-5(S" %),
where Z is generated by [t,-;, ¢,-1]. Consider the boundary homomorphism
0: my(S" ) —>mwy_(S"7?) for the fibration #. By a result of James [7] (see also
[18]) we have

Sa[‘n—l, ‘n—l] == Z[Ln—b Ln—l]_[ZLn—l) Ln—l] =0.

Thus we have 9[¢,_y, ¢,-1]=0 for n=1 mod 4 by [7,-5, t,-2]=0 (see Hilton [3]).
For n=3 mod 4, n=11, we have 9[7,_1, t,—1]=[75-2, tn-2] 0 by the argument as
in the proof of Lemma 6.4, a fortiori 0[¢,_,, ¢,-,]F0, so that 8[¢,_y, ty-1]=[74-2
ta] (this is valid for n=7, since my(V7,)=0 by Paechter [22] and [z, t;]=vsn}
by Toda [26]). This proves the first half of 1).
Now introduce the homotopy-commutative diagram
J q Sp

SZn—4 —_— Kﬂ_z — Vn —> S2n—3 —

Kn—l

z —p .
Iy g |
Ky Lo st 2 g1 2L K
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where p is a coextension of p. Since Sp==(S7) J(X)=—(S%) [ts-1, ts-1] by Lemma
4.1, we may infer that

P=—[ta-1, ts-r] mod Im (2¢)4+ {2[en-1, |
We observe that 2co[¢,_, ¢,—1]=4[ts-1, ts-1] and that, in the exact sequence
T Keg) L2 m V) o m (ST (rS3n—T)

with 2-primary =,(K,_,), ¢+ is monic on the free part of =,(V,,). Hence we
conclude that the second half of 1) holds and

G (7% (d[tn-1, ty-1])) = 4dtzy_3.

Thus, inspection of the commutative diagram

ﬂgn_g(S"_l) *‘

¥ ”2):—3( Vn,2) Snﬁz) — 7[2n—4(S”—2)

. Iy
] v
772n—3(Kn—2) —*> ”2»—3( Vn,Z) - 7[2;1-3( Vn,Zy Kn—z)_" 7’2':—4(Kn—2)

o =

Tou-3(S*7%)

shows that p is of order 4d and that, for n=3 mod 4 where d=2, [¢,-,, ¢t,-1] is
related to 4¢,,_; via vertical homomorphisms, thereby obtaining 3).

We now prove Theorem 2.3. Since [K,-,, K,-,]=Z, is generated by the
identity 1 of K,_, with 2-1=i3p (see Theorem 4.1 of Araki-Toda [1]), we have
that &(K,-,)= {1, 14+ipp}. Hence, using the remark after Lemma 6.4 and
Lemma 6.5, 3), we may compute

(14inp)p = p-+inpp+[1, inp] Coext (i,-3A1)
— pH[1, i7)S(1A pus) Coext (ip-sA1)
— P+, in] (faa D)
= ptix[tn-z a2
P for =1 mod 4
- 5p for n=3 mod 4.

It follows that the canonical homomorphism &(V, ;)= &(K,-,) is epic for n=1
mod 4 and trivial for =3 mod 4. 'Thus, by Theorem (6.1) of Barcus-Barratt
[2] and by Lemma 6.5, 2) we obtain an exact sequence

1 = jurton-o(Ka-g)[Im V(j, p) = E(V,2) = E(K,-,) -
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But, by Lemma 6.5, 1), j7,,-5(K,-2)=Ker g4 is the finite part of 7z,,_3(V, ).
Hence Lemma 6.4 completes the proof of Theorem 2.3.
From now on we assume # is even; thus, by Lemma 4.1, 2),

P = 1 J(E)+[irtn-1; tatu-a], EEma_o(O(n—2)).
Further, by a result of [21], every element of E(E)=E(S*™'V S*%)=(Z,)® can be
expressed as

{i2877n-2+i1‘n—1) iz‘n—z} ((—"n—-l)kv(_l’n-—z)l) ’

where &, k£ and [ are equal to 0 or 1, and 7,, 7, are the inclusions. This element
will be abbreviated as (&, /).

Lemma 6.6. We have that
1) HJ(£)=0 and 2J(E)=[7n4-2) ta-2] for n= 0 mod 4, n==12
2) HJ(E)=mn34-s5 and J(§) is of order 2 for n=2 mod 4.

Proof. This is readily proved with the aid of the results of Kervaire [12]
and Hilton [3] and using the commutative diagram

a-AO(n—3)— 70-10(1=2)— 74 Ol1)
7pei(S79) J l]
P\

7"2n—4(S"_2) _—> ”211—3('5'”_1)

Using Lemma 6.6 one can solve the equation &(k, [)p=-+p and show that
the image of the canonical homomorphism E(V,, ;) >&(E) is

{(0,0), (1,0), (0,1), »(1,1)} for n=0 mod 4
{(0,0), (1,0), (0, 1), »(1,1)} for #=2 mod 4.
Therefore we have an exact sequence, by Theorem (6.1) of Barcus-Barratt [2],
1= jumy-s(S" VS ) H - EV, ) > Zyx Z, —> 1,

where H denotes the image of V(j, p): [S"V 8", V, 2] = 73,-3(V, 2). We observe
that the self-homeomorphisms of V,, ,,

(F1y =5 %3 Y1y V) = (F1 o0 X3 —V1r ) — V) »
(®1y o5 X3 Y1y *% V) = (K1 — Xz =005 — %3 Y1 =V 5 — V) »
give a splitting.
By an argument similar to the proof of Theorem 2.2 we may compute
V(i P) (751, 0) = L J(E)m2n-1,
V(s p) (-2, 0) = L[na-2, ta-2]
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0 for n=0 mod 4
L J(E)nan-s for =2 mod 4

Llna-2, tu-2]+14J(E)20-s  for n=0 mod 4
Ly J(E)n2n-4 for n=2 mod 4

VGs £) (0, $xtyms) = {

V0o p) (0,1, ) = {

This shows that Im V(j, p) is generated by Iy J(§7,-,) and I [7i-2, ¢,-2], which
completes the proof of Theorem 2.4.

The following corollary may be deduced from our theorems by applying the
method of Mimura-Toda [15] and using the results of Toda [26], Mimura [13]
and Mimura-Mori-Oda [14] (see also [20])

Corollary 6.7. There exist split exact sequences

1—Zy— 8(W5,2) —Z,—1,

1= Zgy+Zy—> EW;p) > Z,—> 1,

1> ZytZy—> EWsp) > Z,— 1,

1= Zyy H(Zo) = EWnp) > Z,~> 1,

1 = Zy+(Z,)° = 8(W6,2) —->2Z,—1,

1= Zg+Z,+2Z;— EWyy) > Z,— 1,

11— Zze4+(Z2)5 - g(Wlo,z) —2Z,—>1,

1= Zyy+Zs - (2)°+- 23 = EWyp) —> Z,—> 1.
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