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Introduction

In Kitada and Kumano-go [6] we studied a theory of Fourier integral
operators and constructed the fundamental solution Uh(t, SQ) for a pseudo-
differential equation of Schrodinger's type:

(Lhu = +#*(<, X, D,)u = 0 ,( i ) \t

in the form of a Fourier integral operator for t near s0. Here

( 2 ) Hh(t, xy ξ) = h*-*H(ty h~8x, h'ξ)

covers a rather general class of smooth time-dependent potentials V(t, x) if

H(t, xy ξ) is of the form H(t, x, ξ)= — | ξ \ 2+ V(t, x). However, contrary to the

generality of H(t, x, ξ) that we can deal with, the time range in which we can

represent Uh(t, SQ) as a single Fourier integral operator was very small. The

similar situations are also the case in Fujiwara's construction ([2], [3]) of the
fundamental solution, except the results in [3, §4].

In this paper we shall make a rather strong restriction on the potential
V(ty x) (see Assumption (A) in section 3), and construct the fundamental solu-

tion Uh(t, SQ) for (1) with H(t, xy ξ)=—\ξ\2+V(t, x) in the form of a single

(conjugate) Fourier integral operator for all t^sQ9 when SQ is sufficiently large.

To do so, in sections 1 and 2 we shall introduce a class of (conjugate)
Fourier integral operators and investigate their calculus, which is also our pur-

pose in the present paper. The symbol class for our Fourier integral operators

is the same as in [6], while the class of phase functions is different from [6] (see

Definition 1.1). The characteristic feature of our phase functions φh(x, ξ) is,

roughly speaking, that the function Jh(x, ξ) = φh(x9 ξ)—x ξ is "small" in the
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sense that only the derivatives of Vxjh(x, ξ) are small, while in [6] we assumed

that the derivatives of both Vxjh(x, ξ) and V%Jh(x, ζ] are small. This relaxation

is possible, because, in the present paper, we restrict ourselves to considering

only the conjugate Fourier integral operators of the form

*) = 0.- J j* 4(fc x')f(x')dx'dξ ,

while in [6] we considered both Fourier, and conjugate Fourier, integral operators.

Section 2 is devoted to proving a theorem concerning the calculus of con-

jugate Fourier integral operators, which is different from [6] in the point that we

shall treat ι/+l conjugate Fouier integral operators directly, while in [6] the

product of two Fourier integral operators and that of Fourier and conjugate

Fourier integral operators were basic. This result will allow us in section 4 to
make a global calculus in time of the local fundamental solutions represented as

conjugate Fourier integral operators.

In section 3, we shall in turn consider the Schrδdinger equation (1) with

H(tj x, £)= — |?|2+ϊ^(ί, x), where V(t, x) is assumed to satisfy

(4) sup
*e=B"

for |<χ |Φθ with £>0. We shall first give several estimates concerning the

classical orbit (q, p) (t, s; x, ξ) defined as the solution of the Hamilton equation

with the initial condition (q, p) (s, s)=(x, ξ). From this (q, p) (t, s; xy ξ)y we
shall construct the phase function φ(s, t',x,ξ) as the solution of the eikonal equa-

tion

dsφ(s, t\ x, ξ)+H(s, x, Vxφ(s, ί; x, £)) = 0 ,

which can be solved globally for t^s when s is sufficiently large, as well as locally

for \t— s\ <30(<1). Then we shall define the global and local approximate

fundamental solutions of order m (m=0 or oo) in the sense of [6] in the form

Eΐ(φ&, *)*)/(*)
(7) ee

= Oί-JJ«'<' «-* <« "*' «»ίJΓ(f, *; ξ, X')f(x')dX'ίlξ

for fes or \t—s\ ^δ0, where φk(s, t; x', f)=A^-pφ(ί, t; h~sx', h"ξ), and m=0 in
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case O^δ^p^l and m=oo in case 0^δ<p^l. We shall then summarize the
important estimates concerning these approximate fundamental solutions as
Theorem 3.11 at the end of section 3.

Using these estimates, in section 4 we shall first construct the local funda-

mental solution Uh(ty s) for \t — s\ 5^δ0 as a conjugate Fourier integral operator
in quite a similar way to [6]. Then using the global solution φ(s, t\ x, ξ) of (6)
and the results of section 2 on the calculus, we shall represent the global funda-
mental solution Uh(t, s0)=Uh(t, tJUk(tv, t^)- Uh(tl9 s0) (0</y-^_1^(ί-ί0)/

(z/+l)^δ0, ί0<ί1< <ίv^ί) as a single conjugate Fourier integral operator for

sufficiently large s0. For general ί0, we can therefore represent the global funda-

mental solution Uh(ΐ9 s0) as a product of a finite number of conjugate Fourier
integral operators, the number being independent of t but dependent on SQ. At
the same time, we shall also give some estimates for the differences between the

fundamental solution Uh(t, s) and the global approximate fundamental solutions
E%(φh(s, t)*) when t^s for sufficiently large s. One of these estimates played a
crucial role in the proof of the completeness of modified wave operators in [5],

We note that our assumption on the potential V(t, x), hence on the Hamil-
tonian H(t, x, £), is not symmetric in x and ξ , while the assumption adopted in

[6] was symmetric. Moreover, under our present assumption (4), the classical
orbit y= q(s, t\ x, ξ) in the configuration space is uniquely determined by its

initial and final positions x and y for t^s when s is sufficiently large (by (3.11)
below), which makes it possible to construct the global phase function (compare
this with the situations in §4 of Fujiwara [3]).

Recently, Nishiwada [9] gave an explicit expression, which is written by

means of one or two integral transformations, of the global fundamental solution
for a Schrodinger equation with a quadratic Hamiltonian. However his as-

sumption and method are different from ours.

1. Fourier integral operators

In this and the next sections, we introduce a class of Fourier integral opera-
tors and investigate their properties, especially their calculus. We first explain

some basic notations we shall use in the following. For any point x=(xu •••, xn)
in the w-dimensional Euclidian space JRn, we define its norm \x\ by | x \ =

(Σ *>)1/2> and for any n x n real matrix A==(aii) we define \A\=χ _suρ jAx\l\x\.

Let a=(θίiy •••, an) be a multi-index whose components α; are non-negative in-
tegers and let x, y, z^R". Then we use the following notations:

- f
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V, = '(8V -, 8,.), f, = V,,

By ^4 we denote the Schwartz space of rapidly decreasing functions on Rn. For

we define its Fourier transform f(^)—

The inverse Fourier transform 7~lf oif^sά is given by

DEFINITION 1.1. 1° Let 0^τ<l, 0^<r<oo and O^δ^p^l. A family

{φ*(*ι l)}o<*<ι °f C°°-functions φh(x, ξ) in R*xR" is said to belong to the class
{Pjfj(τ, <r; Λ)} „<*<!, if the function /A(#, ^) defined by

(1.1)

satisfies

(1.2)

and

(1.3) sup \Jh((B) (x, £) I < °° for
*,*,$

where Jh

($> (x, £)=d*D$Jh(x> ?)• F°Γ simplicity we also write this as φh(x,,

/»(*, Ώ = ψ*(*. f)-*

i ) sup {I VeΛ(*.

ii) sup

iii) max sup

2° For ΦA(Λ?, ?)eP^ (T, σ; A) we define a semi-norm |/Λ | />w for integers
/, jfi^O by

(1.4) |/J;,M =

REMARK. In section 4 we shall also use the class {Pp δ(τ, /; h)}0<h<1 (0^τ
<1, /=0, 1, 2, •••) defined in Kitada and Kumano-go [6]. Here for the sake of

the later convenience, we state its definition. {φΛ(#, ?)}O<A<I^ {Pp,δ(τ> h
or ΦΛ(Λ?, f)^PPtδ(τ, /; A) means that Jh and /A defined by (1.1) satisfy

17*1, =|βΣsι sup
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Σ

and

sup I/Λ8 (*, f) |<oo for |α
*.».f

We next define the symbol classes which are the same as those introduced
in [6].

DEFINITION 1.2. 1° Letme/Z'andO^δ^p^l. A family {ph(x,ξ,x')}0<h<l

of C°°-functions ph(x, ξ,x') is said to belong to the class {β£β(A)} 0<ft<ι if {pi} O<A<I
satisfies

= max
Iβ + Λ + β'l^;/ *,*,£

for any integer /^O, where ph$tβ,)=Dβ

xd*D$ph(xί ξ, x'). We write this also as
ph(x, ξ, x')SΞBZ8(h).

2° For me/21, r^O and O^δ^/o^l, we say that a family {/>A(^,?,^')}O<A<I
of C°°-functions belongs to the class {BJ!if(*)}o<*<i if <A"βΛ; Apf h"8xfy~r

pk(x, ξ, xf) belongs to B?.δ(A).

REMARK. 1° B^8\h)=B^(h).
2° When />Λ(#, ?, x')=ph(x, ξ) (independent of x') [resp. />Λ(#, £, Λ')=

ί*(f > ^') (independent of x)], ph(x, ξ, xr)^B^f(h) is equivalent to <A~V, Apg>~r

pk(x, ξ)<=B?tS(h) [resp. <hpξ\h^xΎrph(ξ, x')^B™8(h)]. Such symbols are called
single symbols.

Proposition 1.3. Let ρjth(x> ξ, x')^B™{(h) (j=0, 1,2, •••) such that m^
<* ^mj<^ ---- >oo and let % be a C°°-function on [0, oo] such that O^X(θ)^l on
[0, oo) and %(0)=1 (for Q<^θ^l/2), =0 (for θ^l). Then there exists a de-
creasing sequence {SyJ JUo tending to zero asj-*oo such that

(1.6) ph(χ, ξ, χr) =
y=o

converges in B™%(h) and

P>(*. ξ> *')-&/.*(*. & *') sBjf (A)
y=o

/or αiiy N^l. Furthermore such ph^B^8(h) is unique modulo JS°°(A)= f|5^δ

(independent of ρy δ).

For the proof see Theorem 1.3 of [6].

Proposition 1.4. Let φh(x, f)eP£J(τ, σ; A) ^wrf ρh(x9ξyx')^B^r(h) for
^τ<l, 0^σ<°o, O^S^p^l, m&R1 andr^Q. Then for any fed
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ίί> with %(0)=1, the integrals

^-^p^x, ξ, x')f(x'

(1.7)
(χ, ξ, χ')f(χ')%(εξ)dx'έξ

have the limits Ph[f] (x) and Ph[f] (x) far 6 J 0, which are independent of %. More-
over Ph and Ph define continuous linear mappings from & into & for each λe(0, 1).
We write those limits as

(P*\f\ (*) = 0.- W* *>-* e>pk(χ, ξ, χ')f(X')dx'dξ ,
(1.8) J J

t W] (*) = Os- J j«'<* «-**<*' «»j>4(*, ξ, X')f(x')dx'άξ .

Proof. Putting ψ h(x,ξ,x')=x ξ—φh(x',ξ)=(x— x')'ξ—Jh(x',ξ), we see
from (1.1)-(1.2) that <V,'^*>^CA<f> for some constant CA>0. Thus L=
^V^ ψ j tXXl— ί'V,, •ψ'A V,:') is well-defined and we have for any /^O

(1-9) PM[/] (*)

where *L is the transposed operator of L. Then taking
and letting £ J, 0, we have

(1.10) Ph[f] (x) = ('L)'[ph(x, ξ, x')f(x'}}dx'έξ ,

which is independent of X. Therefore we get

'w^
We see from (1.2)-(1.3) that this is uniformly bounded in x^Rn for each fixed

, 1), if / is taken sufficiently large.

For ph[f\, putting φh(x,ξ,x')=φh(x,ξ)-ocr^=(x-x')'ξ+Jh(x,ξ), we have
h=— %• So letting LΈΞ<T? x,φhy\\— iVx'<ph Vx') we have (1.10) for Ph[f]

and

\X»D*(Ph[f})(x)\

^ ch \ (<*' |>1Λ|<I>IP' , Σ I Df('L)'[D?pk(x, ξ, *')/(*'
J J "'£<*,β':£β

which shows PA[/] e j4 if / is taken sufficiently large. The continuity of Ph and
Ph in so is clear by the above discussions. Π

DEFINITION 1.5. 1° Foτpk(x,ξ,x')GBϊtf(h) (O^δ^p^l, m^R\ r^O) we
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define a family of pseudo-differential operators Ph=pk(X,Df,X) by

(1.11) PJ(x) = 0S-J γv-*'^pk(X, ξ, X')f(X')dx'dξ

for/e.t3, and write this as {Pk}ϋ<h<l^ {B"s (h)} o<*<ι or simply as Ph^B%£(h).
2° For φh(X>ξ)^PZl(τ,σ h) (0^τ<l, 0^σ<oo) andpk(X,ξ,X')eB^(h),

we define a family of Fourier, and conjugate Fourier, integral operators PA(φ*)
=ph(φh; X,D,,X') and Pk(φt)=p,,(φ$ ,X,D,,X') by

(1.12)
= 0 (*, f , X')f(X')dX'dζ ,

*)= 0.-J Je*<-«

for / e *i . We write this as {PA(φΛ)} 0<A<1 ε {JBJ δ

r(φA)} 0<A<1 and {P*(φ?)} 0<A<1

{*r.ir(φf)Wι, or simply as Ph(φh)^B^(φk) and

REMARK. 1° If we define qk(x,ξ,X')=ph(X',ξ,x) for pk(χ,ξ,x')eBϊ;t

r(h),
then we have ί4(*,£,*')εfl7y(A) and (Pkf,g)L2=(f,Qkg)L* for/, ^e^5.

2° For single symbols ^>Λ(Λ;, |) and qk(ξ, X')^B" ^(h), we have from Proposi-
tion 1.4 that

(1.13)

and

Theorem 1.6. Lei r^O, αwJ denote by f the minimum integer not less than
r. Let pt(ξ,x')eBjfΛ

r(h) and φk(
and assume that

. Set

?*(f '. *Ό >

(1.14)

tsk(ξ, x', r, *") =

and define rh(ξ,x") by

(1.15) rΛ(f , O - 0.- j Jβ-^Vf . «//+y,f-ι?, ̂ O

Rk(φf)=rh(φf;Dx,X')=PhQh(φf). More

precisely we have for N^
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/ 1\|Λ|

r»(f, *")- Σ ̂ f
IΛKJT α!

(L16)

m-a γ o

(L17) = o.-

T/", in particular qh(ξ,x')=l, we have for

rk(ξ, *")- Σ ί=
Π 1A\' '(L16) /

= N Σ (

m-Jr

zoλere

- 0.-

Proof is similar to that of Theorem 3.7 and Proposition 5.6 of [6].

Theorem 1.7. Let φh(x,ξ)<Ξ.P^(τ,σ\h) and pk(ξ,x')GB?t9(h) with 0^
<1, 0^σ<oo,0^δ^p^l and we/21. Then for Ph(φt)Ξ=ph(φf ,DχyX')<

L
Jh(x, ξ) \

where M=2([w/2]+[5n/4]+2); /Λ w defined by (1.1); #m/ C w a positive constant

independent o/Ae(0, 1), {φΛ}0<Λ<ι ««/ {/>A}O<*<I.

Proof. For/ej4 we have from (1.13)

Thus we have

IIΛ(Φί)/lli =
where
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= 0-

Noting that φk(x,ξ)-φh(y,ξ)=(x-y) Vxφh(x,ξ,y)=(x-y) [vjn(y+θ(x-y),
Jo

ξ )dθ and that the mapping ξt-*η= Vxφh(x, ξ,y) has the inverse C°°-diίfeomorphism

^Ϋsφί'^oO. since 1 Vέ^φΛ(*, £,>>)-/ \ =J V^Jh(h^x,hβξyh-δy) \ ̂ σ<l
by (1.2)-iii), we make a change of variable: η=Vxφh(xyξyy). Then we obtain

;)x

- (χy η>y] f(y)dydη .
LJ\rι)

Putting

rt(*, n, y) = h-2mph(3&\ϊ, A'-'flf, 5*), 5) X

where fih(%yx)—ph(h~p£,h8x), and making again a change of variables x=hδ%,
γj—h~^η, y=h*yy we obtain

^*/(*β*) = h2m 0.- J j^ ̂ -Sr^,

Thus by the Calderόn-Vaillancourt theorem ([!]) we have

max sup

for some constant C>0 independent of A^(0, 1). From p— δ^O and the de-
finition of rh we get

max sup 1 9f D?V JΛ(^, I) | )M+1( |

for |yS+α+/3'| ^M, where C is independent of Λe(0, 1). Thus we have

(1.18). Π

2. Multi-products of conjugate Fourier integral operators

Now we turn to the study of the multi-products of conjugate Fourier in-
tegral operators. We first introduce the following condition ($) for (z/+l)-tuple

(φi A, •'•> ΦV+I.A) (^1> integer) of phase functions φy>/leP$(τ;,σy;/i) (j'=l, ••-,
v+1):

(%) For each fixed Ae(0, 1), there exists a unique C°° solution {Xί^
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3v.»}y_i(#,£) of the equation

where Xζ,h=x and Bft1^.

DEFINITION 2.1. For (z>+l)-tuρle (φM, •• ,φv+ι fA) of phase functions φ/,Ae
plx,l(rj^j\h} satisfying (#), we define its #-(z>+l) product Φv+1>A=φ1>A# #φv+ι,A

by

(2.2)
ιiA(-«.*, f) ,

where Xζth=x and {-Y"ίfA, Si.*} j-ι(#>£) is the assumed solution of (2.1).

REMARK. 1° The condition (#) is satisfied by the phase functions defined
as the solution of some Hamilton- Jacobi equations (see Proposition 4.3 of sec-
tion 4).

2° Let {Xί.k,m.M-ι(x,®={h-'Xί* Then
&ί.h}}=ι(x,ξ) is the solution of (2.1) with φj>h(x,ξ) replaced by $y h(x9ξ)=h!>~BφJth

(h*x, h~pξ). Thus $y fAePί*3(τy,σy;A) ( — 1,2, •••) satisfy the condition (#) and

we can define #-(*+!) product Φv+ιf*=$ιf/Λ—#$v+ιi* by (2.2) with φj>h and
{ '̂fA, Hί.*} 5-ι replaced by φj)h and {̂ ?Ϊ',A, Ξ{iA}5-ι. In this case we have the
relation ΦV+Λ4(*, f)=Ap-βΦv+liA(A»Λ, A-P?)'.

We next prepare a technical key lemma.

Lemma 2.2. L££ Λ°, Λ:y, gy, wy, v}&Rn and let rjy sh Sj and tj be nXn real
matrices for j= 1, 2, ••

(2-3) \r}\£σ, \t}\, |s,|, |S

/or ίome 0^σ<<χ> αwJ 0^τy<oo (_/'=!, 2, •••). TVzen we have for any integer

+ Σ {|̂ -(/+5y)»'-1-r^- |̂ + l^-i

+ 1 V-(/+*v+ι)Γ+1-*»+ι*v-i'llH 1 1
(2.4)

+(1 -2τϊ+1) Σ I *'-*>-1-r,£> I -2τv+1 1

-ΣCI^Ί + Î M),
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provided that ^v+ι= Σ kτk and τv+1= Σ τk satisfy 0^2(crϊfv+1+τv+1)<l.

inequality (2.4) also holds for nxn real matrices #°, x3, ξ3, u3

y and v3.

Proof. We first observe that the left hand side of (2.4) is bounded from
below by E+X+ U, where

(2.5)

y=ι

Put τV py=τ v+ +τy. Then JΓ is estimated as

* = Σ (l-(τv+ι+2τv.y+1)) I *'-*>-'-r

Σ (τv+ι+2τv>y+1) l^-^-i-r^l -2Σ3 τy |^-»| -
=y=ι

^ (1 -2τv+1) Σ I */-*/-!-,•,£> I + j (τv+ι+2τv>ί+1) I ̂  I

_ 7 VI «. i w - i l _
^ Zj τy I x I v+ι 1

^ (l-2τv+1)Σ3 ky-^-1-^Ί-
y=ι y=ι

X+B^A+B,

Thus we have

(2.6)

where

(2.7)

Here noting Σ τv+ι,/^^v+ι for l^y^^> we have

= (l-2τv+1)Σ3 |*'-*'-1-rye>|-2

= Σ I &~l-& I - Σ T, 1 1' I -2σ Σ τv+;=2 ;=2 ;=1 +1

έ Σ I ξj-ξj+11 - Σ (2σrv+1J+l+rj) I $ I -TV+I |y=ι y=ι

^Σ(l-(2σΣ^v+y=ι /=ι
v y f i

y=ι /=ι
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- Σ (2στv+u+1+τ,) I &\ -τv+11 ξ"+l

S£ Σ (l-(2στv+1+τv+1)) I f>-£'+11 -

Combining this with (2.5)-(2.7) proves the lemma. Π

Proposition 2.3. Let φj>h<= PJ$(τ j y σ j h) (j= 1,2,

(#)for any integer v^l. Let {τy}7-ι and {σy}~«

(2.8)

for some 0^

ι)IΓ+1l .

•) satisfy the condition

0^τ0<l, where τΌo= ^00=

solution of (2.1). Then the following estimates hold.
i ) For any v ̂  1 ί Aere exi'ίίί a constant Cv > 0 ίwcA ίAαί for j=l, ,v,-he

(Q,l)and(x,ξ)<=R2»

(2.9)

ϋ) ,l) and (x,ξ)<=R2>>, one has

(2.10)

and

(2.11)

) Σ Ivχ*i*-

i i \i i)

/ i \1 )

ϋ) g|Vt(Ξi*-

"l-τn

—τn

— T

ί.V) I ̂ ; i vfSί., -/ 1 ̂
1—1

iii) For αwj α, /3 satisfying |α+/3| ^1, owe

(2.12)

constant CΛtβ is independent of v^j^l, Ae(0, 1), (Λ:,

Proof, i) Since { §̂A, Ξϊ,h}}~ι is the solution of (2.1) with φjth replaced by
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φ, ιh, we have

(2.13)

where J£ίιk—x and Ξϊ,y=£. From this and (1.2) we have (2.9).
ii) Differentiating (2.13) we have for /= 1, , v

(2.14)

and

(2.15)

Writing y=V,^.», V=V,Ξί.» and putting Sy=f ,V{/, ,t, ̂ +i==V£Vi/y+i,t, f,
y j f t, we can rewrite (2.14) as

+l

(2.16)
y =

(;=!,-, *)

where /=/ and 5?v+1=0. Since 5y, ί,, ί; and ry satisfy | Sy | , |ί, | , | <; | ̂ τy and
\TJ\ ^σy^σ0, we can apply Lemma 2.2 and we have

(2.17)

hence

(2.18) ( i v-
1— T0

Thus we obtain (2.10)-ii). So using (2.18) again we obtain for A=l, •••,*>,

ly-y-1 1 5Ξ ( i y-y-'-^v i +σj i >/ 1 )
y=ι y=ι

(2.19)

which proves (2.10).
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We next prove (2.11). Under obvious notations, (2.15) is rewritten as

(2.16) with y=0 and η*+1=L Applying Lemma 2.2 we obtain (2.17) hence
(2.18), from which we get (2.11)-ii). So using (2.18) again we have for Λ=l, * ,v

± i y-y-i i ^ y^+ίj σy(Σ31V-V+ 11 +1 ̂ ?v+11)
(2.20)

—τ —τ

which proves (2.11).
iii) For any multi-indices α, /3 with |#+/8| 2^1, differentiating (2.15) we

have forj=ί, " ,z>

.Λ+ VJJ+1

where U7y and Fy are the polynomial of 9|9|/, s(3^ |y+δ| ̂  |α+/8|+2) and

dζtfX&, ^ai'Bvy.»(l^ 1 7'+S'| ̂  I α+/3 1 ) of order | a+β \ +2 especially the
orders of Q f̂ί,!1, Sf^U.l1, S^Sί'.* and 9fSi,« are at most |α+/3| + 1 and the order
of 9|9|/y>Λ is at most 1. Moreover the sum of | γ+δ | of θ ĵξ"^1 and 9|9|Ξί,Λ

(1^ |τ+δ| ̂  |α+/3|) in every term of U,- and Vs does not exceed |α+/3| +1.
Similar results hold for the differentials of (2.14). Thus using Lemma 2.2 and
ii) we obtain by induction

(2.22) <Γ (&., ,
s t-Λ.β^ Iyy,*l3,ι«+βij L_ J U

Proposition 2.4. Lei ψ, >AeP^(τ; ,σ y;A) (;=1,2, •••) satisfy the condition
(#)/or any integer v^ί. Let {τ, }"=1 awrf

ί223)
^ ' ^

for some 0^σ0<oo ^nJ 0^τ0^l/4. L^ Φv+ι,A=φι,Aίf ί(:φv+ι,A be defined by
(2.2). TA^w Φv+ι , Λ satisfies the following properties :

(2.24) Φv+MePM(3rc, - (l+ffv+1); *)

/or any z/2^1.
ii ) PFe have for any v^l
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(2.25)

and

(2.26)

v«Φv+ι.»0*, £) = v,φι,»(*, Hi.*),
V*Φv+l,*(», ξ) = V(φv+lth(Xv.k, ξ)

,.»(*, ξ) = V JM(*, Hi

ι.»(*, f) =

Proof. Since the properties except (2.24) can be proved without using (2.24)
in quite the same way as in the proof of Theorem 2.7 of [6], we only prove (2.24).
Since

(2.27)v ' i" * (v ε\
ι.k(x> ζ) —

we easily see from (2.9) that

(2.28)

From (2.27) we have

sup {i vtΛ+ι.»(*.«i /<?>+ i vΛn.*(*, e) i} < oo.

V TT f (ιy> ε\ — TT TT / / /y» tzy^ , ι
Λ V Λ « / V + I , A \ Λ > £/ — v^Vxyi^v^ί °v f Ay

VjV,J»+ι.»(*, f) =(2.29)

Thus from (2.10) and (2.11) we get

|V,V,Jv+ι.*(*, f) l ^T

(2.30)
1-τ.

1-τ,
+σv

Differentiating (2.29) further and using (2.10)-(2.12) we can easily see that

(1.3) holds for our Jv+i^ Thus we have proved (2.24). Π

Before stating a theorem concerning the calculus of conjugate Fourier

integral operators we prepare a lemma.
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Lemma 2.5. Let φjtk eP£2 (τy, σy h) (j= 1 , 2, ) satisfy the condition (#) /or
any v ̂  1 , «wd assume that 0 5* σ; ̂  σ0 (/= 1 , 2, ) and 0 ̂  2(σQΨ00 + f oo) ̂  TO /o

oo aw*/ 0^τ0^l/4. Let z/^1, αnrf to {J?£A, SίiA};.ι(Λ?, f)
defined as in 2° o/ ίA^ remark after Definition 2.1. Define φh by

(2.31) = Σ (̂ (̂̂ '(Λ, fj+y-1, 3.A4V)-̂ U*> f) Bi*(*.

£)-Φ»+ι.*(*, f)

ΛA y=0 αn<ί ^?ί>A=Λ;. ΓAew the following estimates hold:
i) For αwyy. ./V. , ι?v, *,?£/?", o eΛ1, Ae(0,l),

(2.32) ^ - { ι (2+A- v-y+ιι π-A-'iy-y-'-v i)}2

4υ ί=ι

^ κι-^o)2 π <A- V-V+I)>VV<A" v-y 1- )̂̂  .

ii) For any j1, •• ,yv,η1, •• ,η/,x,ξeRn, Λe(0, 1), and for any multi-indices
a,β,a\β\ •• ,av,/9v aw<ί any integer j with \ ζj<Lv, we have

.

(2.33)

and

|β?858 }85i »9;ϊ8?ΪV,^|

^ c /ι±ffv | Λ + β |- ι ) v o

x
(2.34) ' - l -

αV6=max (α, 6) /or α, fie/21; /=,v+1=0; αnrf αv+1=/3°=0.
iii) For any y, •• ,y", ηl, •• , η1,x,ξ^.R", «e(0, 1) αwrf any multi-indices a, β

with I a+β I sS 1,

(2.35)
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X

Proof, i ) We can rewrite (2.31) using (2.2) as

(2 36)

From this we have for j= 1 , , v

(2.37)

where y=i7v+1=0, Λ5.

tj=VxVjj,k, and r;.=

=* and Bϊy=?. Putting ίy=f evjy.4> ίy=f ,Ve7y>»,

; ,*, we have

(2.38)

and

(2.39) |,,|, |5;.|, |ίy|

Then applying Lemma 2.2 we have

2+ I

(2.40)

π
which proves (2.32).

ii) is easily seen from (2.37) and Proposition 2.3-iii).

iii) Using Taylor's expansion formula of order two we see from (2.36) and

(2.1) that
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(2 4 = Σ {?&«..(•#.*> Btf, j%*+y)y y
'

'jy- v-y V) .
where §}#=?, £S.4=*, /=0, and

(2.42)
W(£, *,,)=[ (

Jo

for any C2-function /(«, ̂ ). If we use /, ιA we get another expression of φh :

W.-.yW. , **;*,£)
= Σ {W+ι.Λ.», H(v, Λϊ..+yy y

(2.43) "

From this and Proposition 2.3-iii) we obtain for \a-\-β\ ̂

/ j , A l 3 , | Λ + β l ~ l J

V-f 1

(2.44)

\2|*+0|-1 v +

which proves iii). Π

Now we can state and prove the main result of this section.

Theorem 2.6. Let φj>h e P$ (rj9 σs A) (j = 1 , 2, - ) satisfy the condition (#)
for any z>2^ 1, αwrf assume that 0^σy^σ0 (7= 1,2, •••) and Q^2(σ

some 0^σ0<oo αwtί 0^τ0^l/4. Let z/^1 and put ΦV+I,A— Φι,Λ

for .7=1,—, H-l. ΓAew iAere ^jcwίί α

(2.45)
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Π (4wί+4/+l+?w) ι>14V»+2v+21/+7x
(2.46)

max |Jy>J2,2vB+3m)6VB+8'+3 l , .

for any integer /^O, ωAere Pj,h(φj*)=pj,h(φj* ;DX>X'); #v-ι,/,(Φ*+ι*) = rv
c0>l w a constant.

Proof. We can write formally for fesά

where

= 0.-J-.J exp 1 E (φ,.̂ -1, £>)-*'•£'

'

So we get (2.45) by limit process as in the proof of Proposition 1.4 if we show
that rv+1 *(£v+l,*°) is well-defined as an oscillatory integral and satisfies (2.46).
Set

fWΓ-1, *")srv+1>(A-T+1,

(2.47) = A"2V"σ°s

where $Jιh(x,ξ)=h»-*φith(h*X,h-'ξ), Φv+ιi*(*,|) = Ap-ίΦ,+ι>» (*»*,*-"£), ίZi

=Pi,h(h-fξ,hsx)^Bfi(h), and σ=(p-8)/2. So since | fv+1>ί | to»+0 (in β^Γ1

= k'v+ι.J^")(in^8+W]. we have to prove fv+ι.»(f,*)e5S!r1(A) and to
estimate | fv+1>Λ | («v+0 in βJJj+1(A).

In (2.47) making a change of variables:

for j=l, •• ,i', we get
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(2.48)
"2v*->

β-2Vn<ΓQs_ f . L-ίA

x Π qίtk(ξ, *; J, y- W

where φh is defined by (2.31) in Lemma 2.5 and

fory=l, — ,H-1 with /=,v+1=0, H;^=| and Jξ?.*=*. Now setting

/Λ 1 2+ 1 WΛ 1 2) ,

we can write

for 7^0 at least formally, where (LA is the transposed operator of Lh. We shall
show that the right hand side of (2.51) converges absolutely for

Noting

(2.52)

and

(253)

and using (2.37) we see by induction that (Ί^)' has the form

< ' -'(2.54) " = Ϊ37 , .. i
IPI^/

where (#,*)=(/,— ,j>W, — ,ι?v) and 4 ,̂̂  is a polynomial of d^V2

(x>ξJJth
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|α |<^/— |p | , l^j^v+l) of order 3/, V2,.a/y,A denoting one of the terms

xVji9k(Xi7kl, Bί.*,-X1<iΐ+y-1), etc. in (2.37), and satisfies

( 1 _L -

ϊ=

2|«H-β|

'X

V + l

* = 1

for some constant £<1, where we have used Proposition 2.3-iii). Thus taking
l>2vn, and using (2.32) and the inequalities

ιy i ̂  Σ i/-/-1 1 ̂  Σ ly-/
^ (i+o-, ) Σ ( i y-y-1-^* i

(2.56)

where /=^+1=0 and rί=
integral (2.51) is well-defined.

Thus we have again formally for any a, β

(2.57) =v '

X 9f 9f [('L,)'(Π ίy.4(f , *; ̂ , y-1))]̂

From Lemma 2.5-iii) we get for | aL+β1 \ ̂  1

i +Σ σ, i

see that the

Iαjl + β2| / /-I I \ 2 A .

^ Σ Σ t .Πίc./^)
/ = l* 1+ .+Λ/ = |Λ1 + βl|; = l ' \ 1 _ T / A

(2.58)

Σ

' X

Using (2.56) and i) and ii) of Lemma 2.5 we have for |α+/3| ̂
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/-w Σ ΠΣ3 X
»»=ι *1-» . +ftOT=|α5+β| ί=ιy=ι

/o CON X ,5 A~2'{l 8«l.«) "(2.59) «»+•«-»,•

X I
— TO

X(1+Σ I Λ * l 3 , ι

On the other hand, from Proposition 2.3-iii) we get

|9J9X^/-ig,.tA(?,*;V,y-1)l

(2.60) ί1+M2IY+8Vl+yί
τ 8 \ι_ / \L~τ~£i

Then using (2.54), (2.55), (2.59) and (2.60) we obtain

— β" β ι x

x -*- max

Thus from (2.58) and (2.61) we have

(2.62)

v+i
v

._ -- * » - |» -Γp | -τ-» | |««r JL. ft /N

V

*=1
xί i+A 'Σd/l + hΊ)}21^1!^

Since (2.56) shows

V2
s=l

a+β\-l)v3l+3^(^^) X

-βlχ
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we see from (2.32) that the integrand of the right hand side of (2.62) is bounded
by

(2.63)
V ' x h~»»* Π «*• V-

This is integrable in (̂ ,«|) uniformly in λe(0, 1) whenever
which shows (2.57) is actually valid. Thus from (2.62) and (2.63) we have for
any l>2vn-\-2\a-{-β\ and some constant £0>1

(2.64)

X(l+ max

X J-j π Kv-
Taking l=2vn+2\a-\-β\ +1 and noting that the integral is bounded by
for some constant ^>1 prove the theorem. Π

3. Approximate fundamental solutions

We consider the Hamiltonian H(ty x, ξ) of the form

(3.1)

where the time-dependent potential V(t, x) satisfies the following assumption
(A):

ASSUMPTION (A)

i) For each t&R1, V(t, x) is a real-valued C°°-function
ii) For any multi-index α, 3?F(ί, x) is continuous in (t, x)
iii) There exists a constant £>0 such that for any multi-index a with

l α l Φ O

where the constant CΛ>0 is independent of t, x.

This assumption is the same as in [5], where we have studied the scattering
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problem by V(t, x). For the examples covered by this assumption, see [5, §1],

and set

(3.2) Hh(t, x, ξ) = h*-»H(t, h-*x, Wξ) .

We consider the Schrϋdinger equation

(Lhu=(Dt+Hh(t, X, Dx))u = 0 on Λ1 ,

-Ul,-«=/(ed) (s0^Rl).

In this and the next sections we shall construct the fundamental solution of (3.3)

globally in time in the form of a product of a certain finite number of (conjugate)

Fourier integral operators, the number depending on s0 but not on t. Here by

the fundamental solution of (3.3) we mean an operator Uh(t> SQ) such that

It is easily seen from (3.1) that H(t, X, Dx) is symmetric in L2(R"). Thus we
have by 1° of the remark after Definition 1.5

= 0.- J γί*-*'^Ήh(t, *', ξ)f(X')dx'dξ

. So we consider the Cauchy problem

,X',D,))u = 0 onR1,

instead of (3.3). In the following, for the sake of simplicity we restrict ourselves

to considering only the case t^s0, since the other case can be dealt with similarly.

Let (q(t, s\ x, £), p(t, s; x, ξ)) be the solution of the Hamilton equation

(3-6)

,

on R1 with the initial condition

(3.7) q(s,*) = x,

The equation (3.6)-(3.7) is equivalent to the integral equation
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(3.8)

Then we can easily prove the following proposition by successive approxima-
tion. Let ^Bk °°(Rm) denote the Frechet space of C°°-functions f(y) on Rm such
that Q*yf(y) (\a\ ^k) are all bounded on Rm with semi-norms |/|M (/=0, 1, 2,
•••) defined by

.,

+ Σ sup

We often write &°(Rm)= &>•"(&*). We also use the class C"(Ω |.S*"%R?)) for a
domain ΩcR" which consists of the functions /(α>, y) on ΩxRm such that for
each &>eΩ/(ω, y) is in .$* ~(.R™) and any derivative 3*/(ω, j) is in C'(ΩxRm).
Then:

Proposition 3.1. There exists a unique solution of (3.8). The solution (q, p)
(t, s x, ξ) belongs to C^R] X R\ \ ̂  °°(Rn

x X Rf)). Furthermore there exist positive
constants T0 and C0 such that the following estimates hold:

Γ I Vrf(ί, ί *, |)-/ 1 ̂  C0<ί>-5, I vI?(i, « *, I)-/ 1 g ̂ ί-ί
1 ' } l|V,f(ί, ί; *, 1)1 + |V,#(ί, ί; *, Dl

I Vtq(s, t; X, ξ)-(s-t)I\ ^ Coίί-ί

, ; *,
( ' >

In particular, when O^t—s^ί and s^.TQ, we have

S, ΐ, X* ζ l J . —^ ^~Ό\^ "

(3.13)

ii) For any a, β with \a-\-β\ ^2, there is a constant CΛ β independent of

t^s(^T0) and x, ξ such that
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( ' '

and

( \ βϊflq(*, * *, f) I ̂  CΛ,β(*-*)<»-ε ,
( ' j l|8?85XM;*,ί)I^C^<*>-'.

Proof. (3.13) follows from (3.10)-(3.12) and the equalities obtained by
differentiating (3.8) with respect to x or ξ. For the proof of the other results, see
the proof of Proposition 2.1 of [5]. Π

From this proposition, we can easily get the following important pro-
position.

Proposition 3.2. Take T>TQ so large that C0<Γ>-8<!/2 for the constant
C0 in Proposition 3.1. Then for t^s^T there exist the inverse C°° diffeomorphisms

xt-+y(s> t\ x, ξ) and ξ\-*η(t, s\ x, ζ) of the mappings y\->x=q(s, t\ y, ξ) and ηv-*
ξ=p( t, s ; x, 97), respectively. These mappings y and η belong to Cl(Aτ\<Bl>00(Rn

xχ
Rξ))y where Aτ= {(t, s) \ t^s^. T} , and they satisfy the following properties:

ί ) ?(*» ^ y(s> n χ> ?)» ξ) = χ > p(*> *; χ> y(t> s'°> χ> f)) = 5 •
. (q(t, s; x, η(t, s; x, ξ)) = y(s, /; x, ξ) ,
11 ) <

IX^ ί; y(*> t'y χ> ?)> ?) = -η(t>sm> χ> ξ)
iii) There is a constant CΊ>1 ίwcA that for any (ty s)^AT and x,

Iy(s , t; x, ξ)-x\ ^ C^t-s)«*XS+ \ ξ \ ) ;

(3.17) I

(3.18)

Ify in particular 0 5j £—s^ 1,

£; ,̂ ζ}—i
(3.19)

iv) For any a, β with \ a+β\ ^2, there is a constant CΛιβ such that for any
(t, s)eAT and x,

(3.20)
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Proof. The proof except for (3.19) is similar to that of Proposition 2.2
of [5]. (3.19) follows from (3.13), (3.10) and (3.12) of Proposition 3.1 by virtue
of the relations in i). G

When \t— s\ is small, we have the following estimates for (q,p) and (y,η)
(see [4, §3]).

Proposition 3.3. There exists a small constant 0<§<1 such that the follow-

ing assertions hold:

i ) We have

(3.21) (g, p) (ί, s; x, ξ)(ΞC\B~8 |jff •-(#»)) ,

where B^ = {(*, s) \ t, s^R\ \t~s \ ^δ} , and

(3.22) "{[(?, p) (t, j x, ξ)-(x9 ξ)]l(t-s)}(tίS,GB~8 is bounded in ̂ -(JF )."

ii) For (t, ί)eβg, Zλtfre &m£ the inverse C°° diffeomorphisms x\-^>y(t, s\x,ξ)
and £f-»?7(Z, s\ x, ξ) of the mappings y\->x=q(ΐ, sf, y, ξ) and η\-^ξ=p(t, s; x, 77),
respectively, and they satisfy

(3.23) (y, η] (t, s; x, ξ)

and

(3.24) " {[(y, ,) (ί, * *, ξ)-(x, ξ)] /(ί-»)} (/>f)βJ}ϊ ύ

DEFINITION 3.4. For (t, s)eAT \J B $, define

(3.25) φ(ί, *;*,£) = «(*, ί; ̂ ί, ί; *, ξ), ξ) ,

where

(3.26) u(s, t; y, ,) = y .,+ ίf Vtff-fl) (T, ?(τ, t; y, ,), XT, ί; y,

Proposition 3.5. Let (t, s)eAT(or B^). Then φ(s, t; x, ξ) defined above
satisfies

f V Y7 fi\(0 t * V f-\\ —— Π
(1 97^ ι-*τr\-» - > "> ^>/ ' —vύ> Λ» V^φ^J ^ > Λ> £)) u >

tφ(ί, ί; x, ξ) = x-ξ;

(3.28) 9,φ(s, t; x, ξ)-H(t, V£φ(ί, ί; *, f), f) = 0;

αnrf

(3.29) j^ f; ̂ ' J} 3 ̂ '' '̂ ̂ ', t, Λ, g j —,X\ύ> '-> Λ> by

Furthermore we have
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(3.30) φ(f, * ;* ,£)€= C\AT

Proof. (3.27)-(3.29) can be shown by direct clculations (or see Kumano-
go [7] and Kumano-go, Taniguchi, Tozaki [8]). (3.30) follows from Pro-
position 3.2 (or Proposition 3.3). Π

DEFINITION 3.6. Let φh(s9 t\ x, ξ) be defined by

(3.31) φk(s, t y x, ξ) = h*->φ(s, t; A-'*, h'ξ) (O^δ^p^l)

for(ί, s)<=AT(jB~8.

In the following, we switch to another large T>T0 such that
if necessary.

Proposition 3.7. i ) For (t, s)^AT> we have

(3.32) φ^ti^ξ^P^C^sy-^C^t-s^h).

When (ΐ, s)^AT and \t—s\ ^1, we have

(3.33) φh(s, ί; x, f)e/ΪS(CΊ(ί-ί)<ί>-2-f, C -̂.); h) .

ii) .For α wy /^O, ίA^re ^Λώί constants
and

(3.34)

for any (t,

Proof, i) is clear from Propositions 3.5 and 3.2. ii) is also clear from
Propositions 3.5 and 3.3. Π

In the sequel we switch to another small §>0 such that δ^§0, if necessary.

We next solve the transport qeuations.

DEFINITION 3.8. For (£, s)^AT\jB^, we define a sequence of functions
aj(ty s; ξ, x') (/=0, 1, •••) inductively as follows:

a0(t, s; ξ, x')

(3.35) = exp {--1 Σι \\d*β*H) (τ,X*, τ; *', Ξ(τ)), B(τ))χ

and for j ̂  1

(3.36) αΛί, *;

where
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(3.37) B(τ) = p(r, *;*',,(*,*; *',£))

and

(3.38) = Σ - 8 ? ' {( W (*> Vέφ(*, t; ξ, x', £'), ξ) x

Moreover, in case 0^δ<p^l, we define eh(ty s\ ξ, x') by

(3.39) eh(t, *; f, x') =

where % and {βy}7-o ar^ taken as in Proposition 1.3.

Let Cl(Ω\B£ι(h)) (Ωc:Rp domain) denote the set of families
of functions /A(ω, y) such that for each ωeΩ {/A(ω, ̂ )}0<A<1e {B*a(A)}0<*<i and
the derivative d*fh(o>,y) belongs to C'(Ω,χjRj) for each λe(0, 1).

Proposition 3.9. i) The function aj(t, ί; |, x') (j=Q, 1, 2, •••) belongs to
Cl(AT U J5g \<Br(P?*)) and is the solution of the transport equation

-dta&s* ξ, χ')+ g (dXkH) (t, y(s9t; x', f), ξ) (8eΛ) (it, j; f, Λ')

(3>40)

/or (ί, s)^Aτ\jB-ξ with the initial condition

(3.41) <ψ, *;£,* ')=!, «Xί,'ί;e,Λ') = 0 (;-l,2, -.-),

we put BQ(t, s\ ξ, x')=Q. More precisely afa, s; ξ, x') satisfies the estimates

ί |9|9?,K(ί, ,; e, ^')-l)l ̂  C βχιχ (or ^ C^|i-i|«) ,
( ' } ' 1-' (or ̂  C-fβ | ί-ί | 2) ( ^ 1)

/or (ί, ί)e^4Γ(or eBj), zϋA^rβ the constant CΛ β>0 is independent of ξ, x' and

ii) W%^w 0^δ<p^l, ^(ί, j; f , Λ') of (3.39) w well-defined and belongs to
C\AT\jB^\Bp^(h)). Moreover the following estimate holds: For any (t,
(or

(3.43) \ek(t, s)-\W ^ C^χε (or ̂  Ct\t-s |2)

iw J5ptδ(A), wA^r^ the constant C/>0 w independent of t and s.

Proof, i) We have only to prove (3.42), since the others are obvious from
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the theory of the first order differential equations. We first note by (3.37),
(3.10), (3.12), (3.15), and (3.20) that

(3.44) |9f3?'Ξ(τ)|^CβιfJ

for some constant Caβ>0 independent of t, r, s, ξ and x'. Thus from (3.35) we
have the first estimate of (3.42). Then by induction we get the second estimate
of (3.42) and

(3.45) 1 9£a?Λδ,(ί, ,; ξ, x') I ̂  CΛ,β«>-2-e (or ̂  Caβ \t-s\)

for (t, s)^AT (or e5y), using (3.36), (3.38), (3.29), (3.17) and (3.20) (or (3.24)).
ii) is then easily seen from (3.39) and (3.42). Π

DEFINITION 3.10. For (t, s)eAT\jB& and/e.s4, we define

(3.46) El(φh(s, *)*)/(*) = 0.- j je«« «-**<« ' : ''*»f(x')dx'Λς

in case 0 ̂  S ̂  p ̂  1 , and

Eΐ(φh(s, *)*)/(*)

^ '
= 0.- ί Jβ'C* €-Φ*( .ί

n case

Theorem 3.11. Î ί Assumption (A) be satisfied. Let (t, s)^AT (or

αwί/ / e ̂ 4 , ^wrf rf^T^

(3.48) GΓ(φ.(*, *)*)/(*) = Λ ((Dt+Hh(t, X', D,))Et(φh(s, ί)*)/(«) ,

where m=0 incase O^S^p^l andm=<*> in case
i )

(3.49)

and

(3.50)

/or τ«=0 or oo. Here g%(t, s; ζ, x')=σ(G"(φk(s, t)*)) (ξ, x') is the symbol func-

tian of Gϊ(φΛ(s, t)*):

Gΐ(φh(s, t)*)f(x)
(3.51) ...

= 0.-jj*'<* «-**<« ' ''•«>#(*, s; ξ, x')f(x')dx'dξ.

ii) More precisely, we have for (t, s)GAT (or eβj) αwrf α«y N^ 1

(3.52)
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and

(3.53) I fi(t, s) I <°>^ C,f*Λ"<f>-2- (or ^ CltNh» \ t-s \ ) .

Here \ |(/0) denotes the semi-norm of Bpt8(h), and the constants Cl and Cl N are
independent of t, s and h. Hence we have for (t, s)^AT (or e BΊ} and any N^>1

(3.54) \\G°k(φk(s, t)*)\\L*+L*£ CKfX1- (or £C\t-s\)

and

(3.55) ||GΓ(φ4(*, ίDH '̂ίs C^tX2- (or <^CNh»\t-s\),

where C and CN are independent of t, s and h.

REMARK. Theorem 3.11-i) says that Ef(φh(sί £)*) is the approximate fun-

damental solution of order m(m=0 or oo) in the sense of Kitada and Kumano-go

(see [6, §5]), though the condition (3.50) is weaker than (5.29)-i) and (5.30)-i) of

[6].

Proof. (3.49) is obvious by definition. So we have only to prove (3.52)

and (3.53), since (3.50), (3.54) and (3.55) follows from them by Theorem 1.7.
Using Theorem 1.6 and (3.28) we have for (*,

gl(t, *ϊ f, x1)

(3.56) - " * * > »> > > χ> -
X ((8 δ A 8 t | φ A ) (s, t\ x'9 ξ~

from which follows (3.52) by virtue of the estimates in Propositions 3.2 and 3.3
and our Assumption (A)-iii).

Similarly using Theorem 1.6, (3.28) and (3.40) we get for N^2

gZ(t, si f , x')

= -ί § %(CJ1*) (ftp"β)y^(ί, *; h'ξ, Λ-V)

x 95, {(8̂ ί) (ί, Vtφ(ί, ί h'ξ, h-*χ', f '), Λp?) x

X «»+ι-ι-ι(ί, ί; ?', h~sx')} 1£/=Λ

_fl)*-ii (ξ, X' θ)dθ ,
I=JV γ! Jo

where

(3.58) = 0.- Jjβ-* '8H(Z>ϊίO C, A-'^+^tΦί*, ί; A'f, A'8*', ?'),



894 H. KITADA

χek(t, s; h-pξ'y *')} w-fu

Thus by (3.42), (3.45), (3.43) and Proposition 3.2 (or 3.3), we obtain (3.53). Q

4. Fundamental solution global in time

We first construct the fundamental solution locally in time. For this purpose
we record a theorem concerning the multi-products of conjugate Fourier integral
operators which is a version of Theorem 4.3 of [6].

Theorem 4.1. Let n0>n be an even integer and put 7=21w0-f-l. Let τ>0
be sufficiently small as in Theorem 3.8 of [6]. Let φ} th(x, ξ) ePp>δ(τy, 7: h) for j=

CO

1, 2, •••, and let TΌoΞ^ϊ] τ; < .̂ Let v^>l be an integer and put Φv+ι,*=φι,*#

#φv+ι.Λ Let pjth(ξ, x')GS£l(h) for j=l, •••, v+l. Then there exists a symbol

rv+M(f, x')<ΞEf*Γ\h) (m^l=m1+^+m,+1) such that

(4.1) Λ+ι,*(φv+ι.f)-Λ.*(φι§f) = Λv+ι.*(Φv+ι.f)

and

(4<2)

X Σ Π

where PjAΦj*)=PjAΦ*J* > D» XΎ> Λv+ι.*(Φv+ι.f) = r,+lfik(Φv+lff Z>,, J5Γ');
Jjth=φjιh —x ζ\ ^!=2/+25w0+l; and (?/ αr^ ct positive constants.

Proof. This theorem follows from Theorem 4.3 of [6], if we note the
following fact: For PA(φf )=^(φf D,9 X')GB^(φϊ)9φk^P^(τ9 O A), we have

(4.3)

where qh(x, ξ)=ph(ξ, ^) Π

Now we construct the local fundamental solution.

Theorem 4.2. Let Assumption (A) be satisfied. Then for a sufficiently small
, there exists uniquely the fundamental solution Uh(t,s) of the equation

Moreover the fundamental solution Uh(t, s) is uniquely represented as a conjugate
Fourier integral operator with phase function φh(s, t) and a symbol of class
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! J3p°.δ(λ)). More precisely there exist symbols d%(t, s; ξ, x

(m=0 in case O^δ^p^l and m=oo in case 0^δ<p^l) such that for Dh(φh(s,
t)*) defined by

Dϋ(φh(s, *)*)/(*)
(4.5) ,,

= 08-l yι**-** .* >'.Mdϊ(t, si ξ, x')f(x')dx'dξ ( f ( Ξ d ) ,

we can write

(4.6) Uk(t, s) = Eΐ(φh(s, t)*)+Dΐ(φk(s, t)*)

for (ί, s)^B8Q. The operator Uh(t, s) is extended to a unitary operator in L2(R*},

and the following relations hold:

(4.7) Uk(t, θ}Uh(Θ, r) = Uk(t, r) , ί, θ, re[ί-δ0/2, *+δ0/2] ,

(4.8) D,Uh(t, s)-Uk(t, s)Hh(s9 X, Dx) = 0 , |f-*| ^δ0 .

Proof. We proceed quite similarly as in the proof of Theorem 6.1 of [6].
Let nQ>n be even and let /— 21w0+l. Let τ>0 be sufficiently small so that
Theorem 3.8 of [6] holds for our case. For cγ in Proposition 3.7-ii), we take
δ0>0 as crδ0^τ. Then for any subdivision Δ: t>tv>t v-1> >t1>s of [s, t],
we can easily see that

(4.9) φk(s9 t^φh(tly f2)# - tf φ*(fv, t) = φk(s, t)

holds (cf. Kumano-go, Taniguchi and Tozaki [8]). Now using Theorem 4.1,
we define W?th(φh(sy t)*) by

(4.10) 07.*(φ*(*. 0*) = G?(φ,(ί, t)*) =1 LhEΐ(φh(s, t)*)

and

Wΐ+1.h(φ,,(s, o*) = [wτ.k(φt(θ, t)*)wy.h(φh(s, θ)*)dθ
J s

(4.11) =

 v - ί * W ( Φ ^ v - ι , ί»)*) -

where m—Q in case O^δ^p^l and m=o° in case 0^δ<p^l. Then, in quite
the same way as in [6], we see from Theorem 3.11-i) that the following series

converges in C°(βδo \B?,s(h)):

(4.12) <7?(<,ί;e,*') = Σ «*:*(*, *;&*').
V=l

where w?.h(t, s; ξ, x') = σ(W^(φk(s, t)*)) (ξ, x')eCβ(Bt<t\B Λ(h)). Hence setting

£»(**(*, t}*)=3ΐ(φk(s, t)*; t, s; Dx, X'),vfe define
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(4.13) 0?(φ»(ί, <)*) = (Φ*(*. t)*)ΰΐ(φh(s, θ)*)dθ ,

where we again use Theorem 4.1. Then ?7A(ί, s) defined by (4.6) satisfies (4.4).

The uniqueness, the unitarity, and the relations (4.7) and (4.8) are proved in a

way quite similar to [6]. Π

REMARK. As can be easily seen from the proof, this theorem also holds

under the same assumption on the Hamiltonian as in [6].

From this theorem we can construct uniquely the global fundamental

solution Uh(tys0) of the equation (3.4) for t^R1 by Uh(tys0)=Uh(tysN)Uh(sNysN_1)

•••Uh(sly sQ)y where sk= s0+k(t—s0)/(N-\-l) (k=ly •••, N) with N being an integer

such that N^. \t—sQ\ISQ—l. The operator Uh(ty SQ) thus constructed is unitary

in L2(Rn) and obviously satisfies the relations (4.7) and (4.8) for any t, θy ry s^R1.

Especially we have Uh(t, s)~1=Uh(sy t) for ty s^R1.

We now study a simple expression of Uh(ty s0)y restricting ourselves to con-

sidering only the case t^s0. (The other case can be dealt with similarly.) Then
we have

Uh(t, s0) = Uk(t, ίv)E7A(ίv, fv-0 - Uh(tly T)

• Uk( T, SL) Uh(sLy s^) Uk(sl9 S

where tj+1=tj+δ0 (j=0, 1, •••), tQ=Ty t^+1^t>t^y sl_1=s—δ0 (l=ly ••-, L+l),

sL+1= Ty and S1>s0^s1—809 T being a large number. Then L is determined

only by SQ and T. So if we can represent Uh(ty t^) Uh(tly T) as a single con-

jugate Fourier integral operator, then the fundamental solution Uh(ty SQ) is re-

presented as a product of a finite number of conjugate Fourier integral operators

independently of t. Before proving this we prepare a proposition.

Proposition 4.3. Let Γ(>T'0) be as in section 3 and let 0<S0<1 be as in

Theorem 4.2. Then:

i ) For any (ty s) satisfying T^s^t^s+S0we have φh(sy

C*iS0; h)y where Cx is the constant in Proposition 3.2.

ii) For s^ T and t>s+8Qy let v^ I be an integer stick that

s+vSQy and put tj=s+j80 for j=Qy 1, •••, v and t^+1==t. Then the (v-\-\)-tuple

(Φh(s> tι)> Φh(tι, t^y •••, φΛ(ίv, t)) of phase functions satisfies the condition (%) of sec-
tion 2. Moreover we have φh(sy t^φk (tly t2)$ •- #φA(ίv, t)=φh(sy t).

Proof, i) is clear from Proposition 3.7-i).

ii) Put φjth=φh(tj_ly tj) for y=l, •••, i^+l. Then by Definition 3.6 and
Proposition 3.5-(3.29) the equation (2.1) is equivalent to
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with J*rv

0=*;E$+1=£; and

,AI«(4 16)

Assume that {Xί, B4}J-ι(^ £) is the solution of (4.15). Then from (4.15) and
Proposition 3.2 we have

i i n
'17) ϋ) BT =**,„,*;«, HO-

On the other hand using Proposition 3.2-ii) we have from (4.15)

- Λ'ί, ly-.i «". Hi"')

where we put Sv=η(tl9 ί0; *, Bi) and Jfϊ+1=;y(fv, ίv+1 Zί, ?). Thus from (4.17)-
i) and (4.18)-ii) we get

(Xt, Hi) = (q, p) (tit ίy+1; X{*\ Ξί+l)
C ' } + 1 ) O'=0,l, -,v).

On the other hand from (4.17)-ii) and (4.18)-i) we have

ίy, ί; _ :; Xi-1, HΓ1)
(4.20)

Hence we have from (4.19) and (4.20)

(4.21)

from which we get

(4.22)

Combining this with (4.18) and (4.17) gives

(4.23) I * ;> v+1> °' / > * + ! >

Obviously this is C°° in (x, ξ) and satisfies (4.15). Thus we have proved ii). Π

Now we can prove the main result of this paper.

Theorem 4.4. Let Assumption (A) be satisfied. Then the following as-
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sertions hold.

i) There exists uniquely the fundamental solution Uh(t, s0) (ί, ^o^^1) °f
equation (3.4). This operator Uh(t, s0) satisfies the relation

( ' } )- Uh(t, s)Hk(s, X, ig = 0 , t,

and is extended to a unitary operator in L\Rn).

ii) Let T(>Γ) be sufficiently large. Then the fundamental solution Uh(t, s)
for t^s^T is uniquely represented as a single conjugate Fourier integral operator
with phase function φh(s, t) (eP^C^X8, CΊ(ί— - s); h)) and a symbol of class
C\Aτ\Blts(h}). More precisely, let 0<δ0<l be sufficiently small as in Theorem
4.2. For t^s^ f and t>s+S0, let v^\ be an integer such that

Q, and put tj=s+jS0for j=0y 1, •••, v and t^+1=t. Then we have

Uh(t,s)f(x) = Uk(t, t,)Uh(t,f /v.O- UΛ(tl9 s)f(x)

f4 25) r r
V ' ; - / ί , j; ?, x')f(x')dxfdξ

, where uh(t, s; ξ, x')^C\Aτ\Bl>5(h)} is uniquely determined. Thus the

fundamental solution Uh(ty SQ) of (3.4) for t^sQ is represented as a product of a finite
number of conjugate Fourier integral operators, the number depending on SQ but not

on t.
iii) For t^>s^T define

(4.26) Fΐ(φk(s, i)*) = Uk(t, s}-EH(φh(s, t)*) ,

where m=Q in case O^δ^p^l and m=o° in case 0^δ<pfgl. Then we have

(4.27)

and

( '

for any N^. 1, where the constants C and CN are independent of t, s and h.

Proof, i) is already proved.

ii) We have only to prove the second equality of (4.25). Since O^tj—tj^

, from Proposition 4.3-i) we have φ; ,A = φΛ(t, _ι, fy)eP£3(τy, σ0; h) for σ 0=

and Ty-CΛ^.!)-2- '̂-!, — , ^+1). So putting φkth=x ξ and rk=Q for
^v-\-2, we have for the sequence {φ/,/J7-ι °f phase functions φy> A



CALCULUS OF FOURIER INTEGRAL OPERATORS 899

y=ι y=ι

^ 2CΊ S0< f +0-(4 29)

^ 2CΊΓ<f H-T)-2-'̂  ̂  -̂ L <Γ>-1-'
Jo l + £

and

«τ,T. ss c

τ>-'-8+δ

Thus if we take T(^T) sufficiently large, then we have 2(<r0¥00+τa

00)^τ0 for

some 0^τ0^l/4 independently of v. This, together with Proposition 4.3-ii),

shows that Theorem 2.6 is applicable to the product Uh(t9 ίv) ••• Uh(tl9 T). Thus
by Theorem 2.6 we have (4.25). The smoothness of uh(t, s) in (£, ί) at ί=ίy
follows from the uniqueness by taking another small δ0>0.

iii) From (4.26) and (3.48) we have for t^s^ T and/e^

= uk(t,
ί4 31")

= U
r*

h(t, s)\ Uh(θ, sΓGΐ(φh(S, θ)*)fdθ
Js

= \'uh(t, θ)Gf(φh(s, θ)*)fdθ .
Js

From this and Theorem 3.11-(3.50) follows (4.27), if we use the expression (4.25)
and Theorem 2.6. The estimate (4.28) also follows from (4.31) and (3.54)-(3.55)

of Theorem 3.11. Π
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