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0. Introduction

Browder and Livesay defined a signature of a fixed point free involution on a

homotopy ^-sphere by using a -connected characteristic (n— ̂ -sub-

manifold [BL]. For ft=3, their definition is available for homology 3-spheres
and connected characteristic surfaces [Md]. Unfortunately, this invariant
does not generalize to involutions with non-empty fixed point sets. The problem
is that the signature depends upon the choice of the characteristic surface.

In §2 we give a generalization of Browder-Livesay signature for an in-
volution with non-empty fixed point set whose components are 1-spheres and
homologous to zero in the orbit space.

For the case that the orbit space is homeomorphic to S3 and the orbit of the
fixed point set is a link L in *S3, Murasugi showed that ξ(ί),=σ(c)+^Σlk(ίi: £;), is
invariant, where σ(t) is Murasugi signature fMr-2]. We show the following
theorem in §3:

Theorem. The signature of the involution is ξ(ι).

Further for each link in a homology 3-sphere (furthermore for any closed
orientable 3-manifold in which each component of the link is homologous to
zero), we define a signature for the link which is an extension of the signature
of a link in S3.

Fukuhara defines a signature for an involution on a homology 3-sphere by
means of Hirzebruch's formula about the signature of ramified coverings [Fk].
In §4 we show a construction for producing a 4-manifold starting from an
involution on a homology 3-sphere whose signature is equal to our signature of
the involution. This construction is based on Craggs's theory on triadic 4-
manifolds [Crg-1], [Crg-2]. Finally we show that our signature is also an
extension of Fukuhara's signature.

1) The partial results in this article are contained in the second author's Ph. D. thesis written
at the University of Illinois under the direction of Professor R. Craggs.
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1. Preliminaries

We work in the piecewise linear category.

Maps are all piecewise linear maps. The interior, closure, and boundary

of (•••) are denoted by Int( ), C/( ), and 9( ) respectively. The term loop
means a simple closed curve.

Throughout this paper we assume that M is a fixed oriented closed 3-

manifold and /: M-+M is a fixed orientation preserving involution such that the

fixed point set Fix(/) consists of n mutually disjoint loops *S(1), - ,S(ri). For a
subset A of My A /f denotes the orbit space of the set A.

A closed surface G in M is a CH-surface provided that (1) the surface G is an

invariant set for/, i.e./(G)— G, (2) the surface G separates M into two connected

components, and the closure of each component is a handle body, and (3) the map

/ maps one component onto the other.

For each C7/-surface G, we define as follows a signature of the map / with
respect to G, and denote it by σG(f: M) : Let U be the closure of a complementary
domain of G and let /c— Ker(/ίjί: H^Gfy-^H^U)), where /# is the homomorphism

induced from the inclusion map i: G-»C7. Let B: κ®κ->Z be the bilinear form
defined by B(x®y)=x f#(y), where -means the intersection number, and/* is the

isomorphism on H^G) induced from the homeomorphism / 1 G. The signature

σG(f: M) is the signature of the bilinear form B.

Two C7/-surfaces are ^-equivalent provided that one is obtained from the
other by a finite sequence of Operation ΓΊ and Γ2 and their inverses:

Γ1(G1->G2): There exists a homeomorphism h: M-+M such that ho/— fofj and

Γ2(G1-^G2): Let U be a handle body in M bounded by Gx. There exist two
disks Z>! and D2 in M such that

(1) the disk Dl is a proper disk in Z7,

(2) the intersection D2 Π U is 9Z>2,

(3) the intersection D1 f| D2 consists of only one crossing point on Gly

(4) the closure of a connected component of U—G2 is a regular neigh-
borhood of D1 in U, say N,

(5) the set N does not meet with its image /(AT), and

(6) the surface G2 is the boundary of the sεtCl(U-N) U f(N) (see Fig. 1.1).

7
Fig. 1.1
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The following theorem is shown in [Ng].

Theorem (ss-equivalence theorem). Two CH-surfaces Gl and G2 are ss-
equivalent if and only if there exists a homeomorphism h: M-*M such that

(1) hof=foh,and

(2) the intersection h(G^) Π G2 is a neighborhood of the fixed point set Fίx(f)

on G2.

We use the sign Π to indicate the end of proofs.

2. Relating signatures to twisting numbers

In this section, we define twisting numbers of two CΉ-surfaces and get a
formula relating the signatures to twisting numbers. At the end of this section,
we define a signature of an involution such that each component of the fixed
point set is homologous to zero in the orbit space.

Let Gl and G2 be C7/-surfaces. We define as follows two kinds of twisting
numbers: For each component S(i) of the fixed point set Fix(/), let Tf (l) and
Γ, (2) be regular neighborhoods of S(i) such that (1) Γf (2)clnt Γf (l), and (2)
fory=l, 2, the intersection Ti(j)Γ\Gj is a proper annulus in T{(j) which is se-

parated by S(i). For j= 1, 2, let AI(J) be the closure of one of the connected

components of T{(j} ΓiGj— Fix(/). Orientate the two annuli -4, (1) and Ai(2)
so that the orientation of the loop S(i) inherited from the annulus -4, (1) is equal
to the one from the annulus A (2). Let L be the loop of the boundary of the
annulus A , (2) different from S(i). Let m(i) be the intersection number of the
oriented loop and the oriented surface Aλ. We call the w-tuple (w(l), ,τw(w))

the twisting number of G2 with respect to Gh and denote it by tw(G2\ Gj). Let
n

τ(G2;G1)=20|(0 We call the number τ(G2; G^ the total twisting number of
ι=l

G2 with respect to Gλ.

Proposition 2.1. Let G1 and G2 be CH-surfaces. Then they are si-equivalent

Proof. Since tw(G2\ G^^O, " ,0), there is an ambient isotopy of M//that
fixes Fix(/)// and takes a neighborhood of Fix(/)// in G2/f onto a neighborhood of
Fix(/)//. Pull this isotopy back to an equivariant isotopy Ht of M fixing Fix(/),
where equivariance of Ht means that Htof=fofίt for all t. The replacement
G2-*£Γ1(G2) is then a Γj operation. Therefore G2 is ss-equivalent to Gλ by
^-equivalence theorem. Π

Let M' be an oriented closed 3-manifold and/':M'->M' be an orientation
preserving involution on M' with Fix(/'), a disjoint union of 1-spheres. Let G

and G' be C7/-surfaces in M and M' respectively. We define as follows a sum of
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the two CΉ"-surfaces G and G' in the connected sum M$M'. Suppose that
B and B' are invariant 3-balls in M and M' respectively such that B Π G and
B' Π G' are invariant proper disks in B and B' respectively, and B Γl Fix(/) and
B' ΠFix(/') are proper arcs in B and Bf respectively. Now B and B' possess
the orientations inherited from M and Mr respectively. Let h: B-+B' be an
orientation reversing homeomorphism with fΌh=h°f, h(BΓ\ G)=B' ΠG', and
h(B Π Fix(/))=5' Π Fix(/'). The homeomorphism h induces the connected sum
M$Mr of the 3-manifolds M and M', the connected sum G#G' of the surfaces
G and G', and the sum /#/' of the two maps which is an orientation preserving
involution on M$M'. We call this surface G#G' a MW of the two Cίf-surfaces
G and G' in the manifold M$Mr with respect to the involution/ft/'. Note that
the sum depends only on the choice of the components of Fix(/) and Fix(/')
identified by h.

Let Σ3 be the standard oriented 3-sphere and g the standard orientation
preserving involution on Σ3. Then Fix(g) is an unknotted 1-sphere in Σ3. For
each 17 =±1, let X(η) be a C/f-surface, which is a torus, in Σ3, with σX( η)(g'.Ί!?)='η
(see Fig. 2.1).

Here S3 is considered as the one-point compactification of -R3. For (X, Y, Z),g(X, Y,Z)
= (—Xy—Y)Z),g(oo) = oo. Hence Fix(g) is the union of theZ-axis and the point oo. Now
.X"( + l) is the union of the YZ-plane and the point oo except in a 3-ball B. In the 3-ball,
the intersection of the 3-ball and X(+1) is the union of F and two disks DI and D2. The
intersection number of y and g(y) is +1.

Fig. 2.1

We define Operation Γ3 on the set of CΉ-surfaces in M:
3(G!->G2): There is a homeomorphism k: M->M#Σ3 with (f$g)°k=kof,

k\(M-B)=id, and k(G2}=G^X(η), where B is the 3-ball to define the
connected sum.

We denote G2 by G^X(η). Then G^X(η) is unique up to Operation
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Proposition 2.2. Let G2=G1^X(-η). Then we have
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Proof. Suppose that Operation Γ3(G1-^G2) is taken place in a 3-ball B in
M. Then G1—B=G2-B. Let Ul and U2 be handle bodies such that (1) for

each ί=l, 2, the surface G, bounds Uh and (2) Ui—B=U2—B. Then there is
a loop xonG2Γ\B such that the loop x represents a non-trivial element of /c=Ker
(ί^:Hl(G2)-^Hl(U2)} and x f*(x)=η (see Fig. 2.1). Then there are mutually
disjoint loops {y*}Λ on G2—B such that they represent non-trivial elements of /c

and that {yk}k represents a generating set of Ker(iHί: H^G^-^Ή^Ui)), when we
consider that each j^ lies in Gj. It is clear that Λ>/#(yΛ)=0 for all &. Therefore
we have the result. Π

The following proposition can be shown easily.

Proposition 2.3. Let G2—Gl$X(rj). Then we have

τ(G2: GO = -?. D

Proposition 2.4. Let Gl and G2 be CH-surfaces. Then σGl(f: M)=σG2(f: M)
provided that G} and G2 are si-equivalent.

Proof. It is sufficient to check the case that G2 is obtained from Gx by
Operation Γ2. We use all the notations in the definition of Operation Γ2. There
are mutually disjoint loops {yk} on Gj such that (1) each yk misses N\JD2 and

(2) f8A,/(9A)} U {yk} is a generating set for κ=Ker(ί#: H^G^ -*H1(U)). Then
it is clear that (all loops are considered as elements in

(1)

(2)

(3) dD^dD2=ε where 8= ±1, and

(4) 8A /(9A)=0.
Hence the bilinear form on κ®κ has a matrix presentation with respect to

the ordered basis {dDlyf(dD2), yl9 •••} as shown below:

where * = f(QD2) 8A ,

A - K ), and αΛy =

/o
ε

0

:

\o

ε
*

0
:

0

o ...
0 -

A

°\
0

/

Since the signature of the matrix
€\ 1
*/

is zero and the signature of the matrix
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A is equal to σG2(f: M), we have the result. Π

Theorem 1. Let G1 and G2 be CH-surfaces. Then we have

σG2(f: M) = σG(J: M)-τ(G2: G,) .

Proof. 'Lettzo(G2;G1)=(m(l),—,m(n)). Tuetη(f)=m(ί)l\m(t)\.
and inductively for each ί=0, 1, -,n-l, let Fί+l=Fi%X( η(i+l)}% %X(η(i+\)),
(\m(i-\-\)\ times connected summed on the component 5(z+l) of Fix(/)).

Then σFi + 1(/: M) = σ>.(/: M) + \ m(i+ 1) | X η(i+ 1) by Proposition 2.2

= σfl(f:

Hence σFa(f: M) = «>„(/:
ι=l

Namely <rFn(f: M) = <rGi(/: M)+Σ MO

Since to(G: jFΛ)=(0, •••,()), the CΛΓ-surfaces, G2 and JPM) are ^-equivalent by in-
equivalence theorem. Hence σGz(f: M)=σFn(f: M) by Proposition 2.4.

On the other hand,
τ(Fi+l: Fi)=—η(i+ 1) I m(i+ 1) | = — m(i+ 1) by Proposition 2.3. Hence we have

Σ
ί = 0

Thus

Therefore we have the result. Π

= -:§«(*)•
=-^.:^o)

= - τ(G2: GO

DEFINITION. An involution k:N-*N on a closed 3-manifold N is said to be
admissible provided that for each connected component C of Fix(&), C/k is the
boundary of an orientable surface in N/k.

Suppose further that /: M->M is admissible. For each CΉ-surface G, we
define as follows a self-linking number of G along the component S(i). Let L be
a loop on Int(G//) which is parallel to S(i)/f on G// and is oriented in the opposite
direction from S(i) on the annulus bounded by L and S(i)/f. Then we can
define the linking number of S(i)/f and L since they are homologous to zero in
M/f. We call this number the self -linking number of G along S(i), and denote it

by/£,(G). Let

We call lk(G) the self-linking number of G.
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Theorem 2. Suppose f is admissible. Then for any pair of CH-surfaces G
and G', we have

<rc(f: M)+ lk(G) = «

Proof. Let tw(G: G')=(m(l), - ,m(n)). Then for each i=l,—,n, m(i)=

y {lki(G)-lk,(G')} . Thus by Thorem 1

σG(f: M) = σc,(f: M)-τ(G: G')

= σG,(f: M)-^m(i)

= σc,(f: M)- I

= σG,(f: M)-
2 '• = ! 2 *• = !

Hence the result follows. Π

DEFINITION. We call the number σG(f: M)-\ -- lk(G) the signature of the
L*

involution/, and denote it by σ(f: M).

3. Relation between the signature of an involution and the signature
of a link in S3

In 1962, Trotter showed that for any Seifert matrix F of a knot the signature
of V+V is an invariant of the knot type [Tr]. In 1965, Murasugi introduced
an integral matrix M of a link i and showed that the signature of M+M' is an
invariant of the link type of i [Mr-1]. Later in 1969, Shinohara showed that
the two signatures are same [Sh]. In this section, we give a relation between our
signature and the signature of a link for the case the orbit space M/f is homeo-
morphic to S3.

Throughout this section, we assume that M/f is homeomorphic to S3. Thus
/is admissible. We choose the orientation of M3 so that the natural projection of

M to M/f is an orientation preserving map, where we assume M/f has the usual
orientation.

Let t=Fίκ(f). Then c is a link in M/f=S3. To calculate the signature of

i, we follow Shinohara's method in [Sh]: Let p: S3-*S2be a regular projection
(for the definition of a regular projection, see [Cr]). We consider S2dS3.
Suppose that the link i possesses an orientation. Let L=p(t). We assume that
the orientation of L is inherited from that of i, where L is considered as a linear
graph whose vertices are the double crossings of L and whose edges are the
closed 1 -cells into which the double crossings subdivide L. At each double
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crossing c, we modify L as shown in Figure 3.1, and then we get mutually dis-

joint loops Si, ••-,,$,. By [Trs], we can assume that Sly "ySt bound mutually

disjoint 2-disks Rly- yRt in S2. Let fi9—,?m be the closures of connected com-

ponents of S2—L which contain no Int j?, . They are called the α-regions. At

each double crossing c, we join the two α-regions by a twisted band B(c) as

shown in Figure 3.2. Then F= ((J#/)U(U#M) is an orientable surface.
»=1 c

Furthermore there is an ambient isotopy of S3 which sends QF to t in S3. We

regard ΘF as the link L. The surface F possesses the orientation which induces

that of i. Let T: Fx[— 1, 1]-̂ S3 be an embedding such that (1) T(x90)=x

for all x^Fy and (2) T(Fx 1) is on the positive normal side with respect to F.

Note that Cl(S3—T(Fx [—1, 1]) is a handle body, and hence the preimage of F

in M is a Cίί-surface. Let F be the C//-surface. We can choose oriented

loops (Xu • m,am on F in such a way that (1) the orientation of a{ is as shown in

Figure 3.3, (2) the mapp maps α, homeomorphically onto a loop cίi inp(F) which

runs once around 7{ and is parallel to the boundary of r{ except on p( \]B(c)\

(3) cίi and cϊj (iΦy) meet only at the double crossings which are incident to f f

and Py, and (4) at each double crossing c, if Ff is on the left side with respect to

the direction of the under pass at c, then cίi meets the boundary of f t once just

before the point c and once more right after the point c (see Fig. 3.3).

Let U be a handle body in M bounded by the CΉ-surface F. Then there are
m mutually disjoint loops xl9 * ,xm on F such that (1) #,-//= α f, (2) ar^O in Z7, and
(3) on Fj the intersection of x{ and Fix(/) consists of only crossing points. The
handle body U possesses the orientation inherited from that of M, and F possesses
the orientation inherited from that of U in the usual way. The orientation of α,
induces that of #,. Note that any (m-1) subset of xl9 •••,#„ represents a generating

set for the group /c=Ker(/Hc: H^F) -*H1(U)). Let W=(zoij} be the matrix whose
(ί,/)-entry is Xi f*(Xj). Then σp(f:M) is equal to the signature of the matrix

W.

\ /

/ \
Fig. 3.1
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Fig. 3.3

Proposition 3.1. The signature of the link ι is equal to the signature cr/?(/: M).

Proof. Let A^a^) be the matrix with aij=lk(T(aiXl): a,). Then the
signature of link i is equal to the signature of A-\-A' by [Sh]. It is easy to show

that wij=aij-i-ajΊ (see Fig. 3.3). Thus the result follows. Π

Now σ(/: M) and the signature of the link L are invariants. Hence the
difference of those two invariants is also an invariant. The following theorem

explains what it is.

Theorem 3. Let ti=S(ι)/f and let the orientation of ι be the one inherited

from that of L. Then we have

Proof. It is sufficient to calculate lk(F) by the definition of σ(f:M). For
each ί=l, •••,«.
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Hence lk(F) = Σ Σ *(«*: */)

Therefore the result follows. Π

Corollary. σ(f: Λf)=σ(*)+Σ.Λ(«<: *y). D

NOTE. For any link £ in a homology 3-sphere Σ3, let F be a surface (which
may not be orientable) whose complement in Σ3 is an open hadle body. Let M
be the double branched covering of Σ3 with the branching locus £, induced from
F. Let iι,—,ιm be the components of c. Then σ(f: M)— Σ 1Λ(*, : ̂  ) is an

»"</
invariant, where/: M-+M is the transformation. And this number is an extension
of the signature of a link in S3.

4. Signatures

Fukuhara defines a signature of an orientation preserving involution on a
homology 3-sρhere M [Fk]. His definition is derived from Hirzebruch's
formula about the signature of ramified coverings. Kauffman and Taylor define
a signature of a link in the 3-sphere, and they show that the signature is equal to
the Murasugi signature [KT], Their definition coincides with Fukuhara's
signature provided that M is the 3-sρhere. In the previous section we proved
that our signature coincides with Murasugi signature. This fact makes us think
that our signature may coincide with Fukuhara's signature. In this section we
introduce another signature of a CH-surface in a homology 3-sρhere which is
based on Craggs's theory on triadic 4-manifolds. By means of this signature
we show that our original signature coincides with Fukuhara's signature.

Throughout this section we assume that M is an oriented ^-homology 3-
sphere and /: M-+M is an orientation preserving involution.

Let U be a handle body in M with f(U)Γ\ U=dU. Let U possess the
orientation inherited from that of M. Let Q be the boundary of U. Orientate
Q such that (the orientation of £))x(the outward normal direction) coincides
with the orientation of M.

For each pair of elements x and y in Hι(Q), x y denotes the intersection
number of x and y with respect to the orientation of Q. Any homeomorphism
h of Q onto itself induces an automorphism h% of H ̂ Q). This automorphism
preserves intersection numbers x y=hχ(x) h%(y) if h is orientation preserving and
reverses their sign x y= — hχ(x) h#(y) if h is orientation reversing (see [Dd],
Section VIII, Proposition 13.6). An automorphism of Hι(Q) is called symplectic
if it preserves intersection numbers, and negative symplecϊίc if it reverses their signs.
It was proved by Nielsen (see [Mks], Theorem N13) that for any surface Q,
symplectic and negative symplectic automorphisms are induced by homeomor-
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phisms.

Let G be an abelian group and #(1), •••,£(*) elements in G. We denoted by

<#(!), ~,g(i)y the subgroup of G generated by the elements £(1), •••,£(/)•
Let m be the genus of Q. We say that a basis {?(!), •• ,<§

r(2w)} for Hι(Q) is
symplectic if the basis satisfies the following condition: For each /=!,•••, 2m;

;==!, .. ,2r

jo »yιy-*ι*«,. ,, v ι . .,
\(j-t)ίm ιf\j-ι\ = m.

Hence the 2mx2m intersection number matrix (a(i,j)) with respect to the basis

is I m I where a(i,j)=g(ΐ) g(j) and Im denotes the mXm identity matrix.
\~Im 0 /

For each symplectic basis {"(I), •• ,g(2m)} let

Let V=M— Int U. Suppose that V=f(U). The following proposition is
proved as Corollary (32.9) of [Pk].

Proposition 4.1. Let %: Q-^U and iv: Q-*V be the ίnclmίon maps. Then
there is a symplectic basis for H^Q) such that GL~Ker(ίu)^ and GH=Ker(iv)%. Π

Let {#(!), •• ,<§
f(2m)} be a symplectic basis which satisfies the result of Pro-

position 4.1. Let A be a matrix representation of the automorphism /# of
H^Q) with respect to the symplectic basis, where we regard H^Q) as being made
up of column vectors representing linear combinations of the basis vectors and
the action of A as left matrix multiplication on column vectors.

/O J~l\
Proposition 4.2. The matrix A is of the form I 1 where J ύ an m X m

\j /
symmetric unίmodular matrix.

Proof. Since f(U)=V, for each i=l, « ,m, the element f*(g(i)) lies in the
subgroup <#(m+l), —,£(2m)>. Hence

A°[ m \ = I 1 , where B and C are mXm matrices.

/TT T \

Let A=l I , where H, J, K, and L are mXm matrices. Then
\J KJ

(E 0\fH L\ /O I*\ = (L

VO C) (j K)\Im Q) \K
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Thus K=H=0 and hence

J

Since /is an involution, A °A— I m I . Hence

//m 0\ = /O L\ /O L\ =

U /J V/ oA/ oj

Thus LJ=IJL=Im and Z^/'1. Hence ^4 is of the form ( J }. It remains

to show that J is symmetic. Since / is orientation reversing on Q, we have

Hence

ί° ~/
\ιm o

J-1— /w and/— /', i.e. / is symmetric. This completes the proof

of Proposition 4.2. Π

Proposition 4.3. Let {<?(!), •• ,£(2τw)} be a sympleclic basis for H^O). Let

S={x*ΞHl(Q):f*(x)=-x}. Then £ is generated by the set

Proof. It is clear that each g(i)—f*(g(ϊ)) belongs to .̂ Now {g(l)—f*

(g(l))> >g(m)—f*(g(m))>g(m+l)ι ' >g(2m}$ generates H^Q). Let x be an ele-
ment in Q. Then

* = Σ «(Ofe(0-/*feW))+Σ /8(»)ff(»+i)
i=l »=1

where a(ί) and yS(ί") are integers.

Since /„(*)=-* and/!K(^(ί)-/*(^))=-fe(ί)-/*te(ί))), we have

But f*(g(m^ri)) lies in the subgroup generated by the elements £(1), •• ,<§
r(^)

Hence β(i)=0 for each /=!, « ,m, and jc lies in the subgroup <g(l)— /*(#(!))> •",

g(m)—f*(g(tri))y. This completes the proof of Proposition 4.3. Π
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Note that Q is uniquely determined by / and is independent of the choice
of symplectic basis. We define as follows a bilinear form B: SxS-^Z. Let
h: QχI-+U be an embedding such that for each x^Q we have h(x, 0)— x. Then
for each x,y^Q we define B(x,y)=lk(x,h*(y)), where lk(ayb) denotes the
linking number of a and £, and h*: H1(Q)-*H1(h(Qx 1)) is the isomorphism

induced by h.
We have the following formulae: For each ι= 1, ••-,#;; y=l, " ,̂ ,

lk(g(ί),h*(g(m+j))) = and
if ι=j

/ O W~*\

\W 0 )

Proposition 4.4. Let {g(l), ,g(2m)} be a symplectic basis for Hλ(Q). Let

be the matrix presentation for f* with respect to the symplectic basis. Then

for each i=l, •• ,m;j=l, •••,;«,

B(g(i)-f*(S(i)),g(J)-f*(8(J))) = -"a

where w{j is the (/, y)th entry of W.

Proof.

wihwjklk(g(m+h),

This completes the proof of Proposition 4.4. Π

Proposition 4.5. Let {#(!), ~ ,g(2m)} be a symplectic basis for H^Q). Let

I be the matrix presentation for f with respect to the symplectic basis. Then

W is the matrix presentation for B with respect to an appropriate basis.

Proof. For each /=!, •• ,m',j=l, - ,m,

/ O W~l\

\W 0 )'

Now we assume that the CΉ-surface Q has the following property: the set
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Q— Fix(/) consists of two components. Then the surface Q is of even genus.
Let 2n be the genus of Q. Let T be the solid torus of genus 2n. We define as

follows a homeomorphism h of Q to 9 T. The orbit space Q/f is the orientable

surface of genus n with the boundary Fix(/)//. Let Ll9 " ,Ln be mutually disjoint

proper simple arcs in Q/fsuch that Int(ζ)//)— (-ίL{ is an open 2-cell. For each
/=!, •••, n, let L, be the loop on Q which covers Lz. Note that <[Zq], ••-, [!/„]>—
^ where [Z,t ] is the homology class in H^Q) represented by the loop L{. Hence

there is a homeomorphism A: Q-*dT such that Λ(L, ) bounds a disk Z>, in Γ.
Then {/?!, •••,/)„} is a complete system of meridinal disks. This implies that

there exists an involution A* of T such that

( i )

(ϋ)

Furthermore we may assume that

(**) Γ/λ* collapses to 9T/A* .

We construct a triadic 4-manifold N as follows. The Heegaard splitting
(M; C7, F) induces a homeomorphism A2: dU—*dU such that the identification

space £/UA2(-— [/) is homeomorphic with M fixing Z7. Let A3: dU-*QU be a
homeomorphism such that the identification space U[jh3(—U) is homeomorphic

with U\]hT fixing [7. Let N be the 4-manifold associated with the map pair
(A2, A3) (for the definition see [BC]). The triadic 4-manifold N may be con-

structed as follows. Let k,: dUx [-1, 0]->9Fx [0, 1], k2: 9Γχ[-l, 0]->9Γx

[0, 1], k3:dTx[—l,Q]-+dUx[Q, 1] be the maps defined by k^x, t)=(x, —t),
k2(y,t)=(h-\y\ —t), k3(z, ί)=(A(ar), — /), for all x<=dU, je9, ^^9Γ, and *<Ξ

[—1,0]. Then JV is the identification space of (U\jV\jT)x[—l,ΐ\ with

respect to the maps kl9 k2, k3.

The boundary of the 4-manifold N consists of the three connected com-
ponents which are homeomorphic with M, the identification space T\JhU9 and
the identification space T (J hV.

Proposition 4.6. The identification spaces T[]hU and T [} hV are homology
3-spheres.

Proof. Since <[LJ, •••, [Lw]>— ̂ , the result follows from Proposition 4.3. Π

Let /: N^*N be the involution defined by f(x>t)=(f(x)y—t), f(z,i)=(h*(z),
— ί)for zλlxϊΞM, *<ΞΓ, and t^[— 1, 1].

Proposition 4.7. The 2nd homology group H2(N/f) is trivial.

Proof. Let N,= Tx [0, 1] [J k2Vx [- 1, 1]. Then N/f^Njf. Hence ΛΓ//
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collapses to (Γx 0 (J kzVx O)//. By the property (**), the set (Γx 0 U kzVx O)//
collapses to Vx O// which is homeomorphic with M/f. Since M/f is a homology
3-sρhere, we have the result. Π

For each orientable 4-manifold W, we mean by Bw the bilinear form of
H2(W)®H2(W) to Z defined by Bw(x®y)=x y, where -means the intersection
number. We denote the signature of Bw by sign (W).

Proposition 4.8. For the above N, sign(N)=σ(f: M).

Proof. There exist natural inclusion maps of Ux [— 1, 1], Vx [—1, 1], and
Tx[— 1, 1] into N. For each /e[— 1, 1], we denote by Ut, Vt, Tt the image
of Uxt, Vxty Txt under the natural inclusion maps respectively. Then N
collapses to t/0 U V0 U TO. The union C70 U V0 is homeomorphic with U U Vy a
homology 3-sphere. Hence the composition map φ: H2(N) -*H2(U0 U I^oU T0)— >
H2(UQ\J VQ(_! Γ0, t/oLJ V0)->H2(To, 9T0) is an isomorphism, where the first map
is the map induced from the collapsing, the second map is the natural map, and
the third map is the excision map. Let i/r: (T0,dT0)-*(T,dT) be ahomeomor-
phism. Let D1>- ίDn be the proper disks in T with &£>,=£, defined in the
construction of N. Then {[A], " >[AJ} is a generating system of H2(T, 3Γ).
Hence {ψ-^A), -• ,ψ~1(JDΛ)} is a generating set of H2(T0, dT0). It is clear that
BN(φ-1([ψ~\Di)])xφ~1([ψ~1(Dj)]))=—Li Lj where means the intersection
nαmber on Q. Hence the result follows from Proposition 4.4. Π

We construct as follows a 4-manifold N* and an involution /* on Λf* such
that QN*=M and/* | QN*=f. Let M0= U., U V19 M,= U, U T_ly M{=Tλ U V_,.
Then MO is homeomorphic with M, and M1 is homeomorphic with M(. Let A
be a 3-ball in Int T, and A' be the image of (Int.4) X [—1, 1] under the natural in-
clusion map of Tx [—1, 1] into N. Let N'=N—A'. Then dN' consists of two
connected components: one is homeomorphic with M and the other is homeo-
morphic with the connected sum M$M{. Let A" be a 3-ball in Λf l β Let N"=
(Mi— Int A"} X [— 1, 1]. Since dN" is homeomorphic with Mj^Ml9 there is a ho-
meomorphism k : (QN'—M^-^QN". Let TV* be the identification space N' U kN".
It is clear that TV* possesses an involution /* which is an extension of / 1 TV. From
Proposition 4.7 we may assume that

Theorem 4. For the above N*, sίgn(N*)=σ(f: M).

Proof. Note that i*: H2(N'} -*H2(N) is an isomorphism, where i* is the
homomorphism induced from the inclusion map. Since dN' is a homology
3-sphere and H2(N")=Q> the Mayer-Vietoris exact sequence for the pair (N',
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N") implies that j*: H2(N') -+H2(N*) is an isomorphism, where j% is the homo-
morphism induced from the inclusion map. Considering the map j^i*1, we
get the result from Proposition 4.8. Π

According to [Fk], Fukuhara's signature is equal to —|sign(Λf*)—sign

1
(TV*//*)}, which is —sign(Λf*) by the Property (*<*). Hence we have the follow-

8
ing corollary.

Corollary. The Fukuhara's signature for f is equal to — σ(/: M). Π
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