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0. Introduction

In this paper, we shall study the existence and rigidity problems of a holo-
morphic isometric imbedding of a Kaehler manifold into a complex quadric
Q,(C).

A systematic study of the holomorphic isometric imbeddings of Kaehler
manifolds with analytic metrics was done by E. Calabi [2]. He considered the
so-called diastatic function of a Kaehler manifold and showed that this func-
tion plays an important role in study of the holomorphic isometric imbedding
[see 8§81 in this paper]. Especially giving an explicit representation of the
diastatic function of a simply connected complete Kaehler manifold with con-
stant holomorphic sectional curvature, he found a necessary and sufficient con-
dition on a Kaehler manifold M in order that a holomorphic isometric imbedd-
ing of M into this space exists. And then he proved the rigidity theorem for
such an imbedding.

We shall give here an explicit representation of the diastatic function of
Q,(C). By making use of this function, we shall make a special coordinate
system in Q,(C) around each point [§2]. These representation and coordi-
nate system are the core of this paper [§ 3 and § 4].

The complex quadric @,(C) is a complex hypersurface in the projective
space P,,.,(C) defined by

(20)2+(zl)2_‘__...+(zm+1)2 =0
with respect to the homogeneous coordinate system (2°, :++, 2"*1) of P,.,(C). As
a Kaehler metric on @,(C), we take the metric induced from that on P,,.,(C),
which is the Fubini-Study metric with constant holomorphic sectional curvature
4. 'The complex quadric @,(C) has the group of holomorphic isometric trans-
formations, which acts on @,,(C) transitively.

We shall show that P,(C) is holomorphically and isometrically imbedded
into Q,(C) only for /=2n [§3, Ex. 3 and Th. 1]. This implies that, for a
Kaehler manifold M, the existence problem of a holomorphic isometric imbed-
ding of M into @,(C) is equivalent to that of such an imbedding into P,(C).

Partially supported by Grant-in-Aid for Scientific Research.



288 Y. Suvama

The way to imbed P,(C) into @,(C) (I=2n) holomorphically and iso-
metrically is essentially only one [§3, Th. 1]. Although @,(C) can be im-
bedded holomorphically and isometrically into @,(C) only for [/=m, yet the
way to imbed @,,(C) into @,(C) (I=m) is not always only one. That is, the
set {holomorphic isometric imbeddings A& of @,,(C) into @,(C)}/= consists of
only one element for m=[<2(m-1), but it corresponds bijectively to the closed
interval [0, 1] for ! =2(m—1), where h~h’' implies that A and h’ are essen-
tially equivalent [§ 4, Th.4 and Ex.6]. This fact is different from the case of
the holomorphic isometric imbedding into P,(C).

We assume that a Kaehler manifold M can be imbedded holomorphically
and isometrically into @,(C) for some natural number m. Then we shall give
a way to find the natural number my=Mim.{m: there exists a holomorphic
isometric imbedding A of M into Q,(C)} [§4, Th. 2 and Cor. 2]. Further-
more, we shall give a necessary and sufficient condition on M and a natural
number /in order that there exists the following closed domain Daround 0 in C*:

(1) If D>w, then exp(v/ —10)we D for (0, 27).

(2) The set D/~ corresponds bjiectively to the set {holomorphic isome-
tric imbeddings A of M into Q,(C)}/~, where w~w' implies that w=
exp(v/—10)w’ for some § [0, 27) and h~h' implies that k and k' are essenti-
ally equivalent [§ 4, Th. 4].

Under some additional condition, there exists a small domain D’'C.D such
that the correspondence D’'>x+— h(x) < {holomorphic isometric imbeddings of
M into Q,(C)} varies continuously with respect to x, where the class [x] cor-
responds to the class [l(x)] under the correspondence of (2) [§4, Rem. 5, Ex. 6
and Ex. 7].

Before we finish this introduction, we add some remarks. P. Griffiths con-
sidered the rigidity problem for non-degenerate holomorphic curves in the
complex Grassmannian G(z, 2z) of n-planes in C?* (with the canonical metric
g) with interest in variation of Hodge structure. The Grassmannian G(z, 2z)
has a group G of holomorphic isometric transformations, which acts on G(, 2x)
transitively. Let £ and £ be two non-degenerate holomorphic mappings of a
Riemann surface M into G(n, 2zn). Then, he proved the following fact. If, for
each xEM, there exists h,E G depending on x such that £ and A,f agree up

to order 2 at # (then, £*g=F*g on M holds), there exists a fixed & G such that
F=hf [4, p. 806]. M.L. Green also studied the rigidity problem for a holomor-
phic isometric mapping into a Kaehler manifold [3]. In his paper, he showed
that there exists a case where the way to imbed a Kaehler manifold into an
algebraic variety in P,(C) holomorphically and isometrically is not essentially
only one [3, Ex. 6].

The author expresses his hearty thanks to Professor H. Ozeki for his many
valuable advices.
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1. Calabi’s results

In this section, we summarize some of Calabi’s results on the holomorphic
isometric imbedding [2] for our later use.

(a) diastatic function and canonical coordinate system

Let M be a k-dimensional Kaehler manifold with an analytic metric g.
Then, a diastatic function Dy(p, q) is defined on some neighborhood of the
diagonal set {(p,p); pEM} of the product space MXx M. The function
Dy (p, q) has the following properties:

(1) The function Dy(p, q) is uniquely determined by the Kaehler metric g.

(2) The function D,/p, q) is symmetric in p and ¢, and Dy{p, p)=0.

(3) The function Dy(p, q) is real valued and analytic on the domain.

(4) Let (2 -++, 2*) be a coordinate system in M and U its coordinate nei-
ghborhood. Let g=31, s gss(2, 2)dz°d2F on U, where z=(3', ---,2*) and
z=(zl, ++-, 2%). Then we have

ODi1,9)__ g(2(p), 2(p))

0z"(p)02%(p)
and
SZDM(P) q) — s
azw(q)a% gaﬁ(z(q), Z(Q)) .
DEFINITION. Let p be a point in a Kaehler manifold M with an analytic
metric. A coordinate system (2, ---,2¥) in M around p is called a canonical

coordinate system if it satisfies:

(1) 2(p)=0 (1=iZk).

(2) For a k-tuple @=(ay, **-, ;) of non-negative integers, we put z*=
(2% (2¥)%, 2% = ()% -+ (2F)% and |@|=q,+ -+ Then, the Taylor ex-
pansion of the diastatic function D,(p, q) at g=p has a form

Dy, 9) = Zh1151%(9)+D2(2(9), 2(9))
where
D, (2, 2) = 2lap Ap2”2® (le¢|=2and |B|=2).

Proposition A. Let M be a Kaehler manifold with an analytic metric.
Then each point p in M has a canonical coordinate system around its point. Fur-
thermore, the canonical coordinate systems around any point p in M are unique up
to a unitary transformation.

ExampLE 1. Let b be a positive real number and P,(C, b) a complex pro-
jective space with constant holomorphic sectional curvature 4b. Let (2°, -+, 2")
be the homogeneous coordinate system of P,(C, b) and z the natural projection of
C**'— {0} onto P,(C, b) [6, p. 169]. For the point =(1, 0, ---,0)=p, a canonical
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coordinate system (', -+, x") around p and the diastatic function Dp (p, g) in
the coordinate neighborhood are given by

Vba=2a"  (3"+0)

1.1 d
(1D Dy, (b, ) =4 log [1+5 T [+ %g)],

respectively. In this case, the diastatic function is analytically extended to the
product space P,(C, &) X P,(C, b), and given by

ol ) s 0]
|2-02(2)27(0)

(b) holomorphic isometric imbedding

1
Dp (P, q) = B log [

Proposition B. Let N be a Kaehler manifold with an analytic metric and
M a complex submanifold in N. Then, the diastatic function Dy(p, q) of N,
restricted to pairs of points in M, is the same as the diastatic function D(p, q)
obtained from the metric induced on M.

ReMARK 1. (1) Let M and N be Kaehler manifolds with analytic metrics,
and £ a holomorphic mapping of M into N. Then Dy(f(p), f(q))=Dy(p, q)
holds on some neighborhood of the diagonal set {(p,p); p= M}, if and only if
f is an isometric immersion.

(2) If there exists a holomorphic isometric immersion of a Kaehler mani-
fold Minto P,(C, b), then M has the diastatic function extended analytically to
MX M.

In fact, the statement (1) is derived from the property (4) of the diastatic
function and Proposition B. The statement (2) is derived from Example 1 and
Proposition B.

(c) holomorphic isometric imbedding into P,(C, b)

Theorem C. (1) Let M be a simply connected (or for ecah point p of M the
maximal analytic extension of the diastatic function Dy(p, q) in q is single valued)
Kaehler manifold with an analytic metric. Suppose that there exist an connected
open set 'V in M and a holomorphic isometric immersion f of V into P,(C, b).
Then the mapping f is holomorphically and isometrically extended to M.

(2) Suppose that a Kaehler manifold M is holomorphically and isometrically
immersed into a complex projective space with holomorphic sectional curvature 4b.
Then the dimension n of P,(C, b), in which the image of M by a holomorphic isome-
tric mapping is full, is determined by the manifold M and its metric g. (Therefore,
for a natural number m, which is smaller than above dimension n, no holomorphic
isometric immersion of M into P,(C, b) exists.)
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(3) Suppose that f and g are two holomorphic isometric immersions of a
Kaehler manifold M into P,(C, b). Then there exists an element A in the group of
holomorphic isometric transformations of P,(C, b) satisfying f(2)=Ag(z) for =
of M.

(4) A holomorphic isometric immersion f of a Kaehler manifold M into P,(C, b)

is an imbedding, if and only if

Dy(p,9) =0  onlyforp=gq.

2. Good canonical coordinate system and diastatic function of
Qx(C)

Let 7 be the natural projection of C"*2— {0} onto P,,,(C). Then a com-
plex quadric @,,(C) is a complex hypersurface in P,,,,(C) defined by the equation

2.1) (@) =0,

where (2°, :++, 2™*') denotes the homorgeneous coordinate system of P,,(C).
As its Kaehler metric we take the metric induced from that on P, ,(C, 1). We
denote by ¢, the imbedding of @,(C)into P, ,(C, 1) given by the equation (2.1).

There exists a special canonical coordinate system in @,,(C) around each
point.

DerFiNiTION. Let p=@,,(C). A canonical coordinate system (y%, «++, ™) in
Q,(C) around p is called a good canonical coordinate system, if the diastatic
function Dy (p, q) is given by

(2.2) Do (b, q) = 1og[1+Z}:~';1 | y"lz(q)+%|2:~”=1(y")2(q) |2]

with respect to the coordinate system (3, -+, ¥™). A canonical coordinate sys-
tem (»° ', ---,»™) in P, ,(C, 1) around ¢ (p) is called a canonical coordinate
system associated with Q,(C), if it satisfies the following conditions:

(1) The system (3%, -+, y™), restricted to @,(C), becomes a good canonical
coordinate system in @,(C) around p.

(2) The complex quasric ,(C) is defined by the equation

2" =/ =1l +0")]
in its coordinate neighborhood.
NoraTioN 1. In the equation (2.2) we put
200 (09 = <w, pX(9), 2]y %9 = ly|*(q)

using hermitian inner product <-, +> and norm || in C”. Then (2.2) is ex-
pressed as



292 Y. Suvama

22y Do,(p, ) =log [ 11 @)+ 1w, 5>1*)

Proposition 1. There exists a canonical coordinate system in P,.,(C, 1)
associated with Q,,(C) around each point of ¢(@Q,(C)). Furthermore, the good
canonical coordinate systems around any point p in Q,(C) are unique up to a trans-
formation of {exp(n/—1)0} X O(m), where 0=0<2n and O(m) denotes the real
orthogonal group of degree m. '

Proof. Let (2% ::-,2""") be the homogeneous coordinate system of
P,.(C,1). The group O(m+2) acts as z— Az on Q,(C) transitively, where
A€0(m+2) and z="[2° -+, 2"*"]. And it acts on Q,,(C) holomorphically and
isometrically. We put A(z(z))=nr(A(z)) for A=0(m+2) and z&€C"**—{0}.

(1) Let p=¢(Q,(C)). Suppose that there exists a canonical coordinate
system (3%, -+, ") in P,,,(C, 1) associated with @,,(C) around p. For a trans-
formation 4 €0(m-+2) we put

S(A@) =y (O=i=m).

Then the coordinate system (s° ---,s™) around A(p) is a canonical coordinate
system associated with @,(C). In fact, since the diastatic function Dy (p,q)
is invariant by a holomorphic isometric transformation, we have

Do, (A(), 4@) = Do,(p, 0
— log[ 1+ Iy 1%@) + 1 1<w, 5510

— log [ 148 (@) + 1 1<s, $>1%4(0) |

for g=4(Q,,(C)). And we have
25%(A(q)) = 2y°(q) = vV — 1<w, ¥>(9)
=V —1<8, 8X(4(g))  for ¢€u(Q.(C)).

(2) Let 7 be the natural projection of C"**—{0} onto P,,(C, 1). Let
Let (1, /—1, 0, «++, 0)=p, and

1 =T
vz N2
—1 1
U=V2’V7 0
1
0o .
1
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a unitary matrix of degree m-+42. We take a canonical coordinate system
° -+, »™) in P,.(C, 1) around p, defined by

(2.3) y(U@) =g (*+0) for 0=i=m.

Then this is a canonical coordinate system associated with @,(C). In fact,
we have

2° P+ —129YV2

B (V—=12+2"V2
Uz B U zz = 2’2

;m+1 ;m+1

If Uz€4(Q,(C)), we have
2\/—_1 zozl+(32)2+ ...+(zm+l)2 —0.
Therefore we have

2=/ —1Ky,y>  for (3’ -, y") Eu(Q.(C)) .

(3) Let (34, y™) and (s, :++, s™) be two good canonical coordinate systems
around p of @,,(C). By Proposition 4, there exists a unitary matrix B satisfying
By=s, where y="[y", -+, y"] and s='[s', -, s"]. From |y|*(g)=1s|*(g) and

log [ 1+ 1 @)+ 1<, 2>1°(0) |

= Do (b, 0) = log [ 1+1s1"@)+ 1 1<, %@ |

we have the equality |<{y, y>|%(g)=|<s, s>|%q). Putting B=[b}] (1=i, j<m),
we have

2k ne (20 0ib1) (225 bibly*y'y' vt = 20 ; (V)
Therefore, we have >3; bibi=exp[2\/—160]8,, (8u=1 for k=I and 0 for k=I)
for some constant §. Since exp[—+/—10]B is also unitary, we have only to

show that a unitary transformation B satisfying <By, By>=<y, y)> for any y
of C" is a real orthogonal transformation. But this is easily seen. Q.E.D.

Proposition 2. Let p be a point of Q,(C). The holomorphic isometric trans-
formation group of Q,,(C), which fixes the point p, is given by {exp[/ — 106} X O(m)
with respect to a good canomical coordinate (y', -+, y™) in Q,(C) around p, where
0=0<2n.

Proof. Let U be an element of the group stated in Proposition. Let
(% +=-, ™) be a good canonical coordinate system around p. We have
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W 1@+ 1<0, 1% = exp Do, (p, 91
(2.4)
= exp Do,(p, Ulg)—1 = Iy [*(U@)+— 1<u, >1(U@).

Suppose that the Taylor expansion of each y'(U(q)) (1=7 <m) at g=p is given by

(2.5) Y (U(Q) = X2; aiyi(g)+%.1 6014 (9)y' (@) +Do(¥(9)) ,

where bj;=b}; and the degree of each term of ®y(y) is at least 3 with respect to
the variables (7). Looking at the terms of degree 2 in the equation (2.4), it
follows that the matrix [a}] (1=4, j <m) is unitary. From the terms of degree
3 in the equation (2.4), we have

S aibi )y = 0.

Since each vector b,=[b},, ---, bj] is orthogonal to all vectors a;=[aj}, -, a}]
(1=j=m), we have b,,=0. Furthermore, from the terms of degree 4, we have

St (Xiakal)(;alad) vty yiyt = 1<y, W12,

Therefore, we have [a}]€ {exp[\/ =16]} X O(m). Similarly, we can prove that
all terms of degree higher than 2 in the equation (2.5) vanish. Q.E.D.

Proposition 3. Let M be a simply connected (or for each point p of M the
maximal analytic extension of the diastatic function Dy(p, q) in q is single valued)
Kaehler manifold with an analytic metric. Suppose that there exist a connected
open set V in M and a holomorphic isometric immersion f of V into Q,(C).
Then the mapping f is holomorphically and isometrically extended to M.

Proof. Suppose that a holomorphic mapping & of Minto P, ,(C) satisfies
the following condition: There exists an open set U in M and the image
h(U) is contained in @,(C). Then, by the theorem of identity, the image
h(M) of the mapping h is contined in @,(C). From this fact and (1) of
Theorem C, we have Proposition 3. Q.E.D.

The following example is well-known. We show it as an application of
diastatic functions of @,(C) and P,(C, b).

ExampLE 2. 'The projective space P,(C, 1/2) is isomorphic to the complex
quadric @,(C) holomorphically and isometrically.

In fact, let p be a point in Py(C, 1/2) and x a canonical coordinate system
around p. The diastatic function of P,(C, 1/2) is given by
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Dy un(p, ) = 2log [ 1421210 |
= log [ 1+ |x[(q) +- 1210 |

in the coordinate neighborhood. This implies that the correspondence of the
canonical coordinate in P,(C, 1/2) around p to a good canonical coordinate in
Q,(C) around some point is a holomorphic isometric isomorphism between both
coordinate neighborhoods. From this fact, Proposition 3 and (4) of Theorem
C, we see Example 2.

3. Existence problem of holomorphic isometric imbedding into
Q.(C)

From now on P,(C, 1) is denoted simply by P,(C). At first, we give some
examples of holomorpic isometric imbeddings into @,(C). These examples
are fundamental for our study.

ExampLE 3. Let # and m be natural numbers with m=2n. The projective
space P,(C) is imbedded into Q,(C).

In fact, let z: C"*'— {0} - P,(C) and =': C"**— {0} - P,.,(C) be the
natural projections. Put #(1,0, --+,0)=p and ='(1,/—1, 0, =+, 0)=p,. Let
(#*, -++, x™) be the canonical coordinate system in P,(C) around p given by the
equation (1.1) replaced 4 by 1 and (»°, -+, »™) the canonical coordinate system
in P,,(C) associated with @,(C) around p, given by the equation (2.3). We
define a holomorphic mapping g of the coordinate neighborhood in P,(C) into
P, (C) by

B1) 90 = (0 V1w, o VT e o VT 0,0, 0),

where x=(«', --+, x"). 'Then we have g(x)=Q,,(C) and

D, (0, g(x)) = log[1+4|x|%] = Dp (0, x).

This implies that g is a holomorphic isometric mapping of the coordinate
neighborhood around p into @,(C). Therefore, g is holomorphically and
isometrically extended to the mapping of P,(C) into @,,(C) from Proposition 3.
Then this mapping g is an imbedding by (4) of Theorem C.

Let (2° ++-, 2") and (@ -+, w™*") be the homogeneous coordinate systems
of P,(C) and P,,,(C) respectively. Then the global expression of g is given by

(B.1) g: (2% -, 2" (2% V/—12% &Y V=12 -, 2", v/ — 13", 0, -+, 0).
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ExampLE 4. For [ =2(m+1), @,(C) is holomorphically and isometrically
imbedded into @,(C) by the composition of the natural imbedding ¢;: Q,(C)—
P, .,(C) and the imbedding g of Example 3.

ExampLE 5. For [=m, Q,(C) is naturally imbedded into @,(C). The
image is characterized by &"*?*=..-=2'"=0, where (2°, -+, 2'*") is the homoge-
neous coordinate system of P,,,(C). This imbedding is denoted by ¢,.

RemARk 2. Let /=2(m—+1) and consider Examples 4 and 5. Then, there
is no holomorphic isometric transformation 4 of Q,(C) satisfying g¢,;=A¢,.

In fact, let z: C"**— {0} - P,,.4(C) and #: C'**— {0} = P,,,(C) be the
natural projections. Put =#(1,0,-,0)=p, =(1, /—1,0,,0)=p, and
#(1,v/—1,0, --+,0)=p,. Let (x, ---, x™*!) be the canonical coordinate system
in P,,,(C) around p given by the equation (1.1) and (3, :--,»™) the canonical
coordinate system in P, ,,(C) around p, associated with @,(C) given by the
equation (2.3). Then, there exists a holomorphic isometric transformation 7'
of P,,,(C) such that T(p)=p and T((»° ---, y™))=(«", ---, x™*"), by (2) in
Proof of Proposition 1. Thus we have g7 (p,)=2Dy=t:(p,). So, we take the
canonical coordinate system (@ -+, %') in P,(C) around p, associated with
Q,(C) defined by the equation (2.3). Then, two mappings g7, and ¢,: Q,.(C)—
P, \(C) are locally given by

070z (3, =57 (0, Y [P+ ™Y,

SO O, VTR, ey VT 0,0,0)
and
m (V1 ) )
22 (yl’ Y )I_) (T[(yl)2+‘+(y )2],}’1, Y ’0, ""0>

respectively. By Proposition 2, there is no holomorphic isometric transforma-
tion 4 of Q(C) such that gTy=A:,. Furthermore, there is a holomophic
isometric transformation 7' of Q,(C) such that Tg=gT [c.f. the following
Theorem 1]. This shows Remark 2.

Theorem 1. (a) In case m<2n, there is no holomorphic isometric immersion
of P,(C) into Q,(C).

(6) In case m=2n, for amy holomorphic isometric immersion f of P,(C) into
Q,(C) there is an element A in the group of holomorphic isometric transformations
of Q,(C) satisfying Af=g on P,(C), where g is the mapping given in Example 3.
Especially, f is an imbedding.
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Proof. We use the same notations as in Proof of Example 3. Let £ be a
holomorphic isometric immersion of P,(C) into Q,(C). We can assume
that f(p)=p,, since the group of holomorphic isometric transformations of
Q,(C) acts on Q,(C) transitively. Suppose that £ is locally given by

7(x) = (f(x), £i(x)) = (f(x), F1(x)s -, (%)) -

(1) We shall show that m=2n and each f(x) (1=<i=m) consists of only
terms of degree 1. Let the Taylor expansion of f{(1 =<7 =<m) at x=0 be given by

(3-2) fi(x) = 20; aja’ +- 20 anin's'+ Dy(x)

where a};=ai; and the degree of each term of ®4(x) is at least 3 with respect to
the variables (x). Since £ is holomorphic and isometric, we have

(3.3) |x|? = exp Dp (0, x)—1 = exp Dy (£(0), £(x))—1
= 1£,(9) "+ KA, AEDI*

Let a;=[a}, -+, a?] (1=<i <#) and a,=][a};, ---,ali] (1=<k,I<n). Then we have

(3.4) [ Fi(x)]? == Zk,l<ak) a xR 3, 15,65, a, >xtx'% X4 Dy(x) ,

where the degree of each term of ®;(x) is at least 5 with respect to the variables
(«', ®). And we have

(35) '<f1(x)) m)>|2 = Ek,l,s,t<ak) aI><¢—is) at>xkx1xsxt+ Qé(x) ’

where the degree of each term of ®4(x) is at least 5 with respect to the variables

(%, ). The equations (3.3), (3.4) and (3.5) imply that

(3.6) a;, aj> = Sij (léi,féﬂ)
and
(3.7) aj;, an>+%<a,-, aXa, a>=0 (1=ij,k I<n).

In the equation (3.7), putting i=k and j=I, we have

(3.8) ai; =0 (1=k=<m, 1=i,j<n)
and
(3.9) Canap=0 (1=i,j<n).

The equation (3.8) implies that each function fi(x) (1=<:=<m) does not contain
terms of degree 2. And the equations (3.6) and (3.9) imply that the system
{a,, -+, a,, @}, -, @,} of vectors is an orthonormal system of C™. This shows
m=2n.



298 Y. Suvama

Since each function fi(x) (1=7=m) does not contain terms of degree 2 and
{a;, a;>=0, the right hand side of the equation (3.5) consists of terms of
degree at least 8 with respect to the variables (xf, '). Therefore, from the
equation (3.3), the right hand side of the equation (3.4) does not contain terms
of degree 6. Therefore, each function fi(x) (1=<7=<m) does not contain terms
of degree 3 in the same way as we get the equations (3.8) and (3.9) from the
equation (3.7). Similarly, we can prove that each function f(x) (1=7/<m) con-
sists of only terms of degree 1. Then the equation (3.9) implies f°x)=0 from
f(x)eQ,(C).

(2) Puta;=(b;+/—1¢)/\/ 2 (1=i=mn), where b; and ¢, are real vectors
of R". From the equations (3.6) and (3.9) the system {b,, -+, b,, ¢, **-, ¢,} of
real vectors is an orthonormal system of R™. And we have, by the equation
3.2),

1 N -
fi(x) = \/—_Z_[bl—f—\/—lcl, b,V —1e,]x
where x="'[x, ---, x"]. By extending b, ¢,, -:*, b,, ¢, to an ordered orthonormal

basis b, ¢, -+, b, ¢,, dy,.1, -**, d,, in R", we have 4= O0(m) with these column
vectors. Then we have

1
V-1
1
Fi(x) = 4 v—1 A Ag(x) .
1 V2770 -
1
V-1
0
Thus, we have Theorem 4 by the theorem of identity. Q.E.D.

Corollary 1. Let M be a Kaehler manifold. Then, the existence problem
of a holomorphic isometric immersion (resp. imbedding) of M into Q,,(C) is equivalent
to that of such an immersion (resp. imbedding) of M into P,(C).

RemARK 3. (1) Let M be a Kaehler manifold. E. Calabi gave a necessary
and sufficient condition in order that M is holomorphically and isometrically
immersed into P,(C). This condition is stated in terms of the diastatic function
of M [2].

(2) In the last section, we shall show a result which contains Theorem 1
[c.f. Cor. of Th. 3].
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4. Rigidity problem of holomorphic isometric imbedding into
Q.(C)
We adopt the following:

NoratioN 2. Let (2° -++,2") be the homogeneous coordinate system of
P,(C) and 7 the natural projection of C**'— {0} onto P,(C). Put =(1,/—1,
0, -+, 0)=p,. A quadric in P,(C) through the point p, is a hypersurface (we
admit a case where it has singular set) in P,(C) defined by the equation

(4'.1) 2?'j=ocijzizi = 0 5

and then the coefficients satisfy (cy, ***, €4n) (0, -, 0), ¢;;=c;; and cp—cy+-
2\/ —1¢cy=0. For the quadric (4.1), we put

b""l,f"l = Cij (2§ixj§n) ) boo = 2\/:1001
(4.2) boj1 = [—coj+V —1e]V 2 2=j=<n)
ay = [cotenl2, aj=[c;—V —1c;][V2  (2=j=mn).

Taking the canonical coordinate system (3°, --+,»""!) in P,(C) around p, associated
with @,_,(C) given by the equation (2.3), the quadric (4.1) is represented as

(4.3) 230 ay = /=120 0 biy'y?

in the coordinate neighborhood, using constants (a;, b;;) defined by the equa-
tion (4.2).

For the quadric (4.1) and each x&C, we define a real symmetric matrix
A(x)=[a;;(x)] (0=7,j=<2n—1) of degree 2nm with the following components:

2a5; 2j(%) = 8;;+ Real part(xb;;— |x|%a;a;)
4.4) 2a5;41,27.11(%) = &;;—Real part(xb,;+ |x|%a,a;) 0=z j=n—1)

\ 2@y, 5;(x) = Imagenary part(xb;;— |x|%a;a;) .

In the above notation, the matrix A(x) is positive definite at x=0. Since
A(x) is continuous with respect to x&C, each eigenvalue of A(x) is continuous
with respect to x&C [5, p. 107, Th. 5.1]. Therefore, there exists an open set
D at x=0 in C such that A4(x) is positive definite for a € D.

In the following, we shall state our several results together. These results
are related each other and their proofs will be given later.

Theorem 2. We use same notations as Notation 2. Let M be a Kaehler
manifold. Suppose that there exists a holomorphic isometric full immersion
(resp. imbedding) f of M into P,(C) through the point p,. Then, the following
two conditions (a) and (b) are equivalent for fixed natural number (n—1=)m<2n.
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(@) There exists a holomorphic isometric immersion (resp. imbedding) h of M
into Q,,(C).

(b) The image (M) is contained in a quadric 23} ;-0 ¢;;3'2'=0 in P,(C)
through the point p, satisfying thefolllowing condition: there exists a complex number
x, such that the matrix A(x,) defined by the quadric is positive semi-definite of rank
at most m.

RemMARK 4. If there exists a holomorphic isometric immersion £ of M
into P,(C), we can get a holomorphic isometric immersion f of M into P,(C)
through the point p,. In fact, the group of holomorphic isometric transfor-
mations of P,(C) acts on P,(C) transitively.

Theorem 3. Let M and f be the same as in Theorem 2. Suppose that
the image (M) is contained in a quadric in P,(C) through the point p,. Then, we
have a positive real number r satisfying the following (a) and (b):

(@) There exists a holomorphic isometric immersion (resp. imbedding) h(y) of
M into Q,(C) (I =2n) for yE[0, r]. And each mapping h(y) for y [0, r] is essen-
tially different from each other.

(8) There exists a natural number m (<<2n) such that h(r) determined by (a)
s a holomorphic isometric immersion (resp. imbedding) of M into Q,(C).

Corollary 2. Let M be a Kachler manifold. Suppose that there exists a
holomorphic isometric full immersion (resp. imbedding) f of M into P,(C) such
that the image (M) is not contained in any quadric in P,(C). Then, there
exists a holomorphic isometric immersion (resp. imbedding) h of M into Q,(C) if
and only if | =22n. Furthermore, such an immersion (resp. imbedding) is essentially
only one.

Theorem 4. We use the same notations as in Notation 2. Let M be a Kae-
hler manifold and f a holomorphic isometric full immersion (resp. imbedding) of
M into P,(C) through the point p,. Then, the following conditions (a) and (b) are
equivalent :

(a) For a quadric 3 ;. c;;z'2’=0 in P,(C), put

{ i) = {zEP,(C): 2. jmocis¥x’ = 0},
chi=2c 0=i<j=n) and c};i=c; (0=i=<m).

Then, the dimension of the linear space {(c;)ogicj<n ECPV®D2: £F(M)C[c;]}
U {0} s &.

(b) There exists a closed domain D around O in C* such that, if D> w, then
exp(/ —10)we D for (0, 2n). And, for 1 =2n, the set D]~ corresponds bi-
Jectively to the set {hclomorphic isometric immersions (resp. imbeddings) h of M
into Q(C)}/~, where w~w' implies w'=exp(\/—10)w for some 0 [0, 2r) and
h=~h’ implies that h and h' are essentially equivalent.

ij



HovroMmorpHIC ISOMETRIC IMBEDDING 301

Proof of Theorem 2. Let (2° -+, 2™*!) be the homogeneous coordinate
system of P,.,(C). We consider as P,(C)CP,.,(C) (i.e., P,(C) is identified
with the submanifold of P,,,(C) defined by z"“=---—z”"H 0). Therefore,
we also denote by = the natural projection of C***— {0} onto P,,(C) and
z(1, v/ —1,0,-+,0)=p, Then we take the canonical coordinate system
0 -+, ™ in P, (C) around p, associated with @,(C) given by the equation
(2.3).

(1) Suppose that there exists a holomorphic isometric mapping kb of M
into @,,(C) (n—1=m<2n). Let h(z))=Ff(2,)=p, for some point z,&M. Let
f and h be locally defined by

£(2) = (=), -+, (=), 0, -+, 0)
(4.5) forze vV,
h(z) = (h(2), K'(2), -+, h"(2))

respectively, where Vis some open set around z,.

From (3) of Theorem C, we can take a unitary matrix C=[c}] (0=7, j <m)
of degree m—+1 satisfying h(2)=Cf(2) for z€ V. Put C=]c, -, ¢,], where
each c; is a column vector. Then h(2)EQ,,(C) for 2 V, if and only if
4.6) 221l fi(z) = 1imeile;, e;>—ckel} fi(R)f(2) for vez.
Put

{ <e;, €>—cic§ = by, 0=i,j=n—1)
d=aq 0=i=n—1).
The equation (4.6) implies that £(V) is contained in a quadric 2225 a;y'=
1> by;y'y. Putting e;=ci+a;e’, where &"=[1, 0, -+, 0], we have
{ <cf, Z‘;> = bij
lel, > =3;;—aa;.

Therefore, putting ¢}=d,;++/— 1d,;1; (0<j=<n—1), where each d; is a real
vector in R", the equation (4.7) implies

(4.7) (0<i, j<n—1)

2<d2,‘, d21> == 3,-,-+Real part(bij—aidj)
2{dy; 41, dyj41> = 6;;—Real part(b;;+a.a;)
2{dy; 41, dyj> = Imagenary part(b;;—a,a;) .
Since this shows
d,
_|'d;
A(l) - . [do» dl: "ty d?n-l] ’
‘d2n—-1
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the matrix A(1) is positive semi-definite of rank at most .
(2) Suppose that the mapping £ of M into P,(C) satisfies (b) of this
theorem. Therefore, from the equation (4.3), we have

23N aifi(z) = V12075 b,;f (x)fi(z)  for z€V

usmg the first equatlon of (4.5) and, for the quadric 23XZja;y'=

Vv —1 23540 bi;y'y, there exists a complex number x, such that A(x,) is positive
semi-definit of rank at most m. Therefore, there exists an orthogonal matrix
E<=0(2n) satisfying

A
Ao 0

(4.8) EAGYE=| o n (A=0).

0

0
We define a matrix D of degree 2n by
2
. . 0 do, dl) ) d2n——1
49) D=| 0 V7 . E—
. .
0 ,

where each d; (0=7=2n—1) is a real vector of R”. The equations (4.8) and
(4.9) imply

A(x) = 'DD, i.e., a;j(x) = <d;, d;>  (0<i,j<2n—1).

Therefore, putting e°=11, 0, ---,0], d;='0,'d;] (0=i=<2rn—1) and ¢;=
dy+V —1dy . +x4a,€° (0=7i=<n—1), we have

<e;, cj> = J;; .
(4.10) 0=s,j=n—-1)

<C,, /> - xo x;""xoaa

This shows
22;=0 Xod; f (z) V=1 2: j= 0{<cu c}> x3a; aJ}f (z)f](z)

for z& V. Therefore, extending vectors ¢, -, €¢,_; to an ordered orthonormal
basis ¢, -+, ¢, of C™', we take the unitary matrix C=[¢c,, -+, ¢,] with these
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column vectors. Put A(2)=CF(z) for 2 V. Then h(z) is a holomorphic
isometric mapping of Vinto @,(C). And it satisfies k(2o)=p,.

(3) Proposition 3 still holds good although we replace @,(C) by any
quadric in P,(C). Therefore, the above statements (1) and (2) imply Theorem 2
from Proposition 3. Q.E.D.

Proof of Theorem 3. (1) Let (2° -+, 2") be the homogeneous coordinate
system of P,(C). Suppose, for a quadric

411) 2 0ciz =0 (c;j=rcj; and cm—cu—i—Z\/——l = 0),

A(w) is positive definite for some w&C. Then the manifold M, whose image
f(M) is contained in the quadric, can be holomorphically and isometrically
mapped into @,(C) (I =Z2n) in the same way as Proof of Theorem 2. There-
fore, from the statement after Notation 2, there exists an open set D at x=0 in
C such that, for each w& D, there exists a holomorphic isometric mapping
h(w) of M into Q,(C) (I =2n).

(2) Let P,(C)CP,.,(C) and let = be the natural projection of C"*?— {0}
onto P,.,(C). We take the good cannonical coordinate system (%, --+, ¥™) in
Q,,(C) around p,.

We shall show that, if A(x,) is positive semi-definite of rank m, so is
A(exp(v/—10)x,) for §€[0, 27) and that, for two holomorphic isometric map-
pings h(x,) and h(exp /' —16)x,) of Minto Q,(C) defined by (1) of this proof
(or Theorem 2), there exists a holomorphic isometric transformation B of @,,(C)
such that Bh(x,)=h(exp(n/—10)x,) on M. From (2) in Proof of Theorem 2
(we admit a case of m=2n), the mapping h(x,) is locally given by

@) F®
Y@ ||V
412 kE)E@=: |=D| i for zE V.
£7z)

") V1)

We remark that this mapping h(x,) determined by A(x,) is essentially only one,
i.e., two mappings h(x,) and it(xo) are determined by 4(x,), then there exists
an orthogonal matrix O of degree m such that Oh(xo):——it(xo). Now we shall
consider about A(exp(v/—160)x,). From (1) in Proof of Theorem 2, we have

- ‘B(6) B(9)
A(exp(V —10)x,) = [ - ]’DD[ -

B(6) ' B(e)] :

where
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os(2). ()
n(2) eo(3)]

Therefore, from (2) in Proof of Theorem 2, we have

B(§) =

B(6) A
V—11%)

., fn.—l(z)
B(e) \/__—lfn—l(z)

Thus we have exp(V —10/2)h(x,)(z)=h(exp (V — 18)x,)(z) for € V.

(3) Suppose that A(1) is positive definite for the quadric (4.11). Using
constants of the equation (4.2), we define the following symmetric matricies of
degree 2n:

(4.13) h(exp(v/—10)x)(2) = D for z€ V.

L, = [8;], E=ley] and F = [f;],

where
2e,; ,; = Real part(b;;)
26541 2j+1 = — Real part(b;;) 0=s,j=n—1)
Déyi112; = Imagenary part(b;;)

and

2f5 2; = Real part(a,a;)
2fsi+1,2+1 = Real part(a;a;) 0=i,j=n—1)
2f5i+1,2; = Imagenary part(a;a;) .

For a real number y, we have

(4.14) A(y) = Ly t+yE—y'F .

First assume some ;0. Since the matrix F is a real representation of the
complex matrix (1/2)[a;a;] (0=i, j <n—1), Fis a positive semidefinite of rank 2
(two eigenvalues are equal). As the real number y tends to oo, y724(y) tends to
—F. Since each eigenvalue is continuous with respect to y, there exists a real
number 7 such that A4(r) is positive semi-definite of rank lower than 2z. If
every a; (0=i=n—1) is equal to zero, we have only to do the above argument
for the term yE in the equation (4.14).

(4) We shall show that each mapping h(y) for yE[0, 7] is essentially
different from each other. First, assume some @;&0. Then, we can see this
fact from (2) in Proof of Theorem 2. 'Therefore, we assume all a; /=0, --+,n—1)
is zero. We can see this fact from the equations (4.9), (4.12) and (4.14). Q.E.D.
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Proof of Corollary 2. We use the same notations as in Proof of Theorem 2.
Suppose that there exists a holomorphic isometric mapping h: M—Q,(C)
(m=2n) and h(2)=f(%)=p,. Then, by the same way as (1) in Proof of
Theorem 2 we have the following two cases. One is the case where f(M) is
contained in a quadric in P,(C) such that A(1) is positive semi-definite and
rank 4(1)=2n. The other is the case where (M) is not contained in any
quadric in P,(C) (this is the case satisfying ¢}=0 and <c;, T;>—c%?=0 for
0=i=n—1, 0=<j=n—1 in the equation (4.6). In the latter case, there exists
T €0(m—+2) such that h=Tgf, where g is given in Example 3. And the
former case does not occur by the assumption. Q.E.D.

Proof of Theorem 4. (a)—(b).

(1) For a quadric 23} ;-0¢;;2°2’=0 through the point p,, we take a real
symmetric matrix A(x) defined by Notation 2. Suppose that A(r) is a positive
semi-definite of rank A(r)<<2m for a positive real number 7. Then, if »'>7,
A(r") is not positive semi-definite. In fact, let e be a real vector of R*" such
that A(r)e=0. By the equation (4.14), we have

A(r)e = e+rEe—r*Fe =0
and
A(r')e = e+r'Ee—(r')*Fe .

Then we have Fe=e,, where A=0 and e, is the projection of e to some real
two dimensional space. Therefore, we have

<A, € = Lr—r) "+ —rrlel<0.

(2) We take a basis of the linear space {(c/;)osizj=n € C #0222, £(M)C
@[c;;]} U {0} and denote it by (c/i)ogi<j<n (1=I=E). Suppose &[>i..xc};]
=Q[> V-1 y,t;]. Then, there exists a complex number  such that, for (2, -,
zn)ecnﬂ,

w 21 2, (200 jm0 €13°%7) = 221 yi(230. -0 €158°%7) .

Since a mapping &: C"*'— C*O®*D2  oiven by the equation 4(2° «+-, 2")=

(*°%)ogisjsn 18 full, we have 2. (wx,—y,)cii=0 (0=i<j<n). Therefore, we
have w(xy, -+, )= ***, Vs)-

(3) Take k-tuples (x,, -+, ;) and (yy, -+, ;) of complex numbers such that
w(xy, o+, %) F (Y1, -+, ¥s) for any weC. For a quadric DN x(00 -0 cfj2'R)
=0, we take a real symmetric matrix A(x) of degree 2n defined by Notation 2.
We denote simply A(1) by A. Similarly, we put A(1)=A4, where A(x) is a
symmetric matrix determined by a quadric 23f.:y,(237 -0 ¢i;2'27)=0. Sup-
pose that 4 and A are positive semi-definite. Then we have, for any
0<[0, 4x),
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‘B(0) B(0)
(4.15) A+ [ ]A [ ]
‘B(6) B(6)/,

where
a(2) ()
—sin (%) , COS (%)

In fact, suppose that, for some §,E[0, 4), the equality holds in the equation
(4.15). Take the canonical coordinate system (3°, -+, ") in P,(C) around p,
given by the equation (2.3). Let the quadrics >3.; x,(330 ;-0 cij2'2)) =0,
%1y, (3% j-0cij2'27)=0 and the mapping f be represented as, in the coordinate
neighborhood,

B(§) =

23NTbay = —1 200550 bi9v'y7
230 ay = V=120 b9y’ and
f(2)=(f(2), -, " 1(2)) for z€V

respectively, where V is an open set in M. Then, from (2) in Proof of
Theorem 2, we have b;;=exp(v/—100)b;; (0=i, j<n—1). This shows
Dhizi[exp(v/ —=16p)a;—a;]f'(z)=0 for z= V. Since f is a full mapping, we
have exp(v/—16y)a,=a; (0=i=<n—1). Therefore, two quadrics >i.;x,X
(7 jm0 ch72?)=0 and XV, ¥ j-0 ¢};2°27)=0 are equal. This is a contra-
diction.

(4) We use same notations as in above (3). Let k and & be holomorphic
isometric mappings of Minto Q,(C) (I=2n) determined by 4 and 4 respectively.
Then, k and h are essentially different from each other. In fact, from (2) in
Proof of Theorem 2 (or (2) in Proof of Theorem 3), k and & are locally defined by

(=) ()
VZIfR) ) V=1f%s)
h(z) = D, : and h(2)= D, : for z€ V.
7Y@ =)
vV —1f""Y(=) V—1f""Y()

respectively, where A='D,D, and A='D,D,. Suppose that there exists a
holomorphic isometric transformation 7T of @,(C) such that Th=h on M.
Since 7 is a full mapping into P,(C), the system (f°(2), -+, f*"'(2)) for 2 € Vis
linearly indegendent over complex numbers. Therefore, there exist 6 &[0, 47)
and O€0(m) such that OD,B(6)=D,. Then we have

‘B(6)AB(0) = *B(0)'D,D,B(0) = 'B(6)'D;'OOD,B(6) = 'D,D, = A .
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This is a contradiction.
(5) For the quadric 2., x,(31 j-0 ¢};2°2))=0, we take a real symmetric
matrix A(x) of degree 2n defined by Notation 2. Then we can represent A(x) as

A(x) = A(x, X1, o0y xk) — (xxb XXgy ***y xxk) .

for x€C and (x,, -+, ®;) €C*. Since the matrix A(w,, -, w,) is continuous
with respect to (w,, -, w,) € C*, each eigenvalue of it is continuous with respect
to (w,, -+, w,) €C* Therefore, we have (b) from the above arguments and
Proof of Theorem 3.

(b)—>(a). We can show this from Corollary 2, Theorem 3 and the proof
of (a)—(b). Q.E.D.

ReMARk 5. In (5) of Proof of Theorem 4, if A(w, -+, w,) is positive de-
finite and each eigenvalue of it is simple at (w,, -*-, w;)=(ay, ***, a;), then there
exist some open set D’ around the point and a holomorphic isometric mapping
h(x) of M into Q,(C) for each point x&D’'. This correspondence D’'ex+—
h(x) gives the correspondence in (b) of Theorem 4 and varies continuously with
respect to x.

In fact, Remark 5 is derived from the fact that each eigenvector of
A(w,, +++, w;) varies continuously around (ay, -, @) [5, p. 110, 3].
Finally, we shall give two examples for Theorem 4.

ExampLE 6. In the case of @,(C), we have, for [ =2(m+1), the closed
interval [0, 1] corresponds bijectively to the set {holomorphic isometric imbedd-
ings of Q,(C) into @,(C)}/~. Especially, putting [0, 1]€ y— I(y) with re-
spect to above equality, then (1) is the class of holomorphic isometric transfor-
mations of @,(C). And there exists a holcmorphic isometric imbedding
h(y) of ,(C) into Q,(C) for each y<|[0, 1] such that A(y) varies continuously
with respect to y, where the equivalent class [A(y)] denotes I(y).

In fact, the natural imbedding ¢;: @,(C)— P,.:(C) is full. For a canoni-
cal coordinate system (3% -+,»") in P,,,(C) around =z(1, /—1,0,,0)
associated with @,,(C), @,(C) is defined by the equation

2y° = V1[4 +(")].
Thus we have, for yER,
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where

1
B=[+y’ 0 ]
0, 1—y

ExampLE 7. Consider the following quadric M in P,(C):

l 2 \/—~_
Ve

%22 =0.

l 2
M: L@ S
This is a non-singular surface. As a metric of M we take the metric induced
from that on P,(C). Then we have, for / =4, the closed interval [0, —1/4+
v/33/4] corresponds bijetively to the set {holomorphic isometric imbeddings of
M into Q,C)}/~. Especially, I(—1/44+/33/4) is the class of holomorphic
isometric imbeddings of M into @Q;(C). And there exists a holomorphic
isometric imbedding h(y) for each y &[0, 1/44+/33/4] such that A(y) varies
continuously with respect to y, where the equivalent class [A(y)] denotes I(y).

In fact, let (x° x') be the canonical coordinate system in P,(C) around
7(1, /=1, 0) given by the equation (2.3). Then M is represented as

1 1 V-1,
4

7x°—|—7x1= x°x!

in the coordinate neighborhood. The matrix A(y) for yER is given by

12, o L, 2a-m o
0 ,1=2 0, =2ty
2 8 8
A(y) = y 1y
§(1—y), 0 ’ 3_§ ’ 0
0 ’ _l(l—f_y)) 0 ) l_—lz
8 2 8

The matrix A(y) has the following eigenvalues and the correspondent eigen-
vectors:

1.,y o 1 1
_+_» 0 y T A 0 y T T A |
2 8 8 V2 V2
1y o1 1 ]
P el 0 y T A 0 ’
2 8 V2 V2 _
1y #Te. L o 17
2 8 4 L V2 V2
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