Kasue, A.
Osaka J. Math.
18 (1981), 109-113

ON RIEMANNIAN MANIFOLDS WITH A POLE

ATtsusH1 KASUE

(Received June 11, 1979)
(Revised March 15, 1980)

0. Introduction

Let M be a Riemannian manifold. A point o€ M is called a pole, if the
exponential mapping at o induces a global diffeomorphism. We write (M, o) for
a Riemannian manifold with the pole 0 and denote by p,(x) the distance between
oand x&M. By the radial curvature at xM— {0}, we mean the restriction
of sectional curvature to the planes which contain the tangent vector grad py(x)
(At x=o0, the radial curvature means simply the sectional curvature at o.)
Let K,(t) (¢=0) be the maximum of the values of radial curvature at x&M x
varying over the points such that p,(x)=t. It is easily seen that K, is a con-
tinuous function on [0, oo).

The purpose of the present paper is to prove the following

Theorem. Let (M, 0) be a Riemannian manifold with a pole. Suppose that
that there exists a C'-function y=y(t) which satisfies the inequality:

¥'+y*+Ky<0  on (0, ) (resp. [0, o)),

and is positive (resp. nonnegative) on [a, oo) for some a=0. Then pj; is a strictly
convex function on {xEM: py(x)=a}.

We recall that a C?-function f is said to be strictly convex if the Hessian of f,
denoted by D?f, is positive definite.

Corollary. Let (M, 0) be a Kaehler manifold with a pole. Suppose that
there is a C'-function y=y(t) which satisfies the same conditions as in Theorem.
Then M is a Stein manifold.

Our results are generalizations of a result due to H. Wu, who asserts that
pir is strictly convex everywhere on M if K, <0 (cf. Proposition 1.17 in [2]).

According to our Theorem, if K M(t)<4lt, then pj is strictly convex everywhere

on M, since y(t)=21—t satisfies the assumption of the Theorem.
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1. Riemannian manifolds with a pole and models

In this section, we recall several results in Greene and Wu [2].

Theorem 1 (Hessian Comparison Theorem). Let (M, 0) and (N,p) be
Riemannian manifolds with a pole. Let 7;: [0, b]—M and 7,: [0, b]—>N be normal
geodesics (i.e. |V,|=|%,|=1) with v,(0)=0 and v,(0)=p. Suppose we have
each radial curvature at 7v,(t)> every radial curvature at v(t) for all t(0, b].
If f is a nondecreasing C*~function on (0, b), then

D f(pa)ry(Xa Xp)= DZf(pM)‘Yl(t)(Xl: X))
for all X,& My ) and X,& Ny with | X, =1 X,| and <X, n(t)>=<Xo, T8)>-

ReMARK. This theorem was obtaind at first by Siu and Yau (cf. p. 227 in
[5]) with additional assumptions that M and N are negatively curved and of
the same dimension, and then by Greene and Wu in the case: dim N=dim M
(cf. Theorem A in [2]). M. Itoh gives a simple proof without any restriction
on the dimensions of M and N (cf. [1]).

We say (M, o) dominates (N, p) if each radial curvature at x=<every radial
curvature at y for arbitrary x&M and yEN with py(x)=py(y).

Corollary 1. Let (M, 0) and (N, p) be Riemannian manifold with a pole.
Suppose (M, o) dominates (N, o). If pk is strictly convex on {xEN: py(x)=a}
for some a=0, then so is py on {x&M: py(x)=a}.

Proof. We know D?pj(0)=2g(0), where g is the Riemannian metric on M.
Hence this is an immediate consequence of Theorem 1 by taking # as f(z).

A Riemannian manifold with a pole (IV, p) is called a (Riemannian) model
if every linear isometry ®: N,—N, is realized as the differential of an isometry
¢: N—N. Let g be the Riemannian metric of a model (IV, p). Since exp,:
N,—N is a diffeomorphism, exp} g can be written as expj g=dr’+f(r)’d®* in a
geodesic polar coordinate system, where r=py. We remark that, by the de-
finition of a model, f(r) depends only on r but not on the angular coordinates
®, and the radial curvature of /V at x€N is a function of r(x). We put K(f)=
radial curvature of NV at any x&N such that r(x)=t. We call K: [0, ©)—R
the radial curvature function of the model (N, p). Then, it is a classical fact that
f satisfies the classical Jacobi equation:

f"+K-f=0 on [0, ) with f(0)=0, f'(0)=1.
Conversely, by Proposition 4.2 in [2] and the proof of it, we have the following

Lemma 1. Given a continuous function K on [0, oo) such that the solution



ON RIEMANNIAN MANIFOLDS WITH A POLE 111

fif'+K- f=0, with f(0)=0, f'(0)=1 is positive on (0, o), then, there exists a
model whose metric is C* at the pole and C? elsewhere, and whose radial curvature
JSunction outside the pole is K; this model is unique up to isometry.

Lemma 2. Let (N, p) be a model and, r and f be as above. Then, f’ is posi-
tive if and only if 1 is strictly convex.

Proof. By the Proposition 2.20 in [2], we have D»=[f'/f] H on N— {p},
where H=g—drQ®dr and g is the Riemannian metric on N. Hence D%,=2
drQdr+-2r[f'|[f]H. Therefore f' is positive if and only if #* is strictly convex.

2. Review of a classical Jacobi equation
Let K be a continuous function on [0, o) and f be the solution: f”4 K- f=0
with f(0)=0, f'(0)=1. On the positivity of f, we have the following

Lemma 3 (Theorem 7.2 in [4] or [6]). Let K and f be as above. Then
f is positive on (0, o) if and only if there is a C'-function y=y(t) on (0, o) such
that y'+y*+ K <0 on (0, o).

Using this lemma, we prove the following

Lemma 4. Let K and f be as above. If there is a C'-function y=y(t) on

(0, o) (resp. [0, o)) such that y'+y*+K=0 on (0, =) (resp. [0, o)) and y>0

on [a, o) (resp. y=0 on [a, o)) for some a(0=a<<oo). Then f is positive on
(0, o) and f' is positive on [a, 0).

t

Proof. Let y=y(?) be as above, defined on (0, «0). We put u(t)zexps

X y(s) ds, where ¢ is any positive constant. Then u is positive on (0, o) and
satisfies an inequality: #”+K-u<0 on (0, ). Let f,(0<s<oo) be the family
of solutions: 4’4+ K- f,=0 with f,(s)=0, fi(s)=1. We fix any s>>0. Then for
te(s, ), we get

0 = [ WK HKORO) L0V 0+ KOt} dr
= | ooy ow o) ar
= u(t)f (t)—w(s)f s(s)—F(t)' (&) +-fs(s)u'(s) -
Hence we have

(1) 0=u(®)f i(8) —u(s)—f(t)u'(2)

for any tE(s, o). Since #>0 and u'=y-u, we see

YOFD<Sf:(2) -
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By the continuity of solutions on initial conditions,we have
YY) = lim y () S lim F1() = )

By Lemma 3., we know f(f) is positive on (0, 0). Thusy>0 on [a, o) implies
f (>0 on [a, o). Similaly, in the case where y is defined on [0, o), we have
(1). Taking s=0, we obtain

w(0)+f(2)y(Byu(t)=u(®)f (2) -
Since f is positive on (0, o), =0 on [a, o) implies f'()>0 on [a, ).
Corollary 2 ([6]). Let K and f be as above. If K satisfies an inequality:
K*(s)ds<~ on (0, o), where K*=max {K, 0}, or an inequality: (SNK)2
éK(t)

'._—-.

then f and f' are positive on (0, o).

Proof. For the former case, set y(¢)=2 Sw K +(s)ds—|—%. For the latter,
¢
set y(t):2$ K(s)ds .
t

ReEMARK. In Lemma 3, if K=0 and K =0 near oo, it is easily verified that
f>0o0n (0, ) implies f*>0 on (0, o).

3. Proof of Theorem and Corollary

Let (M,0) be a Riemannian manifold with a pole. Let y be a C'-function
in Theorem. Then by Lemma 4 and Lemma 1, there exists a model (N, p) whose
metric is C*! at p and C? elsewhere, and whose radial curvature function outside
the pole p is K,,, where K,, is a continuous function on [0, o) defined in Intro-
duction. Moreover (N, p) is dominated by (M, o) and, by Lemma 2, r*(r=py)
is strictly convex on {x&EN:r(x)>a}. Therefore (M,0) and (N, p) satisfy
all the conditions of Corollary 1. That is, pj is strictly convex on {x&M:
pM(x)>a}.

As for the proof of Corollary, we note that, in general, a (strictly) convex

?-function on a Kaehler manifold is a (strictly) plurisubharmonic C?-function.
Let (M, o) be a Kaehler manifold with a pole. Let y be a C'-function in Corol-
lary. 'Then by Theorem we can see that pj; is strictly plurisubharmonic outside
a compact set. Since M is diffeomorphic to C™ (m=dim; M), the arguments in
[3] (p- 87) shows that M is a Stein marifold.
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