ON LIFTING PROPERTY ON DIRECT SUMS OF HOLLOW MODULES

Manabu HARADA

(Received July 9, 1979)

Following E. Mares [12] and H. Bass [2] we shall first consider a semiperfect module P over a ring R. One of the important properties of P is the lifting property as follows: Let $P/J(P) = \sum_{I} \oplus K_{\alpha}$ be a decomposition of P/J(P), then there exists a decomposition of $P: P = \sum_{I} \oplus P_{\alpha}$ such that $\varphi(P_{\alpha}) = K_{\alpha}$ for all $\alpha \in I$, where J(P) is the Jacobson radical of P and φ is the natural epimorphism of P onto P/J(P). In case the module is injective, we have studied irredundant sum of indecomposable injective modules and the lifting property of decomposition over a perfect ring satisfying a certain condition in [7].

In this note we shall generalize those properties over an arbitrary ring. In order to do so, it is quite natural to take a module M_{α} such that $M_{\alpha}/J(M_{\alpha})$ is a simple module instead of P_{α} , namely a hollow module [3]. For a direct sum of hollow modules M we shall give some characterizations of the lifting property of simple module and of decomposition of M (see the definition in §1). Finally, we shall give characterizations of artinian rings with lifting property (namely, generalized uniserial ring and semi-simple ring). We shall study the dual property -the extending property- of simple module in [8].

1. Definitions

Throughout this paper we consider a ring R with identity and we assume every module M is a unitary right R-module. We shall denote the Jacobson radical of M by J(M).

Let $\{M_{\alpha}\}_{I}$ be a set of submodules of M. If $M = \sum_{I} M_{\alpha}$ and $M \neq \sum_{J} M_{\beta}$ for any proper subset J of I, we call $\sum_{I} M_{\alpha}$ be an irredundant sum [7]. If $\sum_{K} M_{\gamma}$ is a direct summand of M for every finite subset K of I, we say $\sum_{I} M_{\alpha}$ be a locally direct summand of M [9]. We denote the natural epimorphism of M onto M/J(M) by φ . If there exists a direct summand M_{α} of M such that $\varphi(M_{\alpha}) = A_{\alpha}$ for each simple submodule A_{α} of M/J(M), then we say M have the lifting property of simple module.

Now, $A_{\alpha} \approx M_{\alpha}/N_{\alpha}$ and $N_{\alpha} \supset J(M_{\alpha})$. In this paper we are interested in modules such that $N_{\alpha} = J(M_{\alpha})$ and N_{α} is small in M_{α} . In this case M_{α} is cyclic and $M_{\alpha} \approx R/A'_{\alpha}$, where A'_{α} is a right ideal of R and A'_{α} is contained in a unique maximal right ideal. We call such a module cyclic hollow module [3]. Furthermore, we only consider modules M which are direct sums of cyclic hollow modules M_{α} . Let $M = \sum_{I} \oplus M_{\alpha}$. Then $\varphi_{M} \mid N = \varphi_{N}$ for every direct summand N of M and $\varphi \mid K = \varphi_{K}$ for a cyclic hollow submodule K with $K \oplus J(M)$. If $\varphi(M_{\alpha}) \oplus 0$ for all α and $\sum_{J} \varphi(M_{\alpha}) = \sum_{J} \oplus \varphi(M_{\alpha})$, we say $\sum_{J} M_{\alpha}$ be a direct sum modulo J(M). Finally, if for any decomposition $\varphi(M) = \sum_{I} \oplus A_{\alpha}$ with A_{α} simple, there exists a decomposition $M = \sum_{I} \oplus M_{\alpha}$ of M such that $\varphi(N_{\alpha}) = A_{\alpha}$ for each α , then we say M have the lifting property of decomposition. We shall denote $\varphi(M)$ by \overline{M} if there are no confusions.

Here we shall give some remarks on hollow modules. Let N be an R-module. If $\operatorname{End}_R(N)$ is a local ring, we say N completely indecomposable. We do not know whether a cyclic hollow module is completely indecomposable or not (cf. [3] and [6]). In this note we are interested in completely indecomposable and cyclic hollow modules. If R is a commutative, every cyclic hollow module N is completely indecomposable, since every epimorphism of N onto itself is isomorphic. We shall consider the above property.

(E-I) Every epimorphism of N onto itself is isomorphic.

REMARKS. 1. If N is noetherian, N satisfies (E-I).

- 2. If R is directly finite i.e. xy=1 implies yx=1 and R/A is hollow for a two-sided ideal A, R/A satisfies (E-I).
- 3. Let R be a right perfect ring. Then every indecomposable and quasi-projective module is a hollow module satisfying (E-I) (see §3).

We note that if a hollow module N satisfies (E-I), N is completely indecomposable. Let $\{M_{\alpha}\}_I$ be a set of hollow modules satisfying (E-I). We define a partial order \geq in $\{M_{\alpha}\}_I$. If $M_{\alpha} \approx M_{\beta}$, we put $M_{\alpha} \equiv M_{\beta}$. If there exists an epimorphism f of M_{α} onto M_{β} , we put $M_{\alpha} \geq M_{\beta}$. We know from (E-I) that \geq and \equiv define a partial order in $\{M_{\alpha}\}_I$. Let $M_1 \geq M_2$, then $\overline{M}_1 \approx \overline{M}_2$. If every element in $\operatorname{Hom}_R(\overline{M}_1, \overline{M}_2)$ is induced by some element in $\operatorname{Hom}_R(M_1, M_2)$, then we say $\operatorname{Hom}_R(\overline{M}_1, \overline{M}_2)$ be induced from $\operatorname{Hom}_R(M_1, M_2)$.

2. Lifting property

Let R be a ring and J=J(R).

Lemma 1. Let M be an R-module and $\{M_{\alpha}\}_I$ a set of cyclic hollow submodules of M such that $M = \sum_{I} M_{\alpha}$. Then $M = \sum_{I} M_{\alpha}$ is an irredundant sum of M

if $\varphi(M) = \sum_{I} \oplus \varphi(M_{\alpha})$ and $\varphi(M_{\alpha}) \neq 0$ for all α . If J(M) is small in M, the converse is valid.

Proof. It is clear.

First we give a proposition concerning with (E-I).

Proposition 1. Let $\{M_i\}_1^n$ be a finite set of cyclic hollow modules with (E-I). We assume if $f: M_i \rightarrow M_j$ is epimorphic, f is isomorphic for any pair i and j. Then $M = \sum \bigoplus M_i$ satisfies (E-I).

Proof. We can express any element of $\operatorname{End}_R(M)$ by a matrix (f_{ij}) , where $f_{ij} \in \operatorname{Hom}_R(M_j, M_i)$. Let $M = \sum_{i=1}^t \sum_{j=1}^{p(i)} \bigoplus M_{ij}$, where $M_{ij} \approx M_{i1}$ and $M_{i1} \approx M_{i'1}$ if $i \neq i'$. Then (f_{ij}) is regarded as a block matrix $(f_{ij,kt})$. Let F be an epimorphism of M and $F = (f_{ij})$. We shall show one f_{ij} among f_{ik} , $k = 1, 2, \dots, n$, is isomorphic. Since F is epimorphic, $M_i = \sum_j f_{ij}(M_j)$. However, M_i is hollow and so $M_i = f_{ij}(M_j)$ for some j. Hence, f_{ij} is isomorphic by the assumption. Since $M_{ij} \approx M_{i1}$, we may assume $M_{ij} = M_{i1}$ for all j and matrix units $e_{ij,ik}$ are elements in $\operatorname{End}_R(M)$. Using those remarks and fundamental transformations of matrices, we know there exist regular matrices P_1 , Q_1 such that

$$P_1FQ_1 = \begin{pmatrix} 1 & 0 \\ 0 & F_2 \end{pmatrix}, \quad F_2 \in \operatorname{End}_R(\sum_{i \geqslant 2} \oplus M_i).$$

Noting that F_2 is epimorphic, and repeating those arguments, we get regular matrices P, Q such that $PFQ=I_M$. Hence, F is isomorphic.

Theorem 1. Let $\{M_{\alpha}\}_I$ be a set of completely indecomposable and cyclic hollow modules and $M = \sum_I \oplus M_{\alpha}$. Then the following conditions are equivalent.

- 1) Every direct sum modulo J(M) of indecomposable direct summands of M is a direct sum (and a locally direct summand of M).
- 2) If there exists an epimorphism f of M_{α} to M_{β} for any pair α and β in I, then f is isomorphic.

Proof. 1) \rightarrow 2). We assume there exists an epimorphism f of M_{α} onto M_{β} and $\ker f \neq 0$. We put $M'_{\alpha} = \{x + f(x) \mid x \in M_{\alpha}\} \subset M_{\alpha} \oplus M_{\beta} \subset M$. Then $M_{\alpha} \oplus M_{\beta} = M'_{\alpha} \oplus M_{\beta}$ and $M'_{\alpha} + M_{\alpha}$ is a direct sum modulo J(M) and hence, $M'_{\alpha} + M_{\alpha} = M'_{\alpha} \oplus M_{\alpha}$ by 1). However, $M'_{\alpha} \cap M_{\alpha} = \ker f \neq 0$. 2) \rightarrow 1). We note first that if $M_{\alpha} \approx M_{\beta}$ for $\alpha \neq \beta$, M_{α} satisfies (E-I) by the assumption. Let $\sum_{J} N_{\alpha}$ be a direct sum modulo J(M) of indecomposable direct summands N_{α} of M. Let $K = \{1, 2, \dots, n\}$ be a finite subset of J and put $N(n) = \sum_{i=1}^{n} N_{i}$. We shall show by the induction on n that N(n) is a direct summand

of M and $N(n) = \sum_{i=1}^{n} \oplus N_{i}$. If n=1, it is clear by the assumption. We assume $M=N(n-1)\oplus M'$ and $N(n-1)=\sum_{i=1}^{n-1} \oplus N_{i}$. Since N_{n} is a direct summand of M, N_{n} is isomorphic to some one $M_{\gamma_{1}}$ in $\{M_{\alpha}\}_{I}$ and $M'=\sum_{I'} \oplus M'_{\beta}$ by [1], where I'=I-K and M'_{β} is isomorphic to some $M_{\rho(\beta)}$ in $\{M_{\alpha}\}_{I}$. Furtheromre, since N_{n} has the exchange property in M by [1] and [4], either $M=N_{n}\oplus \sum_{i\neq k} \oplus N_{j}\oplus M'$ for some k or $M=N_{n}\oplus N(n-1)\oplus \sum_{I'=\delta} \oplus M'_{\beta}$ for some δ . We have proved our assertion in the latter case. In the former case $N_{n}\approx N_{k}\approx M_{\gamma(k)}$. Let π_{β} be the projection of $M=N(n-1)\oplus \sum_{I'} \oplus M'_{\beta}$ onto M'_{β} . Since $\varphi(N_{n})\oplus \varphi(N(n-1))$, $\pi_{\gamma}|N_{n}$ is epimorphic for some γ . If $\gamma(k) \oplus \rho(\gamma)$, $\pi_{\gamma}|N_{n}$ is isomorphic by 2). If $\gamma(k) = \rho(\gamma)$, M contains a direct summand $N_{k} \oplus M'_{\gamma}$ such that $N_{n}\approx N_{k}\approx M'_{\gamma}$. Hence, N_{n} satisfies (E-I) by 2) and [1]. In either case $\pi_{\gamma}|N_{n}$ is isomorphic. Accordingly, $M=N_{n} \oplus \ker \pi_{\gamma}=N_{n} \oplus N(n-1) \oplus \sum_{I'=\gamma} \oplus M'_{\beta}=N(n) \oplus \sum_{I'=\gamma} \oplus M'_{\beta}$.

Theorem 1'. Let M and $\{M_{\omega}\}_I$ be as above. Then the following conditions are equivalent.

- 1) Every direct sum modulo J(M) of indecomposable direct summands is a direct sum and a direct summand of M.
- 2) $\{M_{\alpha}\}_{I}$ is a semi-T-nilpotent set [4] and if there exists an epimorphism f of M_{α} to M_{β} for any pair α and β in I, then f is isomorphic.
- Proof. 1) \rightarrow 2). Let $\{f_i: M_{\alpha_i} \rightarrow M_{\alpha_{i+1}}\}$ be a set of non-isomorphic homomorphisms. Then every f_i is not epimorphic by Theorem 1. Hence, $f_i(M_{\alpha_i}) \subset J(M_{\alpha_{i+1}})$. We put $M'_{\alpha_i} = \{x + f_i(x) | x \in M_{\alpha_i}\}$ and $M' = M'_{\alpha_1} \oplus M'_{\alpha_2} \oplus \cdots \oplus M'_{\alpha_n} \oplus \cdots$. Then $\varphi(M'_{\alpha_i}) = \varphi(M_{\alpha_i})$ and so M' is a direct sum modulo J(M). Hence, M' is a direct summand of M by 1). Therefore, $\{M_{\alpha}\}_I$ is a semi-T-nilpotent set by [4]. The remaining parts are clear by Theorem 1. 2) \rightarrow 1). It is clear from Theorem 1 and [4], [9] and [10].
- REMARK 4. If J(M) is small in M, $\{M_{\alpha}\}_{I}$ is a semi-T-nilpotent set by [5] when 2) in Theorem 1 is satisfied.

Theorem 2. Let M and $\{M_{\alpha}\}_I$ be as in Theorem 1. Then the following conditions are equivalent.

- 1) M has the lifting property of simple module.
- 2) For any pair α , β in I such that $\overline{M}_{\alpha} \approx \overline{M}_{\beta}$ and any isomorphism f of \overline{M}_{α} onto \overline{M}_{β} , there exists an epimorphism g of either M_{α} onto M_{β} or M_{β} onto M_{α} such that $\overline{g} = f$ or $\overline{g} = f^{-1}$.

Proof. 1) \rightarrow 2). Let M_1 , M_2 be two elements in $\{M_{\alpha}\}_I$. We assume $\overline{M}_1 \approx \overline{M}_2$. Let $f \in \operatorname{Hom}_R(\overline{M}_1, \overline{M}_2)$ and we put $K = \{\bar{x} + f(\bar{x}) \mid x \in M_1\} \subset \overline{M}_1 \oplus \overline{M}_2$.

Since M has the lifting property, there exists a decomposition $M=M'_1\oplus M'$ such that $\varphi(M_1)=K$. Let x be in M_1 and $x=\sum x_i$; $x_i\in M_i$. Then since $\bar{x}=$ $\sum \bar{x}_i \in K$, $\bar{x}_2 = f(\bar{x}_1)$ and $\bar{x}_1 \neq 0$ for some x. Let $\pi'_i : M \to M_i$ be the projection. Then $\pi'_i | M'_1$ is epimorphic for $i=1, 2, M'_1$ is isomorphic to some in $\{M_{\alpha}\}$ and $M=M_1'\oplus (M_1\oplus \cdots \oplus M_n\oplus \cdots)$ by the exchange property of M_1' by [1], where i means the i-th component is omited. If i were neither 1 nor 2, $\varphi(M_1')\cap$ $(\overline{M}_1 \oplus \overline{M}_2) = 0$. Hence, i=1 or 2. Thus, we obtain $M = M_1' \oplus M_2 \oplus M_3 \oplus \cdots$ or $M=M_1'\oplus M_1\oplus M_3\oplus \cdots$. In the former case, let π_i be the projection of M onto $M_i(\pi_1: M \to M_1)$ and $m_1 = \sum \pi_i(m_1)$ for $m_1 \in M_1$. Then $\overline{m}_1 = \sum \overline{\pi_i(m_1)} = \overline{m}_1' +$ $(f(\overline{m}_1') + \overline{\pi_1(m_2)}) + \sum_{i \geqslant 3} \overline{\pi_i(m_i)}; m_1' \in M_1.$ Hence, $\overline{m}_1 = \overline{m}_1', f(\overline{m}_1') = -\overline{\pi_2(m_1)}$ and $\sum_{i\geqslant 3}\overline{\pi_i(m_i)}=0. \quad \text{Accordingly, } -(\pi_2|M_1)\in \text{Hom}_R(M_2,M_1) \text{ and } f \text{ is induced from } f$ $-(\pi_2|M_1)$. In the latter case, $K = \{f^{-1}(\bar{y}) + \bar{y} \mid \bar{y} \in M_2\}$ and we know that $-(\pi_1|M_2)$ induces f^{-1} as above. 2) \rightarrow 1). Let A be a simple submodule of \overline{M} . Let n be the minimal integer among m such that $A \subseteq \sum_{i=1}^m \bigoplus \overline{M}_{\alpha_i}$. Put $M_{\alpha_i} = M_i$ and let $\overline{\pi}_i$ be the projection of $\sum_{i=1}^{m} \oplus \overline{M}_{i}$ onto \overline{M}_{i} . Then $\overline{\pi}_{i} | A$ is isomorphic and $A = \{\overline{m}_{1} + f_{2}(\overline{m}_{1}) + \cdots \}$ $+f_n(m_1)|m_1 \in M_1, f_i = (\bar{\pi}_i|A)(\bar{\pi}_1|A)^{-1}$. We consider a set $\{(\bar{M}_i, \bar{M}_j), g_{ji} = (\bar{M}_i, \bar{M}_j, \bar{M}_j), g_{ji} = (\bar{M}_i, \bar{M}_j, \bar{M}_j), g_{ji} = (\bar{M}_i, \bar{M}_j, \bar{M}_j, \bar{M}_j), g_$ $f_i f_i^{-1}_{i}_{i \neq j}$. Then from 2) there exists either $h_{ji} \in \operatorname{Hom}_R(M_i, M_j)$ or $h_{ij} \in$ $\operatorname{Hom}_R(M_j, M_i)$ such that $\bar{h}_{ji} = g_{ji}$ or $\bar{h}_{ij} = g_{ij}$. In the former case (resp. the latter case) we denote $M_i \gg M_j$ (resp. $M_i \ll M_j$). We can easily see by the induction and the fact $g_{ij}g_{jk}=g_{ik}$ that there exists a maximal one among M_i 's with respect to the relation >, say M_t . Then $A = \{g_{1t}(\overline{m}_t) + \cdots + g_{t-1t}(\overline{m}_t) + \cdots + g_{t-1t}(\overline{m}$ $\overline{m}_t + \cdots + g_{nt}(\overline{m}_t) | m_t \in M_t$. Hence, we may assume t=1. Now from the construction above, there exist $g_j \in \operatorname{Hom}_R(M_1, M_j)$ such that $g_j = f_j$ for all j. Put $M_1' = \{m_1 + g_2(m_1) + \dots + g_n(m_1) \mid m_1 \in M_1\} \subset M_1 \oplus M_2 \oplus \dots \oplus M_n. \text{ Then } M_1' \oplus M_2 \oplus$ $\cdots \oplus M_n = M_1 \oplus \cdots \oplus M_n$ and $\overline{M}'_1 = \{\overline{m}_1 + g_2(\overline{m}_1) + \cdots + g_n(\overline{m}_1)\} = A$.

Corollary. Let $\{M_{\alpha}\}_{I}$ and M be as above. We assume each M_{α} satisfies (E-I). Then the following conditions are equivalent.

- 1) M has the lifting property of simple module.
- 2) In the subset $\{M_i\}$ of $\{M_{\alpha}\}_I$ such that $\overline{M}_j \approx \overline{M}_1$, the relation \geqslant is linear and $\operatorname{Hom}_R(\overline{M}_{\alpha}, \overline{M}_{\beta})$ is induced from $\operatorname{Hom}_R(M_{\alpha}, M_{\beta})$ for any pair $M_{\alpha} \geqslant M_{\beta}$.

The following theorem is a generalization on the lifting property of perfect modules.

Theorem 3.1) Let M and $\{M_{\alpha}\}_I$ be as in Theorem 1. Then the following

¹⁾ If each M_{α} satisfies (E-I), then 1) and 2) are equivalent to the fact that M has the lifting property of decomposition and $\{M_{\alpha}\}_I$ is semi-T-nilpotent (see [8], corollacy 20).

788 M. HARADA

conditions are equivalent.

- 1) M has the lifting property of simple module and for any direct sum modulo I(M) of indecomposable direct summands is a direct sum and a direct summand of M.
- 2) For any pair α and β in $I \operatorname{Hom}_R(\overline{M}_{\alpha}, \overline{M}_{\beta})$ is induced from $\operatorname{Hom}_R(M_{\alpha}, M_{\beta})$ and any epimorphism of M_{α} onto M_{β} is isomorphic and $\{M_{\alpha}\}_I$ is a semi-T-nil-potent set.

In this case M has the lifting property of decomposition.

Proof. It is clear from Theorems 1, 1' and 2.

Finally, we shall give some characterizations of artinian rings with lifting property.

Theorem 4. Let R be a right artinian ring. Then the following conditions 1), 2) and 3), 4) are equivalent, respectively.

- 1) R is right generalized uniserial [13].
- 2) Every direct sum of hollow modules has the lifting property of simple module.
 - 3) R is semi-simple.
- 4) Every direct sum of hollow modules has the lifting property of decomposition.
- Proof. 1) \rightarrow 2). Every hollow module is of forms eR/eJ^t , where e is a primitive idempotent. Hence, M has the lifting property of simple module by Theorem 2.
- 2) \rightarrow 1). Let e be a primitive idempotent. We take two right ideals eA_i i=1, 2 such that $eJ^t \supset eA_i \supseteq eJ^{t+1}$ and eA_i/eJ^{t+1} is simple. Since the length of composition series of eR/eA_1 is equal to one of eR/eA_2 , $eR/eA_1 \approx eR/eA_2$ by Theorem 2. Let θ be any element in $\operatorname{End}_R(eR/eJ)$. Then θ is given by the left multiplication of a regular element x in eRe. θ is also extended to an element in $\operatorname{Hom}_R(eR/eA_1, eR/eA_2)$ by Theorem 2. This homomorphism is given by the left multiplication of x+j, where $j \in eJe$. Hence, $(x+j)eA_1 = eA_2$. Since $jeA_1 \subset eJeJ^t \subset eA_2$, $xeA_1 \subset eA_2$ and so $xeA_1 = eA_2$. e is a regular element in eRe. Hence $eA_1 = eeA_1 = eA_2$. Thus, we have shown eJ^t/eJ^{t+1} is simple and so R is right generalized uniserial.
- 3) \rightarrow 4). It is clear.
- 4) \rightarrow 3). Let e be a primitive idempotent. We consider $M=eR/eJ\oplus eR$. Then $M/J(M)=eR/eJ\oplus eR/eJ$ and we put $A_1=\{x+x\mid x\in eR/eJ\}$ and $A_2=\{o+x\mid x\in eR/eJ\}$. Then $\overline{M}=A_1\oplus A_2$. Since M has the lifting property of decomposition, there exists a decomposition $M=M_1\oplus M_2$ such that $\overline{M}_i=A_i$. It is clear $M_2=0\oplus eR$ and so $M_1\approx eR/eJ$ is simple. Hence, $\overline{M}_1=A_1$ implies that eR is simple. Therefore, R is semi-simple.

REMARK 5. If M=J(M), we may understand M has the lifting property

of simple module. Then the above theorems are valid for a direct sum of completely indecomposable hollow modules if we put some restrictions on the conditions in the theorems. Let R be a commutative Dedekind domain. Then every hollow module is isomorphic to one of R/p^n , R (if R is local) and $E(R/p^n)$ and Q (if R is local) by [6], where P is prime and Q is the quotient field of R. Since $J(E(R/p^n))=E(R/p^n)$ and J(Q)=Q, R satisfies Theorem 4, 2), however R is not generalized uni-serial.

Let M be as in Theorem 1. Then every direct summand N of M with N/J(N) simple is a completely indecomposable (and cyclic hollow) module. Hence, every lifted direct summand from simple module is as above. Let T be an R-module and T/J(T) semi-simple. We assume that for any simple submodule A of T/J(T) there exists a direct summand T_1 of T such that $\overline{T}_1 = A$ and T_1 is a completely indecomposable.

Proposition 2. Let T be the R-module as above. Then every direct summand of T has the same property.

Proof. Let $T=T_1\oplus T_2$ and $A\subset \bar{T}=T_1/J(T_1)$. Then there exists a completely indecomposable direct summand N_1 of T such that $\bar{N}_1=A$. Since N_1 has the exchange property by [14], $T=N_1\oplus T_1'\oplus T_2$ and $T_1=T_1'\oplus T_1'$ (see the proof of Theorem 2). Now $N_1\approx T_1''=T_1\subset (N_1\oplus T_2)$ and $T_1''/J(T_1')$ is simple. Let \bar{t}'' be a generator of \bar{T}'' and $t''=n_1+t_2$; $n_1\in N_1$ and $t_2\in T_2$. Since $\bar{n}_1\in A\subset \bar{T}_1$, $\bar{t}_2=0$. Hence, $A=\bar{n}_1R=\bar{t}''R=\bar{T}_1''$.

Corollary. Let T be as above. We assume $T/J(T) = \sum_{i=1}^{n} \bigoplus A_i$; the A_i is simple. Then $T = \sum_{i=1}^{n} \bigoplus T_i \bigoplus S$ whith \overline{T}_i simple and $\overline{S} = \overline{0}$.

Proof. We can prove it by the proposition and the induction on n.

3. Corollaries

We shall study some special cases.

Corollary 1. Let M and $\{M_{\alpha}\}$ be as in Theorem 1. If M satisfies the equivalent conditions in Theorems 1, 2 or 3, then every direct summand of M satisfies the same condition.

Proof. Since each M_{α} is cyclic, every direct summand of M is a direct sum of indecomposable modules which are isomorphic to some in $\{M_{\alpha}\}_{I}$ by [14]. Hence, we have the corollary.

Corollary 2. Let M and $\{M_{\alpha}\}_I$ be as above. We assume J(M) is small. Then the following conditions are equivalent.

- 1) Every irredundant sum of indecomposable direct summands of M is a direct sum.
- 2) If there exists an epimorphism f of M_{α} onto M_{β} , f is isomorphic for any pair α and β in I.

Proof. It is clear from Lemma 1, Remark 4 and Theorem 1' and the proof of Theorem 1.

Corollary 3.2) Let R be a right perfect ring. Then every quasi-projective module Q [11] is isomorphic to $\sum_{i=1}^{n} \sum_{j} \bigoplus e_{i}R/e_{i}A_{ij}$. Then Q has the lifting property of simple module if and only if $\{e_{i}A_{ij}\}$ is linear with respect to the inclusion for each i. Q has the lifting property cf decomposition if and only if $e_{i}A_{ij}=e_{i}A_{i1}$ for each i, where the e_{i} is primitive, $e_{i}R \approx e_{j}R$ if $i \neq j$ and the $e_{i}A_{ij}$ is the right ideal such that $e_{i}Re_{i}A_{ij} \subset e_{i}A_{ij}$.

Proof. Every quasi-projective module Q is of a form P/K, where P is projective and K a character submodule in P which is contained in PJ by [11]. Since $P \approx \sum_{i=1}^{n} \bigoplus (e_i R)^{I_i}$, Q is a direct sum of $e_i R/e_i A_{ij}$ with $e_i Re_i A_{ij} \subset e_i A_{ij}$. Hence, noting $\operatorname{Hom}_R(e_i R/e_i A_{ij}, e_i R/e_i A_{ij'})$ is given by some elements in $e_i Re_i$ and $\operatorname{Hom}_R(e_i R/e_i J) \approx e_i Re_i/e_i Je_i$, we have the corollary from Theorems 2 and 3 and Remark 4.

References

- [1] G. Azumaya: Correction and supplementaries to my paper Krull-Remak-Schmidt's theorem, Nagoya Math. J. 1 (1950), 117-124.
- [2] H. Bass: Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-486.
- [3] P. Fleury: Hollow modules and local endomorphism rings, Pacific J. Math. 53 (1974), 379-385.
- [4] M. Harada and Y. Sai: On categories of indecomposable modules I, Osaka J. Math. 7 (1970), 323-344.
- [5] M. Harada: Small submodules in a projective module and semi-T-nilpotent sets, ibid. 14 (1977), 355-364.
- [6] —: A note on hollow modules, Rev. Union Mat. Argentina 28 (1978), 186-194.
- [7] —: On one-sided QF-2 rings, I, Osaka J. Math. 17 (1980), 421-431.
- [8] M. Harada and K. Oshiro: On extending property on direct sums of uniform modules, to appear.
- [9] T. Ishii: Locally direct summands of modules, Osaka J. Math. 12 (1975), 473-482.

Added in proof. Dr. K. Oshiro informed to the author that Q has always the lifting property of decomposition.

- [10] H. Kambara: Note on Krull-Remak-Schmidt-Azumaya's theorem, ibid. 9 (1972), 409-413.
- [11] J.P. Jans and L.E. Wu: On quasi-projectives, Illinois J. Math. 11 (1967), 439-448.
- [12] E. Mares: Semi-perfect modules, Math. Z. 83 (1963), 347-360.
- [13] T. Nakayama: On Fronbenius algebra II, Ann of Math. 42 (1941), 1-21.
- [14] R.B. Warfield Jr.: A Krull-Schmidt theorem for infinite sums of indecomposable modules, Proc. Amer. Math. Soc. 22 (1969), 460-461.

Department of Mathematics Osaka City University Osaka 558, Japan