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1. Introduction

In this paper we shall give some improvements of the following four results:

RESULT 1 (E. Bannai [5] Theorem 1). Let p be an odd prime. Let G

be a permutation group on a set Ω={1, 2, ••-,#} which satisfies the following

condition: For any p2 elements #ι, •••, ap* of Ω, a Sylow ̂ -subgroup P of the

stabilizer in G of the p2 points αi, •••, ap2 is nontrivial and fixes p2-}-r points

of Ω, and moreover P is semiregular on the set Ω— /(P) of the remaining

|Ω| — p2— r points, where r is independent of the choice of aίy •• >#/,2 and

0<r<^>— 1. Then n=p2-\-p+r, and one of the following three cases holds:

(1) There exists an orbit ΩI of G such that | Ω — ΩI \ <r and GΩι>^4Ωι. Moreo-

ver, (GΩ_Qι)
Ωι>^4Ωι. (2) r=p— 1, and G has just two orbits Ω and Ω2 (with

I Λi I > |Ω 2I >P) such that GΩι>^4Ωι. Moreover (GΩ2)
Ωι>,4Ωι and GΩ2 is pri-

mitive and contains an element of a^-cycle (therefore GΩ2>^4Ω2if |Ω2 | >^>+3).

(3) r=p—ly and G is imprimitive on Ω with just two blocks ΩI and Ω2.
Moreover, (GΩ)Ω2>^Ω2 and (GΩ2)

RESULT 2 (E. Bannai [4] Theorem 1). Let p be an odd prime. Let G be

a 2p-transitive permutation group such that either (i) each element in G of

order/) fixes at most 2p + (p—l) points, or (ii) a Sylow />-subgroup of G: 2>...>2/» is
cyclic. Then G is one of Sn (2p^n^4p—l) and An (2p+2<^<4/>— i).

RESULT 3 (D. Livingstone and A. Wanger [10] Lemma 10). If G is a
^-transitive group on a set Ω of n points, with rc>&>4, then there exists a

subset Π of k+l points such that G^)>^4Π.

RESULT 4 (H. Wielandt [13] Satz E). If G is a nontrivial ί-transitive

group on Ω of n points, and if t is sufficiently large, then log(w— ί)> — t.

In § 2 and § 3, we shall prove the following two theorems which improve

Result 1 and Result 2.

Theorem A. Let p be an odd prime. Let G be a permutation group on a
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set Ω={1, 2, •••, n} which satisfies the following condition. For any 2p points
<Xι> •"> Oί2p of Ω, a Sylow p-subgroup P of the stabiliser in G of the 2p points
#ι> "-y^p is nontrivial and fixes exactly 2p+r points of Ω, and moreover P
is semiregular on the set Ω— /(P) of the remaining n—2p—r points, where r is
independent of the choice of a^ •• ,a2p

 and 0<r<^>— 2. Then n=3p+r, and
there exists an orbit Γ of G such that \Γ\^3p and GΓ^AΓ.

Theorem B. Let p be an odd prime >11. Let G be a permutation group
on a set Ω={1, 2, •••, n} which satisfies the following condition. For any 2p
points aly •••, a2p of Ω, a Sylow p-subgroup P of the stabilizer in G of the 2p
points «ι, •••, a2p is nontrivial and fixes exactly 3/>— 1 points of Ω, and moreover
P is semiregular on the set Ω— /(P) of the remaining n—3p-\-l points. Then
n=4 p — 1, and one of the following two cases holds: (1) There exists an orbit
Γ of G such that \ Γ | >3p and GΓ^AT. (2) G has just two orbits ΓΊ and Γ2 with
\Γι\>P, \T2\>P and \Γl\ + \T2\=4p—l, and GΓ« is ( |Γ£ | -p+l)-transitive
on Γ, (t=l, 2). Moreover, GΓ^AΓi if |Γ,| >ρ+3.

REMARK. We note that T. Oyama proved :

RESULT 5 (T. Oyama [12] Theorem 1). Let G be a permutation group on
Ω={1, 2, •••, n}. Assume that a Sylow 2-subgroup P of the stabilizer of
any four points in G satisfies the following condition: P is a nonidentity semi-
regular group and P fixes exactly r points. Then (I) r=4, then |Ω| =6, 8 or
12, and G=S6, AB or M12 respectively. (II) If r=5, then |Ω|=7, 9 or 13.
In particular, if |Ω|=9, then G<A,, and if |Ω|=13, then G=ίS

r

1xΛfι2.
(Ill) If r=7 and ΛΓG(P)7^<^7, then G=M23.

Theorem A and Theorem B might look to be too technical. However
they are useful in applications. In § 4, we shall prove the following two con-
sequences of them which improve Result 3 and Result 4 respectively.

Theorem C. Let p be an odd prime. Let G be a nontrivial 2p-transitive
group on Ω={1,2, ••-,#}. Then there exists a subset T of Ω such that |Γ|

Theorem D. Let G be a nontrivial t-transitive group on Ω= {1, 2, •••, n}.
3

If t is sufficiently large, then log(n—t)> — t.

We give the outline of § 2. Let G be a group satisfying the assumption of
Theorem A. Then, G has the only one orbit whose length is not less than p.
So, we may assume that G is transitive on Ω. Moreover, we find that if />>5,
then G is (p+3)-transitive on Ω, and that if p~3, then G is 5-transitive on
Ω. Suppose that GΞ^4Ω. Similarly to Bannai [4, § 1], we get a contradic-
tion by using the idea of Miyamoto and Nago which uses the formula of
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Frobenius ingeniously (cf. [11, Lemma 1.1]).
Next we give the outline of § 3. Let G be a counter-example to Theorem

B with the least degree. So, we may assume that G is transitive on Ω. More-

over, we find that G is (p+-—4- 2 J-transitive on Ω. Again by the similar

argument to that of [4, § 1], we get a contradiction.

NOTATION. Our notation will be more or less standard. Let Ω be a
set and Δ be a subset of Ω. If G is a permutation group on Ω, then GΔ denotes
the pointwise stabilizer of Δ in G, and G(Δ> denotes the global stabilizer of

Δ in G. When A={aλ> —,«*}, we also denote GΔ by Gβlt...fΛjk. The tota-
lity of points left fixed by a set X of permutations is denoted by I(X)> and if
a subset Γ of Ω is fixed as a whole by X, then the restriction of X on Γ is

denoted by XΓ. For a permutation x, let αt (#) denote the number of /-cycles
of x and a(x)=aι(x). SQ and AQ denote the symmetric and alternating groups
on Ω. If I Ω I , the cardinality of Ω, is n, we denote them Sn and An instead of

SΩ and A*.
Acknowledgement. The author would like to thank Professor E. Bannai

for suggesting him the present research and giving him many advices.

2. Proof of Theorem A

Let G be a permutation group satisfying the assumption of Theorem A.

Step 1. G has an orbit Γ such that |Γ| >3ρ and \Ω — Γ\<ρ.

Proof. Since a Sylow ^-subgroup of the stabilizer in G of 2p points is
nontrivial and fixes exactly 2p-\-r points, we have |Ω| >3p+r and that G has

an orbit Γ whose length is at least p. Set |Γ| =k (mod^>) with 0<&</>— 1.

Suppose that \T\=p+k. We take k+l points aί9 •••,#*+! from Γ and
2p—k— 1 points ak+2, •••, a2p from Ω—Γ. A Sylow ^-subgroup of GΛli...§β2>

fixes at least 3/>— 1 points, which contradicts the assumption of Theorem A.

Hence we have | Γ | > 2p+k.
Suppose that |Ω —Γ| >/>. We take p+k+1 points aly •••, ap+k+ι from Γ

and^>—k— 1 points ap+k+2, •• ,a2p from Ω—Γ. A Sylowjp-subgroup of GΛl....tβ2,
fixes at least 3p— 1 points, which contradicts the assumption of Theorem A.

Hence we have | Ω — Γ | <p. So, we have | Γ | > 3p. (q.e.d.)
By Step 1, from now on we may assume that G is transitive on Ω.

Step 2. Let l</</>+2. If G is t-transitίve on Ω, then G is t-primitίve

on Ω.

Proof. Suppose, by way of contradiction, that G is ί-transitive on Ω,

and that Glf...fί-! is imprimitive on Ω—{1, •••, t— 1}. Let Γ^ -- ,ΓS be a system
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of imprimitivity of Glt...tt_lt Let |ΓΊ| =k (mod p), where 0<β<£— 1. We
divide the consideration into the following two cases: (I) 2p— (t— l)>k.
(Π)2p-(t-l)<k.

Suppose that Case (I) holds. First assume that |ΓΊ| >2p. We take &+1

points at> ••-,#*+* from Γ\ and 2p—t—k points at+k+ι, '">^2p fr°m Γ2. A

Sylow ^-subgroup of Gι,...,f-ιfΛ/f...,rt2j fixes at least 3p— 1 points, which is a con-
tradiction. Next assume that p*ζ |Γι| <2p. We take &+1 points α,, •••, at+k

from IY Moreover, we are able to take 2p—t—k points at+k+ι, •••,<% from

Ω— (ΓΊU {1, ••*, t— 1}). A Sylow ^-subgroup of C?ι.....ί-ι§ΛI,....β2ί fr*68 at least

3p— 1 points, which is a contradiction. Hence we may assume that \Tι\<p.

Let γ, be a point of Γ, (i=l, •••,$). Assume s^2p— 1-\-\. Then a Sylow p-
subgroup of Gιt...fί_ι fγlf...fy, is trivial, a contradiction. Hence s>2p— t-\-l. Since
a Sylow ^-subgroup of G! ̂ ..̂ î ... ty _1 fixes at most 3p— 2 points, we have
(k— 1)<(2/>— t+l)^p— 2. But, since t^p+2 and Λ>2, we have a contradic-
tion.

Suppose that Case (II) holds. In this case, we have t=p-\-2 and k=p—l.
We take a point a from I\ and ^>— 2 points βly •••, βp-2 from Γ2. A Sylow
/>-subgroup of Gιf...fp+lf<Λtβι t...tβp_2 fixes at least 3/>— 1 points, which is a contra-
diction. (q.e.d)

Step 3. G is (p-\-S)-transitive on Ω when p^5, and G is ^-transitive on

Proof. In order to prove Step 3, we show that if G is ί-transitive on
then G is (ί+ Intransitive on Ω, where l<£<^>+2 when p^5 and

when p=3. Suppose, by way of contradiction, that G is ί-transitive on Ω,
but G is not (£+l)-transitive on Ω. By Step 2, G is ^-primitive on Ω. Let
ΔI, •••, Δs be the orbits of Gίt...tt on Ω— {1, •••, t}, where s^2. By Theorem
18.4 in [14], |Δ,| >£ for every Δt (ί=l, •• ,^). Let |Δ, | =u{ (modp), where
0<w,</)— 1 (i=l, •••>$)• By the assumption of ί, we have that />— 2<2p— ί<
2p— 1 when/>>5, and 2<2/>— ί<5 when />=3. We divide the consideration
into the following two cases: (I) 2p—t^p. (II) 2p—t<p.

Suppose that Case (I) holds. First assume that 2p—t—u1—l^p. We

take z/ι+1 points cxi, •••, tf«1+ι from Δ2 and 2p—t—u1—l points βly •••, β2p-t-Ul-ι

from Δ2. A Sylow ^-subgroup of GI.....*.̂ .....̂ ^^ .̂..̂ ,̂ .̂! fixes at least
3p— 1 points, which is a contradiction. Next assume that 2p—t—u1—ί>p and
|Δj | >2/>. wetakewj+^+1 points (Xι, ,aUί+p+ι from ΔI and/)— ί— Wj— 1 points

A, -, βp-t-Ul-ι from Δ2. A Sylow />-subgroup of •Glf...Λlllf...Λι+>+lAi...ip>.ί_liι_1

fixes at least least 3p— 1 points, which is a contradiction. Hence we may assume
that2p—t—u1—l>p and JΔJ <2/>. We take Wi+1 points o^, •• ,α«1+ι from
ΔI Moreover we are able to take 2p— t— u^— 1 points βl9 •••, β2p-t-Ul-ι from

A Sylow p-subgroup of Glt...fβ>li...f-ιiιH.ltplf...A>_/_ιiι-l fixes
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at least 3/>— 1 points, which is a contradiction.

Suppose that Case (II) holds. In this case, we have that 2p—t=p—2 or
p—l when^>>5, and 2p—t=2 when p=Z. Assume that there is an orbit Δ,
of Gι...t with ui<2p—t. We take wt + l points aί9 •••, aui+i from Δ, and
2p—t—ui—l points βl9 •••, /32/(_ί_u._1 from Ω— ({1, •••,*} UΔ,-). A Sylow p-
subgroup of G! ... ίoίι ...α)κ. + 1>βιΓ..β2ί_/_M. χ fixes at least 3p— 1 points, which is a
contradiction. Hence w, ̂ 2p—t for every Δ, (i= 1 , , s) . Assume that s ̂  3 or
p=3. We take a point a\ from Δx and a point a2 from Δ2. If ^>=3, then a
Sylow ^-subgroup of Glt2ί3t4taltΛ2 fixes at least 8 points, which is a contradiction.

If />>5, we take 2p—t—2 points /?x, •••, β2p-t-2 from Δ3. Then a Sylow ^-sub-

group of Gιt...t,ΛltΛ2tβlt...,β2p_t_2 fiχes at ^east 3p— 1 points, which is a contradiction.
Thus we have p^ 5 and s=2. So, Ω={1, — , f} U Δ i U Δ a - Hence 2ρ-fr=

f+Ati+Mz Let ρ be a Sylow ^-subgroup of Glf...fί. Then, NG(Q)r^ is ί-
transitive and has an element of order p. Since 3p—2^\I(Q)\ = t-\-u1-\-u2'^
t+2(2p-t)=2p + (2p-t), we have \I(Q)\ =3ρ-2, and NG(Q)I^^A1^ by [14,
Theorem 13.10]. So, NG(Q)[(:ς!.lt has an element of order p. Hence Q is not a
Sylow ^-subgroup of Glf...tt, a contradiction. (q.e.d)

Step 4. G>^4Ω, or ap(x)^4 for any element x of order p of G.

Proof. Let us assume that ΏUn{ap(X) \ x is an element of order p of G} =
m<3. Hence | Ω | ^2p+mp. Since G is 5-transitive, we have G ^AΩ by [14,
Theorem 13.10]. (q.e.d.)

From now on we assume that G^AQ, and prove that this case does not
occur.

Step 5. Let a be an element of order p of G with a(ά)=2p-\-r. Then there
exists an orbit Δ of CG(a)I(a^ such that CG(ά)^A* and | Δ |

Proof. We may assume that

a = (1)(2) .- (2p+r)(2p+r+l, -, 3p+r)

Set Γ=CG(α)2i+)r+ι....f3ί+r For any p points aly —9ap of I(a\ a
normalizes Gait...t<Λp>2p+r+ιt...t3p+r. Hence a centralizes an element of order p of

G*ιt'~t«p2p+r+ι," t*p+r So, 7"̂ ,...,̂  has an element of order p for any p elements
ctι,—9(Xp of Ί(ά). Thus T has an orbit Γ with | Γ | ̂ p. Let | Γ | =p+k. Sup-
pose that O^k^p— 1. We take £+1 points Si, •••, δk+ι from Γ and p— k— 1

points δjπ-2, —,δj from /(α)— Γ. Then T^...^p has no element of order p,
which is a contradiction. Therefore T has an orbit Γ whose length is at least
2p. Since it is easily seen that TΓ is primitive, we have TT^AΓ by [14, Theo-
rem 13.9]. Let Δ be an orbic of maximal length of CG(a)^a\ then CG(ά)^A*

and |Δ|>2p. (q.e.d.)
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Step 6. For any 2p points aί9 •••, a2p of Ω, the order of a Sylow p-sub-
groupofGΛit...tΛ2pisp.

Proof. Suppose, by way of contradiction, that for some 2p points α1? •• ,a2p,

the order of a Sylow ^-subgroup P of GΛit...tC62p is more than p. We may

assume that {αlf — ,a2p} = {l, -,2^} and 7(P) = {1, — ,2f, —,2p+r}. For

any 2p points OΊ, •••, 72p of (̂ P)> Λe order of a Sylow ^-subgroup of Gylf...,γ2^ *s

I P I . Let # be an element of order p of Z(P). We may assume that

a =

Since a normalizes Glt...tPt2p+r+lt...t3p+r, Glt...tpt2p+r+1>...>3p+r has an element b of order
p commuting with a. We may assume that

b = (1) .. (p)(p+l, -, 2f )(2j>+l) - (2f+r)(2f +r+l) - (3f +r) .

Then we may assume that Pb=P. Since CP(b) is semiregular on /(£)—({!, •••,

ί}U{2f+l,"...,2ί+r})={2^+r+l, ..,3ί+r}, we have \CP(b)\=p, and 6
does not centralize P. On the other hand, since <P, δ)>=P <£Γ>, we have <^>X

<i>^ C<Pil>(6) ̂ Z«P, i». Hence | Z«P, 6» | = | <α> | =j>, since [P, b] Φ 1.
Now, since I(ά)=I(P), we have CG(ά) c; G(j(P)) = NG(GI(P)). By the Frattini-

Sylow argument, NG(GI(P))=NG(P) GI(P). So, CG(ά)^NG(P)GI(P). Hence

Cβ(Λ)/w=CG(fl)/^£JVG(P)/<p). Thus by Step 5, NG(Pγ^ has an orbit Δ of
maximal length such that NG(PY°^A* and |Δ|>2/>. We may assume that

Δ={1,2,. , |Δ|}. SetΓ={2,3,...,2ί},thenJVG(P)fΓ)^^Γ. Since |/(P) -
Γ I <p-l, \NG(P)Γ\p (=the order of a Sylow ^-subgroup of NG(P)T} = | P | .
Moreover since |NG(P)fΓ)|,=£, we have NG\(P)(τ)\p=p |P|. Thus <P, &>

is a Sylow ^-subgroup of NG(P)(Γ).
Suppose that CG(P)(

Γ

Γ)=1. Since Λ^G(P)(r)/CG(P)(r)<Aut(P), A2p_1 is in-

volved in Aut(P). But, we can easily seen that A2p-ι is not involved in Aut(P)
(cf. [2. §2, (3)]), which is a contradiction. Therefore we have CG(P)fΓ)>^Γ.

Since the center of a Sylow ^-subgroup of NG(P)(Γ) is of order jf>, this is a con-
tradiction. (q.e.d.)

Step 7. I Ω I - (2p+r) =t= /> (mod />2).

(The proof of this step is the same as that of [4, § 2], but we repeat it for
the completeness.)

Proof. We may assume that there exist two elements a and b of order p
which commute to each other such that

a = (I) .- (2p)(2p+l) .- (2p+r)(2p+r+l, -, 3p+r)(3p+r+l, •-, 4p+r) - ,

and

b = (1, .-.,ί)(ί+l, .-, 2p)(2#+l) •.. (2p+r)(2p+r+l) .-
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Since <0, 6> normalizes Gp+lt...ι2pt2p+r+lt...t3p+r, GG(O, by)p+lt...t2pi2p+r+lt...t3p+r has an
element c of order p. The element c must be of the form

' = (li -,f Πf +1) - (2ί) - (2j>+r) - (3p+r)(3p+r+l, -, 4/)+r)* - ,

where Kα, β<:p—l. Suppose, by way of contradiction, that |Ω| — (2p+r)=p
(mod /)2). <α, £> has at least />+2 orbits of length p. Hence there is an integer
7 (1 <γ</)— 1) such that | I(acΊ) \ ̂ 3p, which is a contradiction. (q.e.d)

From now on, let a be an element of order p of G such that

a = (1) - (2p)(2p+l) ». (2/)+r)(2/)+r+l, -, 3/)+r)(3/)+r+l, -, 4/)+r) - .

By Step 5, CG(α)/(β) has an orbit Δ such that CG(α)Δ>^4Δ and |Δ| >2p. Here-
after we may assume that Δ— {1 , 2, , | Δ | } .

Step 8. Set CG(a)0= CG(ά). Ifp>5, then there is an integer i(0 < i < 2)
CG(α)0/..fί αwdf CG(α)0 ... t ί+1 /z#?;e exactly m orbits on Ω—I(a), where m is at

most three, and moreover m is at most two when |Ω| — (2p-}-r)^0 (mod p2). If
p=3, then there is an integer i (0<*X1) such that CG(β), and CG(a)i>i+1 have
exactly m orbits on Ω— /(α), where m is at most two, and moreover m is one when

Proof. Suppose that p^5. In order to prove Step 8 for p^5, it is suffi-
cient to show that CG(α)1Λ3 has at most three orbits on Ω— /(#), and that
CG(α)12>3 has at most two orbits on Ω— I(d) when |ίϊ|— (2p-|-r)^0 (mod/)2).

Set H=Glt2>3 Then H is ^-transitive on fl— {1, 2, 3} by Step 3. By the
remark following Lemma 1.1 in [11], we get the following expression:

= Σ «,(*)>Σ Σ/ α

where MΛ ranges all representatives of conjugacy classes (in H) of elements of
order/), and y ranges all/) '-elements in CH(uk) and a*(y)=a(yQ~I(Uk)). Hence,

\H\ \ H \ l / * / x~ '

Assume that | Ω | — (2p+r) ΐ 0 (mod p2). Since a normalizes Glt...ιPt2p+r+ιt...t3p+ry

Gιt...tp>2p+r+ι,.'.,3p+r has an element b of order/) with ab=ba. If |/(^)| =2p+r
for any nontrivial element x of <«, &>, then <X δ> has just /)— 1 orbits of length
p on Ω— {1, •••, 3/)+r}. So |Ω| — (2ρ+r) = 0 (mod/)2), a contradiction. Hence
H (Ξ2<X 6>) contains an element of order p which fixes less than 2p-\-r points,
and so, the equality in the above expression does not hold. Now, assume that
χ(=CH(a) and/) \ x \ . Set | Λ ? | =p s. Since |/(#s)| <2/)+r, we have a*(x*)<
ρ ap((x'Y(a>). So, a*(x)<ρ ap(xI(a:>) + 2p a2p(xI(a)). Hence, we have that
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Σ'«*00> Σ (y)-p Σ α,(/w)-2j> Σ α^(/w) Since CH(a)^ ̂
y y<ΞCB<i* ) yeoxζ*) p y€=csw

> AL- {i,2,3} and |Δ|>2£,wegetί Σ α*(y/(β))=ί Σ ocp(y^{1'2'3})=\CH(a)\
yfΞCjjta) * y<=θuw y

by the formula of Frobenius. Similarly, if 2p Σ ^26(y/(β)) =t= 0, then
jeσjrcβ)

2/> Σ α2*(/(β>)= I CΊr(fl) I On the other hand, Σ α*0>)=/ I C^Λ) | , where
Jeflffco * ye-ojzw

/is the number of orbits of CH(a) on Ω — /(#). Hence we get

J^>l#I(/_2), and hence /<3 .
P P

In the above expression, if |Ω| — (2p+r) ΐ 0 (mod^>2), the equality does not

hold.

Suppose that p=3. Then r=0 or 1. If r=0, then G is 6-transitive on

Ω by [10, Lemma 6]. So, we have G ̂ AQ by [4, Theorem 1]. But this con-

tradicts our assumption. Hence r=l. Since <X>eSyl3(G1Λ3Λ5), we have
NG«ayγw^A7 by Step 3. Hence Cc(α)7< >>.47. Set H=0ίj. ' Then # is
3-transitive on Ω— {1, 2}, and CJy(α)/(β)~{1'2}>^5. By the similar argument as
in the case p^ 5, we have that CH(d) has at most two orbits on Ω— I(a), and
that CH(ά) is transitive on Ω—I(a) when |Ω| — 7^0 (mod 9). Therefore, the

consequences of Step 8 hold. (q.e.d.)

Step 9. Cf

G(α)12>...jΔ| has at most 2m orbits on Ω—I(a). Moreover
CG(fl)ι."-.ί,ίί+ι.ί+2).ί+3." , i Δ i (=CG({,+lί+2))(«)ι,.«f^+3f«.fiΔj) tuu exactly m orbits on
Ω-I(ά).

Proof. By Step 8, CG(α)0f..v has exactly m orbits on Ω— /(α). Let Γ1? •••, Γw

be the orbits. We take an arbitrarily fixed orbit Γy. Let 2ι, * ,ΣΛ be the

orbits of CG(tf)lf...jΔ| on Γy. Since C*G(α)0>...>ί[>CG(α)1>...jΔ| and Γ; is an orbit of

Cfc(β)of" . f > C"G(fl)o.T..{.V'"if) acts on the set {Σi, •••, Σj transitively. Let Y =
CGo .(β)(2ι). Then \CG(a)tΆ'"'i]: Y*-{1 '" i } \ =k. Similarly, we have

\CG&)frΆ:ril: Yfrl1 ..... t ] \ =k. Hence, \CG(a)t^Γ't} : CG(a)fr£;ril\ =
I yΔ- a.....,-}. yΔ-α ..... i } | = |A |_^ Therefore Y is transitive on Δ-{1, --,/}.

Let (/?!, •••, βp) be a ^-cycle of a such that {/?!, •••, βp} QΣi. For any _p— i

elements aί9 — ,α^f of Δ— {1, — ,/}» G0tWιitΛlf...fΛp^tβlt...tβp has an element & of

order )̂ commuting with a. Then fte F and 6Δ is a/)-cycle, and so, Y^~^'a'-\
has the^)-cycle. Since αj, •• ,α/>_t _1, ap-{ are any^>— / elements of Δ— {1, •••,$,
we have yΔ-ίi. "., }^^Δ-{i,.«,. } (cf> ̂  Theorem 8.4, Theorem 13.9]). Therefore

£<2. Ifft=2,then yΔ-(1 " ί)=^Δ-ί1 " ί> and Cc(^-!.V1"ii)=5A-i1---l7. There-

fore Γj is an orbit of CG(a)ιf...tptip+lιp+2}tp+3t...t\^\ on Ω—/(Λ), even if Λ=2. (q.e.d.)

Step 10. |Ω|— (2p+r)=2p(woέ//^) andp^S.

Proof. Since a is an element of order p of the form
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a = (1) ... (p)(p+l) .« (2p)(2p+l) - (2p+r)(2p+r+l,

(3j>+r+l, ,4p+r)...,

we may assume that CG(α)ί+lj...f2ίj2ί+r+ι,-,3/>+r has an element b of order />. By
Step 7, we may assume that

b = (1, -,f)(/>+l) - (2p)(2p+l)

Let ΛΓ=G,_tίt,+Ii,+ίl>+,f._f|Δ, andL = <6>.Λ:. Then |CL(α): Cκ(a) \=p. By
Step 9, Cκ(a) and C^α) have exactly m orbits on Ω— 7(α). Since m\ Cκ(a) \ =

Σ «* Cx) and "» I CΛa) \ = Σ oc*(y), we have

Next we show that the elements of order p of </z, by are not conjugate to
each other in CL(ά). Suppose afV and a1 V are conjugate to each other,

where 0<i,;, i',j'<p-l. If Φ/, then (^O^ - ̂ Φ^V)^-'^, which is a
contradiction. Hence y=jv. Assume ίΦί'. There exists an element x in CL(α)

such that (a*V)*=cί'V. Then ψ)*=at'-iV. Since ψ)χp=a^-^V=V, we
have^> |Λ: | . Hence there exists a ^-element Λ;O in C L(ά) Γ\NL((a, by) such that

Λ?O$ CL«β, ft». Since (a, i>e Syl^ίC^β)), this is a contradiction. Thus *W

Let s be the number of orbits of length p of <α, 6> on Ω— I(a). For each

fixed j (K j<p— 1), there are ί elements il9 •••, i, of {0, 1, •••,/>—!} such that
1 7(α'"*δy) I = I I(a) \ (k = 1 , , s) . Let i be an arbitrarily fixed element of {il9 , i$} ,

and let {γ^ •••, γj =I(aibi) Π (Ω— /(Λ)). Since <α, &> is a Sylow P-subgroup of
CL«α, 6», CL«α, 6» has the normal subgroup Y such that CL((a,b)>) =
<Xδ>χy, where ( | Y | ,/>)=!, and YQC^(α). Since Y acts on /(O, i»=
{/>+!, -, 2/>, 2p+l, -, 2^>+r}, Y acts on {7^ •-, γj. Since *fr-V is a #-
cycle and [Y, «]=!, we have γ{γι " V=l. Hence any element of α'6y Y fixes
at least p points of Ω— /(#). Moreover, it is clear that ctV Y Γ\Cκ(ά) = φ.

Therefore

a*(y)>s(p-l)P\CL«a,b»:<a,V>\.
»-<7κCfl)

Let rf be any element of CL(ά) such that d is conjugate to b in CL(α) and

Then <Λ, i> Π <β, </>=<». Hence CL«^, 6» Π CL«α, rf» c C^Λ).

Therefore, we have

Σ a*(y)>s(p-l )p\CL(a): CCίW(i)| |CL«β, ft»: <α, *>|
-
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Hence, m(P~V \ CL(ά)\ > s(P~l"> \ CL(ά) \ . Then m^s. On the other hand;

P P
if |Ω| — (2p+r)=hp (mod/)2), where 2<λ<£, then we have s=h. Therefore,

we have that | Ω | — (2p+r) = 2p (mod p2) and p^5, by Step 8. (q.e.d.)

Step 11. We complete the proof.

Proof. By Step 10, {2p+r + l, ••-, 3p + r} and {3p+r+l, •••, 4p+r} are
the orbits of length p of (a, by on Ω— I(ά)y and m=2 and p^5. By Step 4 we
have ap(ά)^4, hence |Ω— /(β)| ^p2+2p. Let ΓΊ, — ,Γ/ be the orbits of
CG(tf)1Λ...jΔ| on Ω— I(a), where 2</<4by Step 9. Since \b\=p, b acts
on the set {Γ\, -••, Γ/} trivially. If /=2, then ΓΊ and Γ2 are the orbits of
CG(a)ι9...tp[p+ltp+2)p+3t...9w on Ω— /(fl) by Step 9, and one of the following three
cases holds: ' (i) \TΪ\ =2p (mod/)), |Γ2| =0 (mod/)), (ii) |ΓΊ| =0 (mod/),

I Γ2 1 =2p (mod /). (iii) I T! I = | Γ2 1 = p (mod /). If /= 3, then we may

assume that IΛUΓg and Γ3 are the orbits of CG(a)it...tpf{p+itp+2}p+3t...f\±\ on Ω— /(#),
and one of the following two cases holds: (i) | ΓΊ | = | Γ2 1 =0 (mod /), | Γ3 1 =
2p (mod /). (ii) I A I = I Γa I = ί (mod /), | Γ3 1 = 0 (mod /). If 7=4, then we

may assume that ΓΊ U Γ2 and Γ3 U Γ4 are the orbits of CG(a)ιt...tp(p+ιtp+2)p+3t...t\^\ on
Ω— I(a), and one of the following two cases holds: (i) | ΓΊ | = | Γ2 1 =0 (mod/),
|Γ8| = |Γ4|=ί(mod^. (ii) |ΓJHΓ2 |=/>(mod/), |Γ3| = |Γ4| ̂ 0 (mod/).
We have the following for any value o f / : There is a I\ (l</<4) such that
\Tj\ =0 orp (mod/) and |Γy | >/. Let (βl9 —,βp) and (γj, •••, γp) be two

^-cycles of a such that {A, — , βp, Ύi, —, τJ^Γy. CG(a)^^p^...t'1p has an
element £ of order />. Hereafter we examine the relation between a and c. We
may assume that

c = (1, -, j>)(p+l, -, 2p)(2p+l)

Since |Γy | *2p (mod/), <α, £> has at least p+2 orbits of length^ on Ω— I(a).

Let .K=GιΛ...jΔi> and L=<c> .̂ By the same argument as in the proof of

Step 10, we have that /•£— ̂  | CL(a) \ = Σ «*(j;)> and that tlιe elements
^> y<=cLta)-cκ<i")

of <#, c>— {1} are not conjugate to each other in CL(a). For each fixed j" (1<

j </>—!), there are at least -̂  elements /i, •••, i(p+3)/2 of {0, 1, •••,/>—!} such

that |/(αV)| >/>+^ (^^1, — , ) Let /be an arbitrarily f ixed element of

Since <(Λ, c> is a Sylow ^-subgroup of CL(ζa, £>) there exists
the normal subgroup M of CL«α, f» such that CL«α, £»=<β, c>χM. First

assume that α'V fixes exactly/) points δi, •••, δ^ in Ω— I(ά). Then, by the same
argument as in the proof of Step 10, any element of α'V Λf fixes {Sly •••, Sp}
pointwise. Next assume that a'c* fixes exactly 2p points η^ •••, τq2p

 m Ω— /(α)
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and a fixes {βl9—9βp} and {ji, —, 7P} with {A,—, βp} U {θΊ, v, γ,} =
fa, •• ,972/>} If M fixes {A, •••, /?,} and {γl9 •• ,τj, then any element of
β'c' M fixes { î, * ,̂ } pointwise. And if M transposes {βι, ~,βp} and
{ΎI, •••, Ύ/,} then there exists the subgroup M0 of index two of M such that any
element of a*cj*M0 fixes {ηl9 •• ,^72/>} pointwise. Therefore, by the same argu-
ment as in the proof of Step 10, we have that

2p

Hence />^"r<J. So, we havep=5 and /=4.

We may assume that IΓJ = |Γ2| = 0 (mod 52). Let (δ-i, •• ,δs) and

(^i) •"> ^5) be two 5-cycles of a such that {δx, •••, S5} CΞΓΊ and {??!, •••,175} QΓ2.

^lG(β)δ1,...,δ5>r7l,...,τ?5 has an element d of order 5. Since d acts on the set {ΓΊ, Γ2,
Γ3, Γ4} trivially, <#, d> has at least 2 5+2 orbits of length 5 on Ω—I(a).
Hence, there exists an element x of order 5 of <α, dy such that \I(x) \ >3 5+r,
which is a contradiction. (q.e.d.)

3. Proof of Theorem B

In the proof of Theorem B, we shall use the following Lemma.

Lemma. There is no group satisfying the following condition: Let G be a

3-transitive group on Ω. Let a and β be two points of Ω. GΛtβ is an imprimitive

group on Ω— {#, β} with two blocks Δ1? Δ2 of length -—'—1, and moreover, for

any point 7 of ΔI and any point S of Δ2, <?££•$ and G#*β£l are 2-transitive groups.

(I think that this lemma is esentially known already in [7, § 1, Proof of

Theorem 1])

Proof of Lemma (cf. [7, § 1, Proof of Theorem 1]). Let G be a group

satisfying the above condition.
Set |Ω|=n and \^\=v+l (i=\, 2). Then GαβV has just two orbits ΣI

and Σ2 on Ω— {α, /3, 7} such that |Σιl =v+l and |Σ2| =v.
For any subset Δ of Ω with | Δ | =4, GΔ has two orbits Πi and Π2 on Ω — Δ

such that |Πι| = |Π2| or IΠj — |Π2| =2. In either case, GΔ is a subgroup

of GΛlrt2Λ3 which satisfies the assumption of the Witt's Lemma [14, Theorem

9.4], where aίt a2> #3 are three elements of Δ. Hence G^) is a 3-transitive
group. Thus, G(Δ)=AS4. Therefore, G acts on Ω(2), the set of unordered pairs

of elements of Ω, as a transitive permutation group of rank 4, where the orbitals,

Γ0, Γ\, Γ2 and Γ3 of this permutation group are defined as follows: for {α, β} e
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Γι({α, β}) = {{(7, δ} eΩ<2>| I {a, β} ΓΊ {7, δ} j = 1}

Γ2({α, β}) = {{7, δ} eΩ<2> I {α, β} Π {<y, δ} = φ .

δ is in the orbit of length v of Gaβy on Ω— {α, β, γ}}

Γ,({α, /3}) = {{7, δ} eΩ<2> I {α, β} n {% δ} = φ .

δ is in the orbit of length t>+ 1 of GeW on Ω— {α, /β,

The degrees corresponding to Γ, (ί=0, 1, 2, 3) are respectively

Moreover, these orbitals Γ, (ί=0, 1, 2, 3) are all self-paired.
Let us define the intersection matrices M{ (ί=0, 1, 2, 3) for the permuta-

tion group G on Ω(2) as follows:

Mi = (μ$) with 0<j<3, 0<*<3, where

^ = I Γ/Λ) n Γ,(jO I with y e ΓA(Λ)

Now we can obtain the intersection matrix M2 (cf. [9, §4]). This is,

/ 0

0

n

0
υ

2

1

2v-2

—v+2 ',

7I2— 1

0

y(v-l

n

\

)

2

By direct calculations, we obtain the eigenvalues 00, θι, Θ2 and Θ3 of M2.

and

Since (z;2)2<z;4+4z;+4<(ϋ2+2)2, it is clear that Θ2 and ^3 are irrational numbers.
Let us denote by τr(2) the permutation character of G on Ω(2). Then

τr<2> is multiplicity free and τr^=l+Xl+X2+X39 where X^JΓ^-^IG and
X2 and ^Γ3 are irreducible characters appearing in X(n~2f2)\G corresponding to
Θ2 and Θ3 respectively. Since Θ2 and Θ3 are irrational, X2 and JΓ3 are not
rational characters (cf. [6, Lemma 1]), so X2 and X3 are algebraic conjugate
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and especially of the same degree. Therefore X2(l)=X3(l)=n(n—3)/4 and
Xl(l)=ή—l. By a theorem of Frame [14, Theorem 30.1 (A)], we obtain
that the number

_ ίn(n-1)|2 2(n-2) v(n-2)β (n-2)(v+1)/2
9 I 2 / (n-l) n(tt-3)/4 tt(ra-3)/4

must be an integer. But, since n=2v+4, we have a contradiction, (q.e.d.)

Proof of Theorem B. Let G be a counter-example to the theorem with
the least possible degree.

Step 1. The number of orbits of G on Ω is at most two.

Proof. By Theorem A and the assumption for G, G has no orbit on Ω whose

length is less than p.
Suppose, by way of contradiction, that G has three orbits Δ1? Δ2 and Δ3

with |Δ, | >p (i=l, 2, 3). Set |Δ t | ==&< (mod/)), where 0<&t</>— 1 (i=l, 2,
3). Assume that 2ρ—(kl+k2

Jr2)'^p. We take ^+^—1 points al9 •• ,αrΛl+A_1

from Δ!, &2+l points βl9 •••, /3*2+ι from Δ2 and p—kl—k2 points OΊ, •••, 7p-kl-k2

from Δo. A Sylow ^-subgroup of G^ „ /? a •• ~ -r fixes at
^"1> *" "> ^*jfeι + p — 1)P 1) '' * > P kz +1>» 1> * * *J ' ^ — ki — kz

least 3̂ ) points, which contradicts the assumption of Theorem B. Hence

2ρ—(kι+k2-\-2)<ρ. We take &ι+l points a\, •• , 1̂+ι from Δx, k2+l points
A> *••> A2+ι from Δ2 and 2p—k1—k2—2 points OΊ, •••, 72^_Λι_fe2_2 from Δ3. A
Sylow ^-subgroup of G^ ^ /? a Ύ γ fixes at least 3/> points,

J J. σ JΓ ctjj •• ,c.tjt1 + l> A i j * j/y^2 + l ' 1> " " * > » 2p-kι -k2~2

which is a contradiction. (q.e.d.)

Step 2. W^ may assume that G is transitive on Ω. ( |Ω| =_/>—! (modp).)

Proof. Suppose that G is not transitive on Ω. By Step 1, G has two
orbits Δ! and Δ2 such that Δ1UΔ2—Ω and |Δ; | ̂ p (i=l, 2). Set |Δt | =

Sip+ki, where 0<^<^>—1 (/=!, 2). In this case kι~\-k2=p—l. By the
assumption of Theorem JB, s^2 or £2>2. We may assume that $ι>2 and s^s2.
We divide the consideration into the following three cases: (I) 5χ>3. (II) $ι=
s2=2. (111)^=2,^=1.

Suppose that Case (I) holds. By Theorem A and the assumption for G,

GΔι>^4Δι, and so, ^=3. For k2-\-l points a\y •• ,ak2+ι of Δ2, GΔJ tf^ak is

(p-f-/^-transitive by [10, Lemma 6]. Since G^f t a has an element x of

order p with α/Λi)=2, we have Gai"-tak2+l>
A^ bY [ί4> Theorem 13.10]. This

is a contradiction.
Suppose that Case (II) holds. We may assume that k{^k2. For p-\-k2+l

points «!, •• ,αί+Λ2+1 of Δ2, GΔι ... α + has an element of order p, and

moreover GΔ l „ is ^i-transitive by Γ10, Lemma 61. Since &ι>5,
°tl, '">ap + k2 + l J L > J 1^ >

by [14, Theorem 13.10]. This is a contradiction.
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Suppose that Case (III) holds. By [10, Lemma 6] and [14, Theorem
13.10], G is a group satisfying the consequence (2) of Theorem B. This is a
contradiction. (q.e.d.)

Step 3. G is primitive on Ω. For any element x of order p of G, ap(x)^8
holds.

Proof. Suppose, by way of contradiction, that G is imprimitive on Ω.
Let Δ!, •••, Δs be a system of imprimitivity of G. Set |Δ, | =k (mod^>), where
0<&</>— 1. First assume that |Δ, | <£. Then s>2p and we are able to take

2p points Si, •••, S2p from Ω such that S/eΔ, (ί=l, •••, 2p). A Sylow ^-sub-
group of G8iι...tξ2p fixes at least 4p points, which is a contradiction. Next assume
that either p< \ Δt | <2p, or | Δf | > 2p and s^ 3. We take k+ 1 points <χί9 ••• ,

αΛ+ι from Δ! and k+l points A, •••, /S*+ι from Δ2. We are able to take
2p—2k—2 points OΊ, •••, 72j-2*_2 from Ω— (ΔιUΔ2). A Sylow />-subgroup of
G^ * Λ „ ~ fixes at least 3/> points, which is a contradiction.

al9'"9ak + l9Pl9'"9Pk + l9Γl9'"9l2p-2k-2 r Γ

Therefore, we have that |Δ, | >2p and 5=2. Then Ω=ΔιUΔ2 and k=£^l.
Δέ

By Theorem A, |Δ, | =3ρ+£^λ Or 2p+£—±.. By the similar argument to
Δ* ί*

that of Case (II) of Step 2, we have a contradiction. Thus G is primitive on Ω.
By [14, Theorem 13.10], for any element x of order p of G, we have ap(x)^S.

(q.e.d.)

Step 4. Let 2<ί </>+£llA-f2. If G is t-transitive on Ω, fΛew G w ί-
z*

primitive on Ω.

Proof. Suppose, by way of contradiction, that G is ^-transitive on Ω
and G! ... f_ ! is imprimitive on Ω— {1, •••, t— 1}. Let Δx, •••, Δs be a system of
imprimitivity of Glt...fί_ι on Ω—{1, •• ,ί—l}. Set |Δ f | =k (mod/)) and |Δ, | =
Ip+k, where 0<^</>— 1. In this case, (t—l)+sk=p—l (mod/)). We divide
the consideration into the following two cases: (I) 2p— t~\-l^p. (II) 2p—
t+Kp.

Suppose that Case (I) holds. First assume that 7=0. Then s>2p— 1-\-\
and we are able to take 2p— t-\-l points Si, •• ,δ2/,_ί+ι of Ω such thatS ^Δ,-
(/=!, •••, 2p— ΐ+l). A Sylow /)-subgroup of G1>...tί_ι>δl>...>δ2/)_/+1 fixes at least 3p
points, which is a contradiction. Secondly assume that /=!. By Step 3, we

get s>8. Assume that k^^—. We take a point a from Δ^ a point β from

Δ2, a point 7 from Δ3 and 2p—t—2 points Si, ••• , S2p-t-2 froπi Δ4 U Δ5. A Sylow
/)-subgroup of G1)...tt-lt<Λtβtyf8it...tS2p_t_2 fixes at least 3p points, which is a contra-

diction. Hence we have fe<^~ when 1=1. We take k-\-\ points αi, •• ,αjfe+ι
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from Δjjβ+1 points βι, 9βk+ι from Δ2 and 2p—t—2k—l points Ύι, ,Ύ2p-t-2k-ι
from Δ3 U Δ4. A Sylow ^-subgroup of G1>...iί.lf4h>...fβ4+ιΛf...tp4+ιiYl§...§Yo_ί_I4.1

fixes at least 3/> points, which is a contradiction. Thirdly assume that 1^2 and

2p—t—k=£k, k+p. We take &+1 points c ,̂ •• ,αjH-ι from Δj and 2p—t—k

points βι,—,β2p-t-k fro™ Δ2. A Sylow ^-subgroup of ί?ι....iί-1.βli....β,4+l.βli....p2ί.<.ίk

fixes at least 3p points, which is a contradiction. Fourthly assume that 1^2

and 2p—t—k=k-\-p. Assume that s>3. We take k+1 points #ι, •••,#*+!
from Δ!, £+1 points βly •••, /3A+1 from Δ2 and/)— 1 points OΊ, •••, T^ from Δ3.

A Sylow ^-subgroup of Gi,..^-i,^,..sfl)ft+1^^0*+i;v^Vi fixes at least 3^ Poίnts>
which is a contradiction. Hence we have Ω= {1, •••, t— 1} U Δ! U Δ2 when

and 2p—t—k=k+p. Since k = - and *>2, we get *>3. Let γ be any

point of Δ!, and δ be any point of Δ2. By [10, Lemma 6], it is easily seen that

Gfι~ΪUι fγ.a and Gt,2.Γ(/δiι>Yfδ are (k— l+/>)-transitive. By Lemma, we have a
contradiction. Fifthly assume that />2 and 2p—t—k = k. In this case,

k= P~~ >^^. Assume that ί>3. We take k+l points αi, •• ,<*A+ι from

^ ^Δ!, k— 1 points ft, •••, /3Λ_! from Δ2 and a point 7 from Δ3. A Sylow ^-sub-

group of G:ι,...,/-ι,Λ1,-,ojΛ+1,β1, »,βΛ_1,v fiχes at least 3p points, which is a contradic-
tion. Hence, we have Ω={1, •••, t— 1} UΔ 1 UΔ 2 when />2 and 2p—t—k=k.

Let Q be a Sylow p-subgroup of Glf...fί. Then NG(Q)I(Q^ is a ^-transitive group

and \I(Q)\^t— l+2k=2p— 1. Let # be an element of order p of Q with

|/(#) I =3p— 1, and (γ^ •••, γ^) be a/>-cycle of Λ?. Let {δj, •••, δ }̂ be a subset of

Ω such that if \I(Q)\=2p-l, then {Sί9 -, 8^}=/(ic)-/(g), and if

3/>— 1, then ^{Si''"'V is ap-cyde of Λ different from (γ^ •• ,fy^). ^(^y^

has an element^ of order p. Since y fixes /(Q), we may assume

Then j;7(Q) is an element of order p of NG(Q)I(Q) which is 2-transitive on I(Q)

and we have NG(Q)I(Q}>AI(Q\ Since Gif...fi_! is imprimitive on Ω— {1, •• ,ί— 1},

this is a contradiction.

Suppose that Case (II) holds. In this case, p-\-2^t^p+^ +2. Let

Q be a Sylow ^-subgroup of G1/v. Then NG(Q)I(Q> is ί-transitive on I(Q).

Since |Ω| =p— 1 (modj>), we have \I(Q)\ =p—1 (mod/>), >and so, |/(£))| =
2p—1 or 3p—1. Since ί>/>+2, NG(Q)1(Q) has an element of order p, and so,

we get NG(Q)I(Q)^AI(Q). We may assume that {Δ!, —, Δj is the subset of

{Δ!, •••., Δs} such that /(0nΔ, φφ for l<z<w and 7(j3)ΠΔf =φ for u<i^s.

Since Gιt...fί-ι is imprimitive on Ω— {1, —,f— 1}, we have that Λ<1 or ιι=l.

Assume that ft>2. Then w=l, and so, (ί—l)+A =/>-—! (mod^)). Hence

ί—l+Λ=2p—1. Then p—^-^—2<,k<tp—2. On the other hand, (/— l)+sk

=£_! (mod;>). Ύhen (t+k)+(s—l)k=Q (mod^), and so, p\s—l. Hence
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Let di be a point of Δ, (i=l, •••, s). A Sylow j>-subgrόup of

.-ι.-.-*+1 fi*68 at least 2p+(k+l)(k-l) points. But, (A+1)(Λ-1)>

-- l)(ί — ̂ — — 3 )>/> , which is a contradiction. Therefore &=0 or

1. We take two points cti, cc2 from Δj and 2/>— t— 1 points /3j, •••, β2p-t-ι from

Δ2. A Sylow ^-subgroup of Gι....fί-ι.Λl.βafp1.«.fΛw./_1 fixes at least 3ρ points,
which is a contradiction. (q.e.d.)

Step 5. G is (p+^^+2\transitive on Ω.

Proof. By Step 3 and Step 4, in order to prove Step 5 we show that if G

is ί-primitive on Ω then G is (ί+ Intransitive On Ω, where 1<£<^>+^— ̂  — \-2.

Suppose, by way of contradiction, that G is ί-primitive on Ω, but G is not
(ί+l)-transitive on Ω. Let Δlf •••, Δs be the orbits of Glf...t, on Ω— {1, •••, t}9

where s^2. We may assume that | Δ! | > | Δ2 1 > — > | Δ, | >/> (cf . [14, Theorem
18.4]). Set |Δ,| =k< (modp) (i=l, — ,ί), then t+M ----- [-ks=p-\ (mod^).

We divide the consideration into the following two cases: (I) 2p— t^p+l.

(II) 2p-t^p.
Suppose that Case (I) holds. First assume that \Δ1\=p or p+l. We

take two points cxi, a2 from ΔI and two points βly β2 from Δ2. We are able to

take 2p—t—4 points 7^ •••, f/2/»-/-4 from Δ3 U ••• U Δs. A Sylow ^-subgroup of

ι̂," fί-ι,Λ1,«2.PιΛ.'Ί, "Λί-ί-4 ^Lxes at "east ^P P°^nts» which is a contradiction.
Therefore | ΔI | >p+2. Secondly assume that 2p—t—k1^p and | Δ! | ^2p+kλ.

We take p—t—k^ points βly •••, βp-t-^ from Δ2U ••• LJΔS. By [10, Lemma 6],

^X- A/Ί.-.βj-f-* ^s (ί>+^ι)-transitive, which contradicts Theorem 17.7 in [14].
If kι— 0 or 1 then our assumptions are satisfied. Therefore k^2. Thirdly
assume that either 2p—t—k1^p and \Δι\=p+kί9 or 2p—t—k1<p. We are

able to take 2p—t—k1 points β^ ••• , β2p-t-k1 from Δ2 U ••• U Δs. By [10, Lemma

6]> ^ιt

l "tt,βlt ',β2p-t-k ιs ^i-transitive, which contradicts Theorem 17.7 in [14].

Suppose that Case (II) holds. In this case, /><*< ρ + + 2 . Lei Q be
Zl

a Sylow ^-subgroup of Gιt...fί, then NG(Q)I(Q) is ί-transitive, and \I(Q) \ =2p—l
or 3p— 1. Since t^p, we have NG(Q)I(Q)^AI(Q\ Hence, there is a unique

orbit Δy such that &;.ΦO. Since t+kj=p— 1 (modp), we have that kj==
2p—l—t^3. By [10, Lemma 6], Gf ί.. tt is Λy-transitive, and so, we havej'Φl
by [14, Theorem 17.7], Assume that ί>3. We take a point a from ΔI,

2p—t—2 points β^ •••, β2p-t-2 from Δy and a point j from Δ, where l<z<ί

and ίΦy. A Sylow p-subgroup of Gfιf....ί-ιfΛ.βlf...,pv.ί_2iy fixes at least 3p points,
which is a contradiction. Therefore s=j=2. Ifp^ll, then kj=2p— 1— ί>4.
This is a contradiction by [1], Hence, we have p=ll. Moreover, we have
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kj=2p-l-t=3 by [1]. By [8, Theorem 5], we have that either (i) IΔJ +

|Δ2| + l=-l(|Δ2|
2+|Δ2H-2),or(ii) |Δ t | + |Δ2| + l = (λ+l)2(λ+4)2, |Δ,| =

(λ+l)(λ2+5λ+5), for some positive interger λ. Case (i) does not hold, since

3+1 ί— (32+3 + 2) (mod 11). Moreover Case (ii) does not hold, since for
Zί

every λ (λ=0, 1, -, 10), we have 3+l*(X+l)2(X+4)2 (mod 11) or 3*(λ+l)
(λ2+5λ+5) (mod 11). (q.e.d.)

Step 6. Let a be an element of order p of the form

a = (1) - (p)...(2/0 - (3p-l)(3p, --,4p-l) - .

Then one of the following holds for C=CG(α)3^?..>4ί_1.
(i) C has an orbit Δ such that C^A* and \Δ\^2p.
(ii) There exist two orbits ΔI and Δ2 of C such that IΔJ >/> and CΔ* is

( : |ΔfI - p+l)-transitive (i=l, 2), and Δ1UΔ2=I(a). Moreover, if |Δ, | >p+3,
then C^A^i.

-1(iii) C is an imprimitive group with two blocks Γα and Γ2 of length />+-
2

such that Cτi^Aτi (ί=l, 2).
Proof. For any p points a\, ••• , ap of I(a), CΛlt...tΛp has an element of order

p. Since C has an element of order p, it has an orbit whose length is at least
p. Assume that C has two orbits ΔI and Δ2 with |Δ f | >/> (i=l, 2). Set
^,1=^+^(1=1,2). If ΔiUΔaΦ/M, then k1+k2+2^p. We take Vf l
points «!, - ,α*1+ι from Δj and Λ2+l points A, •• ,A2+ι from Δ2, so

^βι. .«* +ι A. .β*a+ι ^as no element °f order p, a contradiction. Hence ΔI U Δ2

=/(Λ). By [10, Lemma 6J, we have that C is a group satisfying (ii). Assume
that C has a unique orbit Δ with \Δ\^p. Then we have | Δ | >2/>. If CΔ is
pritmitive, by [14, Theorem 13.9] we have that CΔ is a group satisfying (i)
Assume that CΔ is imprimitive. Let Γ^ •••, Ts be a system of imprimitivity of
CΔ. If |ΓΊ|</>, then 1^1 = 2. We take /> points αx, •• ,α/r with α^eΓ,.
(i=l, —,ί), so C-lt...iβ> has no element of order p, a contradiction. Hence

I Γi I >/>, and so we have s=2 and | Γx | = | Γ2 1 =p+£^λ. By [10, Lemma 6],
£

we have that C is a group satisfying (iii). (q.e.d.)

Step 7. For any 2p points a^ •••, a2p of Ω, the order of a Sylow p-subgroup

Proof. Suppose, by way of contradiction, that for some 2p points

cti, ••*> cc2p> the order of a Sylow />-subgroup P of GΛl9...tΛ2p is more than^). We
may assume that {aίy •••, <%} = {!, •••, 2p} and I(P)= {1, •••, 2p, •••, 3p— 1}.
Let a be an element of order p of Z(P). We may assume that
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a=(l). (3p-l)(3p,' 94p-l) .

Since CGι(α)/(Λ)~{1) is a permutation group of degree 3p— 2, one of the following

two cases holds:

(I) CGl(ayw-w has an orbit Δ such that CGι(a)*^A* and | Δ | ^2p-l.

(II) CGι(0)/(β)-<1} has two orbits Δ1? Δ2 such that | Δ, | ̂ p and CGl(a)^ is

( I Δ, I -p+ l)-transitive (i= 1, 2), and Δx U Δ2= I(a)- {1} . Moreover, if | Δ, | ̂

/>+3, then CGι(tf)Δ* > A*<.
Suppose that Case (I) holds. We may assume that Δ={2, 3, •••, |Δ|,

|Δ|+1}. Let Γ= {2, 3, •• ,2p}> then Γ^Δ. Since CGι(ί?)Δ>^4Δ, we have

G^Γ)^AT. On the other hand, by the Frattini-Sylow argument, G!(Γ) =
NolW(Gιr) = NGιW(P)'G1Γ. Hence, 7VGl(P)fr) = GT(Γ) ̂  Aτ, so we have

\NGl(P)(Γ)\p ( = the order of a Sylow ^-subgroup of NGι(P)(r))= \P\ -p.

CG(a)ι,2p+ι,'. t3p-ι,3p,'.',4p-ι has an element b of order p. Since |Γ| <2p, bτ is ap-
cycle. Since & normalizes G .̂..̂ -!, we may assume that Pb=P. Then <fc, P>e
syUNGι(P)(r)). Since CP(b) 'is semiregular on (Ω-/(P)) Π I(b)= {3p, •- , 4p- 1} ,

we have | CP(b) \ =p. Hence, since [P, b] Φ 1 we have | Z(<f, ό» | =p. Assume

that CGι(P)fΓ)=l. Since Λ^Gι(P)(Γ)/CGι(P)(Γ)<Aut(P), A2p.1 is involved in
Aut(P). But, we can easily seen that A2p-ι is not involved in Aut(P) (cf. [2,
§2. (3)]), which is a contradiction. Hence CGι(P)fΓ)>^4Γ. Since the center of

a Sylow />-subgroup of AΓGι(P)<Γ) is of order p, this is a contradiction.

Suppose that Case (II) holds. Then, one of the following two cases holds:

(i) NG^PY^-W^A^W.
(ii) Δ! 'and Δ2 are the orbits of ΛΓGι(P)/(p>- w. NGι(P)^ is ( | Δ, | -p+ 1)-

transitive (i= 1, 2), and if | Δ, | >/)+3, then NGι(P)^^A^.
If Case (i) holds, then we have a contradiction by the similar argument to

that of Case (I). Hence we assume that Case (ii) holds. We may assume that

I Δ J l H Δ a l and ̂ ={2,3,.-, IΔJ, IΔJ+1}. Let Γ={2, 3, -,2/>}. Since

, we have (CGl(a)Γ^2)^>A^ by [10, Lemma 6]. Then

and so, |^VGl(P)(r)|,= |P| p. CG(a)lf2p+ltmJΛp^ptmt4p.l has an

element b of order ^>. Then iΔι is a ^)-cycle, and we may assume that Pb=P.

So <i, P^eSyl^^c^PJir)). By the same argument as in Case (I), we have

\Z(Q),Py)\=p. Assume that CGl(P)fri)=l. Then CGι(α)Δι>CGι(α)(r). Since

^Gl(P)(Γ)/CGι(P)(Γ)<Aut(P) and NGι(P)(r)INGι(P)^NGι(P)t^>A^ we have

that A(3p_ι)/2 is involved in Aut (P). But, we can easily seen that -4(3^_ι)/2 is not

involved in Aut (P) (cf. [2, § 2. (3)]), which is a contradiction. Hence CGi(P)f^}

>^4Δι Since the center of a Sylow ^-subgroup of ΛΓGι(P)(Γ) is of order p, this
is a contradiction. (q.e.d.)

By the same argument as in Step 7 in the proof of Theorem A, we have

Step 8. |Ω| -(3p-l)^p (modp2).
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From now on, let a be an element of order p of the form

a = (1) - (2p)(2p+l) - (3ί-l)(3fc -, 4*-l)(4#, -, 5j-l) •« .

We divide the consideration into the following two cases:
(a) CG(ayw has an orbit Δ such that | Δ | >2p and CG(α)Δ>^Δ;
(β) otherwise.

When Case (a) holds, we may assume that Δ={1, •••, |Δ|}. When Case (β)
holds, we may assume that Δι={l, ••-,&<} and Δ2={«>+1, •• ,3p—l} are the
orbits or the blocks of CG(ά)I(a\ and that | ΔI | > ] Δ2 1 > p.

By the same argument as in Step 8, Step 9, Step 10 and Step 11 in the
proof of Theorem A, we have

Step 9. Case (a) does not hold.

Hereafter we assume that Case (β) holds.

Step 10. Set CG(a)w+ltW+2t...t2ptQ=CG(a)w+lfW+2t...t2p. There is an integer
i (Qtζitζl) such that CG(ά)w+lw+2t...f2pti and CG(a)w+ltW+2t...t2pfiti+i have exactly m
orbits on Ω— 7(0), where m is at mcst two, and moreover m=l when |Ω| — (3/>— 1)

Proof. In order to prove Step 10, it is sufficient to show that CG(a)w+lt...t2ptιt2

has at most two orbits on Ω— 7(α), and is transitive on Ω— I(a) when

Set H=Gw+lt...f2ptlt2. Then H is j>-transitive on Ω— {w+ly •• y2p9 1, 2} by
Step 5. By the remark following Lemma 1.1 in [11], we get the following ex-
pression:

l g l > \H\ JL yv /Y*/ Vi
p > |C,(α)|^f l β ( y )

where y ranges all ^'-elements in CH(a) and a*(y)=a(yQ~I(a^). Here the
equality does not hold when |Ω| — (3jf>— l) ΐO (mod/)2) (cf. Step 8 in the

proof of Theorem A). Now,2y«*(y)> Σ α*(v)— jp Σ α*(y(β)) sίnce

|Δ!-{1, 2} | > ί > + - 2 > / > + 3 , we have Ca(a)^^^A^'^ by Step 6.

Hence, />• Σ <xp(y'w)=ρ Σ α*(yΔl"{1>2)) = |C*(a)| by the formula of
yecgίa) * yεLGsζ*)

Frobenius. On the other hand, Σ #*(3θ~/" I CH(&) I > where/ is the number
je0ffCβ)

of orbits of CH(d) on Ω— I(ά). Hence we get

i^I^l^i^-l) , and hence/<2.
P P

In the above expression, if |Ω| — (3p— l)ΐO (mod/)2), the equality does not
hold. (q.e.d.)
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Step 11. CG(a)ιt2t...t2p has at most 2m orbits on Ω— /(#). Moreover,

^ has exactly m orbits on

Proof. By Step 10, CG(a)w+ιt...t2pti has exactly m orbits on Ω — I(d). Let

Γi, •••, Tm be the orbits. We take an arbitrarily fixed orbit Γy of CG(a)to+lt...t2pti

on Ω— I(a). Let ΣI, •••, Σ* be the orbits of CG(a)ίt2t...t2p on Γ, . Since

C'GW.+i^.^.iX^GWiA...^ andΓy is an orbit of CG(a)w+lt...t2pti, CG(a)fc[\Lt2p9i

acts on the set {Σi, * ,ΣΛ} transitively. Let Y= CG(2 }(a)w+lt...t2pti, then

I CG(α)Ή|.l „.,: YΔι-<' > I =*. Similarly we have that | C^α)*}̂ !.. 2p , M': Y?l7ί/} I

=*. Hence, \C^a)^^: CG(a)^^ifM\ = \ Y^i Yf^i}\ = |ΔJ -i
Therefore Y is transitive on ΔI— {/}. Let (βly •••, /S^) be a^-cycle of a such

that {βι, •••, ySjQΣi. For any w—p—i elements #ι, •••, aw-p-i of Δ!— {/},

^G(Λ)ί.βl,-fΛlp.ί_ίfι»+ι.-f2^βlf...^ has an element b of order p. Then ie Y and 6Δι
is a^-cycle, and so, Y^^w_p_t has the ̂ -cycle. Since aί9 —9aw-p-i-ι, aw.p^

are any w—p—i points of Δj— {/}, we have Y^~^^A^~(i} (cf. [14, Theorem

13.9]). Therefore k<2. If k=2y then YΔι-w = ̂ 1-w and Cĉ )̂ 1.!̂ ^ , =

S*ι~M. Therefore Γ; is an orbit of CG(a)ι t... tp[p+ί P+2}P+3, ,2P

 on Ω— /(«), even if
k=2. ..... (q.e.d.)

Step 12. We complete the proof.

Proof. Since a is an element of order p of the form

ι,...,2j>,3/»,.",4/>-ι has an element b of order p. By Step 8, we may assume that

b = (1, .

Let K=Gι9...tp{p+ιtp+2}p+3t...92p and L=ζby K. By the same argument as Step 10

in the proof of Theorem A, we have a contradiction. (q.e.d.)

4. Proofs of Theorem C and Theorem D

Proof of Theorem C. Let G be a nontrivial 2^>-transitive group on Ω=

{1, •••,#}. Let P be a Sylow ^-subgroup of Gx ...̂ , then PΦ1 and P is not

semiregular on Ω— /(P) by [3] and [4]. Moreover, NG(P)I(P> is Sm (2/><w<

3^>— 1) or Am (2p+2<m^3ρ—l). Hence, if n(= \I(P)\) = p— 1 (modjp), then

Theorem C holds. Suppose that n^p— 1 (mod/)). Let Q be a subgroup of

P such that the order of Q is maximal among all subgroups of P fixing more

than |/(P)| points. Set N=NG(Q)I(Q\ then N has an orbit Γ such that

and |Γ| >3p, by Theorem A. (q.e.d.)

Proof of Theorem D. Let G be a nontrivial /-transitive group on Ω—
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{1, ••-,#}. Suppose that t is sufficiently large. By Satz B in [13], log(n—1)>—-.
Zί

By the proof of [13, Satz J3], we can see that log(»—i)> ί—+£0)* for some

£0>0. Moreover, we can see that, in the proof of [13, Satz B]9 it was only

used that for any ^-transitive group H on Σ, there exists a subset Π of Σ such

that I Π I =k and H?π) ̂  A*.

Let/)1=2,^2=3, •••, and pi be the i-th prime number. Then lim^^-*!.
i+" Pi

(This result is well known in the theory of numbers.)

Since t is sufficiently large, by the above remark and Theorem C, there

exists a positive number £ which is sufficiently close to 0, and exists a

subset Δ of Ω such that |Δ| >(^—£}t and GfΔ)>^4Δ. Therefore we have

-t)>±-t. (q.e.d.)
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